1
|
Lee WC, Moi SH, Yang SF, Tseng HH, Liu YP. Downregulation of AATK enhances susceptibility to ferroptosis by promoting endosome recycling in gefitinib-resistant lung cancer cells. J Pathol 2025; 265:422-436. [PMID: 39871626 DOI: 10.1002/path.6393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 01/29/2025]
Abstract
Ferroptosis has been characterised by disruption of the cell membrane through iron-related lipid peroxidation. However, regulation of iron homeostasis in lung cancer cells that are resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) remains unclear. Transcriptome analysis identified a significant downregulation of apoptosis-associated tyrosine kinase (AATK) mRNA expression in gefitinib-resistant PC9 (PC9-GR) cells, which were found to be more susceptible to ferroptosis inducers. An in-depth analysis of publicly available datasets revealed that downregulation of AATK mRNA was associated with lymph node metastasis and poor prognosis in patients with lung adenocarcinoma. Knockdown of AATK-sensitised PC9, HCC827, and H441 cells to the ferroptosis inducer RSL3, whereas ectopic expression of AATK reduced RSL3-induced cell death in PC9-GR and HCC827-GR cells. Compared to PC9 cells, PC9-GR cells exhibited higher transferrin uptake, endosome recycling rate, and increased intracellular iron levels. Blocking iron transport reduced RSL3-induced ferroptosis in PC9-GR cells. Mechanistic studies showed that AATK localised to both early and recycling endosomes. Knockdown of AATK facilitated endosome recycling and elevated intracellular ferrous iron (Fe2+) levels in PC9 cells. Conversely, ectopic expression of AATK delayed endosome recycling and reduced intracellular Fe2+ levels in PC9-GR cells. Inhibition of AATK downregulation-induced iron accumulation decreased RSL3-induced ferroptosis. Taken together, our study indicates that the downregulation of AATK contributes to endosome recycling and iron accumulation, leading to an increased susceptibility to ferroptosis in EGFR-TKI-resistant lung cancer cells. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Wei-Chang Lee
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sin-Hua Moi
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheau-Fang Yang
- Department of Pathology, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ho-Hsing Tseng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Peng Liu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Baumann AA, Buribayev Z, Wolkenhauer O, Salybekov AA, Wolfien M. Epigenomic Echoes-Decoding Genomic and Epigenetic Instability to Distinguish Lung Cancer Types and Predict Relapse. EPIGENOMES 2025; 9:5. [PMID: 39982247 PMCID: PMC11843950 DOI: 10.3390/epigenomes9010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 02/22/2025] Open
Abstract
Genomic and epigenomic instability are defining features of cancer, driving tumor progression, heterogeneity, and therapeutic resistance. Central to this process are epigenetic echoes, persistent and dynamic modifications in DNA methylation, histone modifications, non-coding RNA regulation, and chromatin remodeling that mirror underlying genomic chaos and actively influence cancer cell behavior. This review delves into the complex relationship between genomic instability and these epigenetic echoes, illustrating how they collectively shape the cancer genome, affect DNA repair mechanisms, and contribute to tumor evolution. However, the dynamic, context-dependent nature of epigenetic changes presents scientific and ethical challenges, particularly concerning privacy and clinical applicability. Focusing on lung cancer, we examine how specific epigenetic patterns function as biomarkers for distinguishing cancer subtypes and monitoring disease progression and relapse.
Collapse
Affiliation(s)
- Alexandra A. Baumann
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, 18051 Rostock, Germany; (A.A.B.)
- Faculty of Medicine Carl Gustav Carus, Institute for Medical Informatics and Biometry, TUD Dresden University of Technology, 01069 Dresden, Germany
| | - Zholdas Buribayev
- Department of Computer Science, Faculty of Information Technologies, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, 18051 Rostock, Germany; (A.A.B.)
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, 80333 Freising, Germany
- Stellenbosch Institute of Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch 7535, South Africa
| | - Amankeldi A. Salybekov
- Regenerative Medicine Division, Cell and Gene Therapy Department, Qazaq Institute of Innovative Medicine, 010000 Astana, Kazakhstan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan
| | - Markus Wolfien
- Faculty of Medicine Carl Gustav Carus, Institute for Medical Informatics and Biometry, TUD Dresden University of Technology, 01069 Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), 01069 Dresden, Germany
| |
Collapse
|
3
|
Zhou M, Wei L, Lu R. Emerging role of sirtuins in non‑small cell lung cancer (Review). Oncol Rep 2024; 52:127. [PMID: 39092574 PMCID: PMC11304160 DOI: 10.3892/or.2024.8786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Non‑small cell lung cancer (NSCLC) is a highly prevalent lung malignancy characterized by insidious onset, rapid progression and advanced stage at the time of diagnosis, making radical surgery impossible. Sirtuin (SIRT) is a histone deacetylase that relies on NAD+ for its function, regulating the aging process through modifications in protein activity and stability. It is intricately linked to various processes, including glycolipid metabolism, inflammation, lifespan regulation, tumor formation and stress response. An increasing number of studies indicate that SIRTs significantly contribute to the progression of NSCLC by regulating pathophysiological processes such as energy metabolism, autophagy and apoptosis in tumor cells through the deacetylation of histones or non‑histone proteins. The present review elaborates on the roles of different SIRTs and their mechanisms in NSCLC, while also summarizing novel therapeutic agents based on SIRTs. It aims to present new ideas and a theoretical basis for NSCLC treatment.
Collapse
Affiliation(s)
- Min Zhou
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, P.R. China
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| | - Lin Wei
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, P.R. China
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| | - Renfu Lu
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, P.R. China
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| |
Collapse
|
4
|
Chen M, Tan J, Jin Z, Jiang T, Wu J, Yu X. Research progress on Sirtuins (SIRTs) family modulators. Biomed Pharmacother 2024; 174:116481. [PMID: 38522239 DOI: 10.1016/j.biopha.2024.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Sirtuins (SIRTs) represent a class of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that exert a crucial role in cellular signal transduction and various biological processes. The mammalian sirtuins family encompasses SIRT1 to SIRT7, exhibiting therapeutic potential in counteracting cellular aging, modulating metabolism, responding to oxidative stress, inhibiting tumors, and improving cellular microenvironment. These enzymes are intricately linked to the occurrence and treatment of diverse pathological conditions, including cancer, autoimmune diseases, and cardiovascular disorders. Given the significance of histone modification in gene expression and chromatin structure, maintaining the equilibrium of the sirtuins family is imperative for disease prevention and health restoration. Mounting evidence suggests that modulators of SIRTs play a crucial role in treating various diseases and maintaining physiological balance. This review delves into the molecular structure and regulatory functions of the sirtuins family, reviews the classification and historical evolution of SIRTs modulators, offers a systematic overview of existing SIRTs modulation strategies, and elucidates the regulatory mechanisms of SIRTs modulators (agonists and inhibitors) and their clinical applications. The article concludes by summarizing the challenges encountered in SIRTs modulator research and offering insights into future research directions.
Collapse
Affiliation(s)
- Mingkai Chen
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junfei Tan
- School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zihan Jin
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou City, China
| | - Tingting Jiang
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Jiabiao Wu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China; The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
5
|
Bayanbold K, Singhania M, Fath MA, Searby CC, Stolwijk JM, Henrich JB, Pulliam CF, Schoenfeld JD, Mapuskar KA, Sho S, Caster JM, Allen BG, Buettner GR, Spies M, Goswami PC, Petronek MS, Spitz DR. Depletion of Labile Iron Induces Replication Stress and Enhances Responses to Chemoradiation in Non-Small-Cell Lung Cancer. Antioxidants (Basel) 2023; 12:2005. [PMID: 38001858 PMCID: PMC10669787 DOI: 10.3390/antiox12112005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The intracellular redox-active labile iron pool (LIP) is weakly chelated and available for integration into the iron metalloproteins that are involved in diverse cellular processes, including cancer cell-specific metabolic oxidative stress. Abnormal iron metabolism and elevated LIP levels are linked to the poor survival of lung cancer patients, yet the underlying mechanisms remain unclear. Depletion of the LIP in non-small-cell lung cancer cell lines using the doxycycline-inducible overexpression of the ferritin heavy chain (Ft-H) (H1299 and H292), or treatment with deferoxamine (DFO) (H1299 and A549), inhibited cell growth and decreased clonogenic survival. The Ft-H overexpression-induced inhibition of H1299 and H292 cell growth was also accompanied by a significant delay in transit through the S-phase. In addition, both Ft-H overexpression and DFO in H1299 resulted in increased single- and double-strand DNA breaks, supporting the involvement of replication stress in the response to LIP depletion. The Ft-H and DFO treatment also sensitized H1299 to VE-821, an inhibitor of ataxia telangiectasis and Rad2-related (ATR) kinase, highlighting the potential of LIP depletion, combined with DNA damage response modifiers, to alter lung cancer cell responses. In contrast, only DFO treatment effectively reduced the LIP, clonogenic survival, cell growth, and sensitivity to VE-821 in A549 non-small-cell lung cancer cells. Importantly, the Ft-H and DFO sensitized both H1299 and A549 to chemoradiation in vitro, and Ft-H overexpression increased the efficacy of chemoradiation in vivo in H1299. These results support the hypothesis that the depletion of the LIP can induce genomic instability, cell death, and potentiate therapeutic responses to chemoradiation in NSCLC.
Collapse
Affiliation(s)
- Khaliunaa Bayanbold
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Mekhla Singhania
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Melissa A. Fath
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Charles C. Searby
- University of Iowa Hospitals and Clinics, Department Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey M. Stolwijk
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - John B. Henrich
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Casey F. Pulliam
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Joshua D. Schoenfeld
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Kranti A. Mapuskar
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Sei Sho
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Joseph M. Caster
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Bryan G. Allen
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Garry R. Buettner
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Maria Spies
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
- University of Iowa Hospitals and Clinics, Holden Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, Iowa City, IA 52242, USA
| | - Prabhat C. Goswami
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Michael S. Petronek
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| | - Douglas R. Spitz
- University of Iowa Hospitals and Clinics, Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA (M.A.F.); (G.R.B.)
| |
Collapse
|