1
|
Liu X, Mei L, Wang J, Liu X, Yang Y, Wu Z, Ji Y. Cutting-edge insights into the mechanistic understanding of plant-derived exosome-like nanoparticles: Implications for intestinal homeostasis. Food Res Int 2025; 208:116186. [PMID: 40263791 DOI: 10.1016/j.foodres.2025.116186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/11/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Plant-derived exosome-like nanoparticles (PDELNs) are extracted from plants such as ginger, garlic, broccoli, and others, attracting attention for their therapeutic potential due to their availability and capacity for large-scale production. Their unique physicochemical properties position PDELNs as ideal candidates for targeted gut delivery, improving intestinal health by modulating mucosal immunity, gut microbiota, and intestinal barrier integrity, all essential for maintaining intestinal homeostasis. PDELNs regulate intestinal barrier function through their bioactive components (e.g. microRNAs, lipids, and proteins). These vesicles enhance the expression of tight junction proteins and stimulate mucin production. Additionally, they promote intestinal stem cell proliferation and increase the secretion of antimicrobial peptides. PDELNs also modulate inflammatory cytokine levels and immune cell activity, fostering a balanced immune response. Further, they support the growth of beneficial gut microbiota and their metabolites, while suppressing the proliferation of pathogenic bacteria. This review summarizes recent advancements in understanding the roles of PDELNs in regulating intestinal homeostasis, focusing on their impact on mucosal immunity, intestinal barrier function, and gut microbiota composition, along with underlying molecular mechanisms and therapeutic implications. Overall, PDELNs show promise as a novel approach for treating and preventing intestinal diseases, paving the way for effective gut health interventions.
Collapse
Affiliation(s)
- Xiyuan Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Xuelian Liu
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing, 100192, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Noreen S, Maqbool I, Saleem A, Mahmood H, Rai N. Recent insights and applications of nanocarriers-based drug delivery systems for colonic drug delivery and cancer therapy: An updated review. Crit Rev Oncol Hematol 2025; 208:104646. [PMID: 39914570 DOI: 10.1016/j.critrevonc.2025.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/08/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignant tumor globally and is associated with high morbidity and mortality rates. The advancement of novel nanocarrier-based drug delivery systems has revolutionized therapeutic strategies for colonic drug delivery and cancer treatment. This review provides updated insights into various nanocarrier technologies, including quantum dots (QDs), polymeric nanoparticles (PNPs), magnetic and metallic nanoparticles, solid lipid nanoparticles (SLNs), and self-microemulsifying and self-nanoemulsifying drug delivery systems (SMEDDS/SNEDDS). These nanocarriers offer enhanced drug stability, controlled release, and targeted delivery, particularly for CRC treatment, resulting in up to 70 % improved therapeutic efficacy and a significant reduction in systemic toxicity as reported in preclinical studies. The review comprehensively discusses the structural composition, mechanisms of action, therapeutic potential, and imaging capabilities of these systems, with a focus on their applications in theranostics and targeted CRC therapy. For instance, polymeric nanoparticles have demonstrated a 50 % increase in bioavailability compared to conventional formulations, while QDs have enabled real-time imaging with high precision for tumor localization. Additionally, the toxicity profiles and challenges associated with these nanocarriers are critically evaluated. Despite significant progress in preclinical and clinical studies, the review highlights the need for optimizing biocompatibility, scalability, and regulatory standards to facilitate the clinical translation of these promising technologies. Emerging formulations such as graphene quantum dots and PEGylated nanoparticles have shown potential for achieving dual therapeutic and diagnostic applications with fewer adverse effects. Overall, nanocarrier-based systems hold great potential for personalized and more effective treatments in colon-targeted therapies.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan; Centre for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Austria.
| | - Irsah Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Anum Saleem
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Hassan Mahmood
- Humanities Department, COMSATS University Islamabad, Lahore Campus, Punjab, Pakistan
| | - Nadia Rai
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| |
Collapse
|
3
|
Liu S, Zheng Y, Pan L, Wang W, Li Y, Liu Z, Zhang X. Nanodelivery of nucleic acids for plant genetic engineering. DISCOVER NANO 2025; 20:31. [PMID: 39937428 PMCID: PMC11822150 DOI: 10.1186/s11671-025-04207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Genetic engineering in plants serves as a crucial method for enhancing crop quality, yield, and climate resilience through the manipulation of genetic circuits. A novel genetic transformation approach utilizing nanocarriers as a sound plant genetic engineering technique enables the delivery of DNAs or RNAs into the plant cells. Significant advances have recently been made on the nanotechnology-based delivery of nucleic acids in plants. In this review, several nanoparticle-mediated DNA and RNA delivery systems are discussed respectively, involving latest progresses and drawbacks of these approaches used in plant genetic engineering. We also underscores the current challenges that must be addressed in the implementation of nanoparticles-based strategies for plant gene delivery. Furthermore and more importantly, plant-derived exosome-like nanoparticles that facilitate nucleic acids transfer between organisms was initially proposed as a novel and promising nanodelivery platform for the CRISPR/Cas9 genome editing toolkit in plants. We believe that this review will be beneficial for an effective exploration of nucleic acid nanodelivery to aid the plant genetic engineering in modern agriculture.
Collapse
Affiliation(s)
- Shufeng Liu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yixian Zheng
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, 830091, China
| | - Linsi Pan
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Wencai Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zhaojun Liu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, 830091, China.
| | - Xianzhi Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
4
|
Teng Y, Luo C, Qiu X, Mu J, Sriwastva MK, Xu Q, Liu M, Hu X, Xu F, Zhang L, Park JW, Hwang JY, Kong M, Liu Z, Zhang X, Xu R, Yan J, Merchant ML, McClain CJ, Zhang HG. Plant-nanoparticles enhance anti-PD-L1 efficacy by shaping human commensal microbiota metabolites. Nat Commun 2025; 16:1295. [PMID: 39900923 PMCID: PMC11790884 DOI: 10.1038/s41467-025-56498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Diet has emerged as a key impact factor for gut microbiota function. However, the complexity of dietary components makes it difficult to predict specific outcomes. Here we investigate the impact of plant-derived nanoparticles (PNP) on gut microbiota and metabolites in context of cancer immunotherapy with the humanized gnotobiotic mouse model. Specifically, we show that ginger-derived exosome-like nanoparticle (GELN) preferentially taken up by Lachnospiraceae and Lactobacillaceae mediated by digalactosyldiacylglycerol (DGDG) and glycine, respectively. We further demonstrate that GELN aly-miR159a-3p enhances anti-PD-L1 therapy in melanoma by inhibiting the expression of recipient bacterial phospholipase C (PLC) and increases the accumulation of docosahexaenoic acid (DHA). An increased level of circulating DHA inhibits PD-L1 expression in tumor cells by binding the PD-L1 promoter and subsequently prevents c-myc-initiated transcription of PD-L1. Colonization of germ-free male mice with gut bacteria from anti-PD-L1 non-responding patients supplemented with DHA enhances the efficacy of anti-PD-L1 therapy compared to controls. Our findings reveal a previously unknown mechanistic impact of PNP on human tumor immunotherapy by modulating gut bacterial metabolic pathways.
Collapse
Affiliation(s)
- Yun Teng
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.
| | - Chao Luo
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Central Laboratory, The affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xiaolan Qiu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Breast and Thyroid Surgery, The affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jingyao Mu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Mukesh K Sriwastva
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Qingbo Xu
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Minmin Liu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Breast and Thyroid Surgery, The affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xin Hu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fangyi Xu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Lifeng Zhang
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Juw Won Park
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Bioinformatics and Biostatistics, SPHIS, University of Louisville, Louisville, KY, USA
| | - Jae Yeon Hwang
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Maiying Kong
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Bioinformatics and Biostatistics, SPHIS, University of Louisville, Louisville, KY, USA
| | - Zhanxu Liu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Raobo Xu
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Jun Yan
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - Huang-Ge Zhang
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.
- Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA.
| |
Collapse
|
5
|
S BR, Dhar R, Devi A. Exosomes-mediated CRISPR/Cas delivery: A cutting-edge frontier in cancer gene therapy. Gene 2025; 944:149296. [PMID: 39884405 DOI: 10.1016/j.gene.2025.149296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Cancer is considered the second most common disease globally. In the past few decades, many approaches have been proposed for cancer treatment. One among those is targeted therapy using CRISPR/Cas system which plays a significant role in translational research through gene editing. However, due to its inability to cope with specific targeting, off-target effects, and limited tumor penetration, it is very challenging to use this approach in cancer studies. To increase its efficacy, CRISPR components are engineered into the extracellular vesicles (EVs), especially exosomes (a subpopulation of EVs). Exosomes have a significant role in cellular communication. Exosomes-based CRISPR/Cas system transport for gene editing enhances specificity, reduces off-target effects, and improves the therapeutic potential. This review highlights the role of exosomes and the CRISPR/Cas system in cancer research, exosomes-based CRISPR delivery for cancer treatment, and its future orientation.
Collapse
Affiliation(s)
- Bhavanisha Rithiga S
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India.
| |
Collapse
|
6
|
Chai M, Gao B, Wang S, Zhang L, Pei X, Yue B, Zhen X, Zhang M. Leveraging plant-derived nanovesicles for advanced nucleic acid-based gene therapy. Theranostics 2025; 15:324-339. [PMID: 39744221 PMCID: PMC11667239 DOI: 10.7150/thno.104507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
Gene therapy has evolved into a pivotal approach for treating genetic disorders, extending beyond traditional methods of directly repairing or replacing defective genes. Recent advancements in nucleic acid-based therapies-including mRNA, miRNA, siRNA, and DNA treatments have expanded the scope of gene therapy to include strategies that modulate protein expression and deliver functional genetic material without altering the genetic sequence itself. This review focuses on the innovative use of plant-derived nanovesicles (PDNVs) as a promising delivery system for these nucleic acids. PDNVs not only enhance the stability and bioavailability of therapeutic nucleic acids but also improve their specificity and efficacy in targeted gene therapy applications. They have shown potential in the treatment of various diseases, including cancer and inflammatory conditions. By examining the unique properties of PDNVs and their role in overcoming the limitations of conventional delivery methods, this review highlights the transformative potential of PDNV-based nucleic acid therapies in advancing the field of gene therapy.
Collapse
Affiliation(s)
- Meihong Chai
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710021, China
| | - Bowen Gao
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Shihua Wang
- School of Medicine, Xi'an Peihua University, Xi'an, Shaanxi, 710125, China
| | - Liping Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, 471000, China
| | - Xing Pei
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Baosen Yue
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, 710021, China
| | - Xueyan Zhen
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Mingzhen Zhang
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
7
|
Mirgh D, Sonar S, Ghosh S, Adhikari MD, Subramaniyan V, Gorai S, Anand K. Landscape of exosomes to modified exosomes: a state of the art in cancer therapy. RSC Adv 2024; 14:30807-30829. [PMID: 39328877 PMCID: PMC11426072 DOI: 10.1039/d4ra04512b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Exosomes are a subpopulation of extracellular vesicles (EVs) that naturally originate from endosomes. They play a significant role in cellular communication. Tumor-secreted exosomes play a crucial role in cancer development and significantly contribute to tumorigenesis, angiogenesis, and metastasis by intracellular communication. Tumor-derived exosomes (TEXs) are a promising biomarker source of cancer detection in the early stages. On the other hand, they offer revolutionary cutting-edge approaches to cancer therapeutics. Exosomes offer a cell-free approach to cancer therapeutics, which overcomes immune cell and stem cell therapeutics-based limitations (complication, toxicity, and cost of treatment). There are multiple sources of therapeutic exosomes present (stem cells, immune cells, plant cells, and synthetic and modified exosomes). This article explores the dynamic source of exosomes (plants, mesenchymal stem cells, and immune cells) and their modification (chimeric, hybrid exosomes, exosome-based CRISPR, and drug delivery) based on cancer therapeutic development. This review also highlights exosomes based clinical trials and the challenges and future orientation of exosome research. We hope that this article will inspire researchers to further explore exosome-based cancer therapeutic platforms for precision oncology.
Collapse
Affiliation(s)
- Divya Mirgh
- Vaccine and Immunotherapy Centre, Massachusetts General Hospital Boston USA
| | - Swarup Sonar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu 602105 India
| | - Srestha Ghosh
- Department of Microbiology, Lady Brabourne College Kolkata West Bengal 700017 India
| | - Manab Deb Adhikari
- Department of Biotechnology, University of North Bengal Darjeeling West Bengal India
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University Bandar Sunway Subang Jaya Selangor 47500 Malaysia
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center Chicago IL USA
| | - Krishnan Anand
- Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Faculty of Health Sciences, University of the Free State Bloemfontein 9300 South Africa
| |
Collapse
|
8
|
Barathan M, Zulpa AK, Ng SL, Lokanathan Y, Ng MH, Law JX. Innovative Strategies to Combat 5-Fluorouracil Resistance in Colorectal Cancer: The Role of Phytochemicals and Extracellular Vesicles. Int J Mol Sci 2024; 25:7470. [PMID: 39000577 PMCID: PMC11242358 DOI: 10.3390/ijms25137470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is a significant public health challenge, with 5-fluorouracil (5-FU) resistance being a major obstacle to effective treatment. Despite advancements, resistance to 5-FU remains formidable due to complex mechanisms such as alterations in drug transport, evasion of apoptosis, dysregulation of cell cycle dynamics, tumor microenvironment (TME) interactions, and extracellular vesicle (EV)-mediated resistance pathways. Traditional chemotherapy often results in high toxicity, highlighting the need for alternative approaches with better efficacy and safety. Phytochemicals (PCs) and EVs offer promising CRC therapeutic strategies. PCs, derived from natural sources, often exhibit lower toxicity and can target multiple pathways involved in cancer progression and drug resistance. EVs can facilitate targeted drug delivery, modulate the immune response, and interact with the TME to sensitize cancer cells to treatment. However, the potential of PCs and engineered EVs in overcoming 5-FU resistance and reshaping the immunosuppressive TME in CRC remains underexplored. Addressing this gap is crucial for identifying innovative therapies with enhanced efficacy and reduced toxicities. This review explores the multifaceted mechanisms of 5-FU resistance in CRC and evaluates the synergistic effects of combining PCs with 5-FU to improve treatment efficacy while minimizing adverse effects. Additionally, it investigates engineered EVs in overcoming 5-FU resistance by serving as drug delivery vehicles and modulating the TME. By synthesizing the current knowledge and addressing research gaps, this review enhances the academic understanding of 5-FU resistance in CRC, highlighting the potential of interdisciplinary approaches involving PCs and EVs for revolutionizing CRC therapy. Further research and clinical validation are essential for translating these findings into improved patient outcomes.
Collapse
Affiliation(s)
- Muttiah Barathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Khusairy Zulpa
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
9
|
Wei B, Huang H, Cao Q, Song X, Zhang Z. Bibliometric and visualized analysis of the applications of exosomes based drug delivery. Biomed Pharmacother 2024; 176:116803. [PMID: 38788602 DOI: 10.1016/j.biopha.2024.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024] Open
Abstract
Exosomes, endogenous vesicles secreted by cells, possess unique properties like high biocompatibility, low immunogenicity, targeting ability, long half-life, and blood-brain barrier permeability. They serve as crucial intercellular communication vectors in physiological processes and disease occurrence. Our comprehensive analysis of exosome-based drug delivery research from 2013 to 2023 revealed 2,476 authors from 717 institutions across 33 countries. Keyword clustering identified five research areas: drug delivery, mesenchymal stem cells, cancer immunotherapy, targeting ligands, surface modifications, and macrophages. The combination of exosome drug delivery technology with a proven clinical model enables the precise targeting of tumors with chemotherapy or radiosensitising agents, as well as facilitating gene therapy. This bibliometric analysis aims to characterize the current state and advance the clinical application of exosome-based drug delivery systems.
Collapse
Affiliation(s)
- Bohua Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Haonan Huang
- China Medical University, Shenyang, Liaoning Province 110122, China
| | - Qian Cao
- Department of cardiology, Shengjing hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning Province 110122, China.
| |
Collapse
|
10
|
Bai C, Liu J, Zhang X, Li Y, Qin Q, Song H, Yuan C, Huang Z. Research status and challenges of plant-derived exosome-like nanoparticles. Biomed Pharmacother 2024; 174:116543. [PMID: 38608523 DOI: 10.1016/j.biopha.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, there has been an increasing number of related studies on exosomes. Most studies have focused on exosomes derived from mammals, confirming the important role that exosomes play in cell communication. Plants, as a natural ingredient, plant-derived exosomes have been confirmed to have similar structures and functions to mammalian-derived exosomes. Plant-derived exosome-like nanoparticles (PELNs) are lipid bilayer membrane nanovesicles containing bioactive constituents such as miRNA, mRNA, protein, and lipids obtained from plant cells, that can participate in intercellular communication and mediate transboundary communication, have high bioavailability and low immunogenicity, are relatively safe, and have been shown to play an important role in maintaining cell homeostasis and preventing, and treating a variety of diseases. In this review, we describe the biogenesis, isolation and purification methods, structural composition, stability, safety, function of PELNs and challenges. The functions of PELNs in anti-inflammatory, antioxidant, antitumor and drug delivery are mainly described, and the status of research on exosome nanoparticles of Chinese herbal medicines is outlined. Overall, we summarized the importance of PELNs and the latest research results in this field and provided a theoretical basis for the future research and clinical application of PELNs.
Collapse
Affiliation(s)
- Chunmei Bai
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Jianrong Liu
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China; Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China.
| | - Xumin Zhang
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Yang Li
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Qin Qin
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road, Yingze District, Taiyuan City, Shanxi Province, 030001, China; Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Haixia Song
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Caixia Yuan
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| | - Ziwei Huang
- Department of reproductive medicine of Shanxi Provincial People's Hospital, Shuangtaxi Street, Taiyuan City, 030012, China
| |
Collapse
|
11
|
Fang X, Feng J, Zhu X, Feng D, Zheng L. Plant-derived vesicle-like nanoparticles: A new tool for inflammatory bowel disease and colitis-associated cancer treatment. Mol Ther 2024; 32:890-909. [PMID: 38369751 PMCID: PMC11163223 DOI: 10.1016/j.ymthe.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
Long-term use of conventional drugs to treat inflammatory bowel diseases (IBD) and colitis-associated cancer (CAC) has an adverse impact on the human immune system and easily leads to drug resistance, highlighting the urgent need to develop novel biotherapeutic tools with improved activity and limited side effects. Numerous products derived from plant sources have been shown to exert antibacterial, anti-inflammatory and antioxidative stress effects. Plant-derived vesicle-like nanoparticles (PDVLNs) are natural nanocarriers containing lipids, protein, DNA and microRNA (miRNA) with the ability to enter mammalian cells and regulate cellular activity. PDVLNs have significant potential in immunomodulation of macrophages, along with regulation of intestinal microorganisms and friendly antioxidant activity, as well as overcoming drug resistance. PDVLNs have utility as effective drug carriers and potential modification, with improved drug stability. Since immune function, intestinal microorganisms, and antioxidative stress are commonly targeted key phenomena in the treatment of IBD and CAC, PDVLNs offer a novel therapeutic tool. This review provides a summary of the latest advances in research on the sources and extraction methods, applications and mechanisms in IBD and CAC therapy, overcoming drug resistance, safety, stability, and clinical application of PDVLNs. Furthermore, the challenges and prospects of PDVLN-based treatment of IBD and CAC are systematically discussed.
Collapse
Affiliation(s)
- Xuechun Fang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junjie Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xingcheng Zhu
- Medical Laboratory Department, Second People's Hospital, Qujing 655000, China
| | - Dan Feng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|