1
|
Cui H, Liu Z, Peng L, Liu L, Xie X, Zhang Y, Gao Z, Zhang C, Yu X, Hu Y, Liu J, Shang L, Li L. A novel 5'tRNA-derived fragment tRF-Tyr inhibits tumor progression by targeting hnRNPD in gastric cancer. Cell Commun Signal 2025; 23:88. [PMID: 39953522 PMCID: PMC11829405 DOI: 10.1186/s12964-025-02086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Transfer RNA-derived small RNAs (tsRNAs), including tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), constitute a novel class of small noncoding RNAs (sncRNAs). tsRNAs have been linked to tumorigenesis and the progression of carcinogenesis; however, the precise molecular mechanism through which tRFs act in gastric cancer (GC) remains unknown. METHODS tRF-Tyr is a potential GC tumor suppressor that was identified through high-throughput sequencing technology. The expression and subcellular localization of tRF-Tyr in GC were detected by via qRT‒PCR and FISH. RNA pull-down, mass spectrometry, RNA immunoprecipitation (RIP), dual-luciferase reporter and rescue assays were performed to explore the regulatory mechanisms through which tRF-Tyr acts in GC. RESULTS tRF-Tyr was significantly downregulated and the downregulation of its mainly concentrated in the nuclei of GC cells. Functionally, tRF-Tyr inhibited the proliferation, invasiveness and migration of GC cells and promoted GC cells apoptosis in vitro; meanwhile, tRF-Tyr inhibited tumor growth in vivo. Mechanistically, tRF-Tyr bound directly to the hnRNPD protein and competitively inhibited the binding of hnRNPD to the c-Myc 3'UTR, thereby, regulating the c-Myc/Bcl2/Bax pathway and ultimately inhibiting the progression of GC. CONCLUSIONS This study focused on a novel GC suppressor, tRF-Tyr, and revealed a previously undiscovered mechanism that tRF-Tyr inhibits tumor progression by targeting hnRNPD. These findings provide new insight into the involvement of tRFs in GC and suggest a novel target for GC treatment.
Collapse
Affiliation(s)
- Huaiping Cui
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China.
- Department of Gastrointestinal Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China.
| | - Zhaodong Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Lipan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Lijun Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Xiaozhou Xie
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Yudi Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Zi Gao
- Department of Gastrointestinal Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Chi Zhang
- Department of Gastrointestinal Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Xinshuai Yu
- Department of Gastrointestinal Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Yonghao Hu
- Department of Gastrointestinal Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China.
- Department of Gastrointestinal Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China.
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong, 250021, China.
- Department of Gastrointestinal Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Ye J, Wang J, Liu R, Chen C, Wang W. The prognostic significance and potential mechanism of PFDN4 in hepatocellular carcinoma. Int Immunopharmacol 2025; 145:113761. [PMID: 39644788 DOI: 10.1016/j.intimp.2024.113761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
PFDN4, a subunit of the prefoldin complex, has been previously shown to be upregulated in breast and colorectal cancers, where its expression correlates with poor clinical outcomes. This study investigates PFDN4 expression across various cancer types, with a specific focus on its role in hepatocellular carcinoma (HCC) development and progression. Analysis of TCGA data revealed that PFDN4 is highly expressed in several cancers and is associated with poor prognosis. Further validation through multiple databases, tissue microarrays, and clinical samples confirmed that PFDN4 protein levels are significantly elevated in HCC tissues. Meanwhile, multiple database multivariate and univariate Cox regression analyses suggest that PFDN4 is an independent prognostic marker for HCC. To evaluate the functional effects of PFDN4, we established stable HCC cell lines with PFDN4 knockdown and overexpression. Using CCK-8, EdU, wound healing, and Transwell assays, we found that PFDN4 knockdown significantly suppressed cell proliferation, migration, and invasion, while its overexpression enhanced these behaviors. These findings were further validated in vivo. Mechanistically, transcriptome sequencing suggested that PFDN4 modulates HCC cell behavior through the MAPK/ERK signaling pathway, a result confirmed by Western blot and the use of the MAPK/ERK inhibitor SCH772984. Additionally, single-cell RNA sequencing data revealed that PFDN4 is primarily expressed in several immune cell types, including B cells, CD8 + Tex, DC, ILC, mast cells, macrophages, Tprolif, and Treg. In conclusion, our study demonstrates that PFDN4 is upregulated in HCC and drives tumor progression via the MAPK/ERK pathway, highlighting its potential as both a prognostic marker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Jing Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China; Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China
| | - Jianguo Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China; Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China; Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Rongqiang Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China; Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China; Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China; Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China.
| |
Collapse
|
3
|
Wang SH, Yeh CH, Wu CW, Hsu CY, Tsai EM, Hung CM, Wang YW, Hsieh TH. PFDN4 as a Prognostic Marker Was Associated with Chemotherapy Resistance through CREBP1/AURKA Pathway in Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:3906. [PMID: 38612711 PMCID: PMC11012048 DOI: 10.3390/ijms25073906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer is the most common malignancy and its incidence is increasing. It is currently mainly treated by clinical chemotherapy, but chemoresistance remains poorly understood. Prefolded proteins 4 (PFDN4) are molecular chaperone complexes that bind to newly synthesized polypeptides and allow them to fold correctly to stabilize protein formation. This study aimed to investigate the role of PFDN4 in chemotherapy resistance in breast cancer. Our study found that PFDN4 was highly expressed in breast cancer compared to normal tissues and was statistically significantly associated with stage, nodal status, subclasses (luminal, HER2 positive and triple negative), triple-negative subtype and disease-specific survival by TCGA database analysis. CRISPR knockout of PFDN4 inhibited the growth of 89% of breast cancer cell lines, and the triple-negative cell line exhibited a stronger inhibitory effect than the non-triple-negative cell line. High PFDN4 expression was associated with poor overall survival in chemotherapy and resistance to doxorubicin and paclitaxel through the CREBP1/AURKA pathway in the triple-negative MDAMB231 cell line. This study provides insightful evidence for the value of PFDN4 in poor prognosis and chemotherapy resistance in breast cancer patients.
Collapse
Affiliation(s)
- Shih-Ho Wang
- Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Cheng-Hsi Yeh
- Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Wei Wu
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-W.W.); (Y.-W.W.)
| | - Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-Y.H.)
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-Y.H.)
| | - Chao-Ming Hung
- Department of Surgery, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yi-Wen Wang
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-W.W.); (Y.-W.W.)
| | - Tsung-Hua Hsieh
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (C.-W.W.); (Y.-W.W.)
| |
Collapse
|
4
|
Qu Y, Gong X, Zhao Z, Zhang Z, Zhang Q, Huang Y, Xie Q, Liu Y, Wei J, Du H. Establishment and Validation of Novel Prognostic Subtypes in Hepatocellular Carcinoma Based on Bile Acid Metabolism Gene Signatures Using Bulk and Single-Cell RNA-Seq Data. Int J Mol Sci 2024; 25:919. [PMID: 38255993 PMCID: PMC10815120 DOI: 10.3390/ijms25020919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly detrimental cancer type and has limited therapeutic options, posing significant threats to human health. The development of HCC has been associated with a disorder in bile acid (BA) metabolism. In this study, we employed an integrative approach, combining various datasets and omics analyses, to comprehensively characterize the tumor microenvironment in HCC based on genes related to BA metabolism. Our analysis resulted in the classification of HCC samples into four subtypes (C1, C2a, C2b, and C3). Notably, subtype C2a, characterized by the highest bile acid metabolism score (BAMS), exhibited the highest survival probability. This subtype also demonstrated increased immune cell infiltration, lower cell cycle scores, reduced AFP levels, and a lower risk of metastasis compared to subtypes C1 and C3. Subtype C1 displayed poorer survival probability and elevated cell cycle scores. Importantly, the identified subtypes based on BAMS showed potential relevance to the gene expression of drug targets in currently approved drugs and those under clinical research. Genes encoding VEGFR (FLT4 and KDR) and MET were elevated in C2, while genes such as TGFBR1, TGFB1, ADORA3, SRC, BRAF, RET, FLT3, KIT, PDGFRA, and PDGFRB were elevated in C1. Additionally, FGFR2 and FGFR3, along with immune target genes including PDCD1 and CTLA4, were higher in C3. This suggests that subtypes C1, C2, and C3 might represent distinct potential candidates for TGFB1 inhibitors, VEGFR inhibitors, and immune checkpoint blockade treatments, respectively. Significantly, both bulk and single-cell transcriptome analyses unveiled a negative correlation between BA metabolism and cell cycle-related pathways. In vitro experiments further confirmed that the treatment of HCC cell lines with BA receptor agonist ursodeoxycholic acid led to the downregulation of the expression of cell cycle-related genes. Our findings suggest a plausible involvement of BA metabolism in liver carcinogenesis, potentially mediated through the regulation of tumor cell cycles and the immune microenvironment. This preliminary understanding lays the groundwork for future investigations to validate and elucidate the specific mechanisms underlying this potential association. Furthermore, this study provides a novel foundation for future precise molecular typing and the design of systemic clinical trials for HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (Y.Q.); (X.G.); (Z.Z.); (Z.Z.); (Q.Z.); (Y.H.); (Q.X.); (Y.L.)
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (Y.Q.); (X.G.); (Z.Z.); (Z.Z.); (Q.Z.); (Y.H.); (Q.X.); (Y.L.)
| |
Collapse
|