1
|
Rosso C, Reed M, Walde N, Voutsadakis IA. Radiation therapy in combination with immune checkpoint inhibitors in metastatic lung cancer: Effect of fractionation. J Investig Med 2025; 73:300-309. [PMID: 39534958 DOI: 10.1177/10815589241270439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Immunotherapy with checkpoint inhibitors has improved the outcomes of patients with metastatic lung cancer in recent years. Despite improved prognosis, not all patients respond to treatment. Therapeutic interventions to build on the success of immune checkpoint inhibitors are needed. A retrospective review of patient records for patients who had received immune checkpoint inhibitors in a single cancer center over 4 years was undertaken. Demographic and disease characteristics of patients with metastatic non-small cell lung cancer were recorded. Data on other treatments including chemotherapy and radiation therapy were extracted, and survival outcomes were calculated. Most (81.8%) of the 77 metastatic lung cancer patients examined had received palliative radiation therapy within 3 months of starting immune checkpoint inhibitors. While the survival outcomes of these patients did not differ from patients who had not received radiotherapy, patients who had undergone hypofractionated radiotherapy (defined as one or more fractions of 700 cGy or higher) displayed a better overall survival (OS) than the rest of the cohort. Palliative radiation therapy administered in proximity with immune checkpoint inhibitors immunotherapy had no effect on the OS of metastatic lung cancer patients. However, patients receiving palliative radiotherapy with fractions above 700 cGy showed better OS. Further studies are needed to optimize a combination strategy.
Collapse
Affiliation(s)
| | - Melissa Reed
- Clinical Trials Unit, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada
- Ottawa University School of Medicine, Ottawa, Ontario, Canada
| | - Natalie Walde
- Clinical Trials Unit, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada
| | - Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, ON, Canada
- Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada
| |
Collapse
|
2
|
Carri I, Schwab E, Trivino JC, von Euw EM, Nielsen M, Mordoh J, Barrio MM. VACCIMEL, an allogeneic melanoma vaccine, efficiently triggers T cell immune responses against neoantigens and alloantigens, as well as against tumor-associated antigens. Front Immunol 2025; 15:1496204. [PMID: 39840067 PMCID: PMC11747570 DOI: 10.3389/fimmu.2024.1496204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
VACCIMEL is a therapeutic cancer vaccine composed of four irradiated allogeneic human melanoma cell lines rationally selected to cover a wide range of melanoma tumor-associated antigens (TAA). We previously demonstrated that vaccination in the adjuvant setting prolonged the distant-metastasis-free survival of cutaneous melanoma patients and that T cells reactive to TAA and the patient's private neoantigens increased during treatment. However, immune responses directed to vaccine antigens that may arise from VACCIMEL's somatic mutations and human polymorphisms remain unexplored. To study these immunogens, we performed whole-exome sequencing of paired tumor and germinal samples from four vaccinated patients and the vaccine cells. VACCIMEL variants were called by comparing the vaccine and the patient's exomes, and non-synonymous coding variants were used to predict T cell epitopes. Candidates were ranked based on their mRNA expression in VACCIMEL, predicted peptide-HLA (pHLA) presentation, and pHLA stability. Then, the immune responses to prioritized epitope candidates were tested using IFNγ ELISpot assays on vaccinated patients' PBMC samples. The comparison of the vaccine with the patients' germinal exomes revealed on average 9481 coding non-synonymous variants, suggesting that VACCIMEL offers a high number of potential antigens. Between 0,05 and 0,2% of these variants were also found in the tumors of three vaccinated patients; however, one patient with a high tumor mutational burden (TMB) shared 19,5% somatic variants. The assessment of T cell responses showed that vaccinated patients mounted highly diverse responses against VACCIMEL peptides. Notably, effector T cells targeting the patient's tumor antigens, comprising neoantigens and TAA, were found in higher frequencies than T cells targeting VACCIMEL-exclusive antigens. On the other hand, we observed that the immunogenic epitopes are not conserved across patients, despite sharing HLA and that immune responses fluctuate over time. Finally, a positive correlation between VACCIMEL antigen expression and the intensity of the T cell responses was found. Our results demonstrate that the immune system simultaneously responds to a high number of antigens, either vaccinal or private, proving that immune responses against epitopes not expressed in the patient's tumors were not detrimental to the immune recognition of neoantigens and TAA.
Collapse
Affiliation(s)
- Ibel Carri
- Centro de Investigaciones Oncológicas (FUCA), Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Erika Schwab
- Centro de Investigaciones Oncológicas (FUCA), Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Erika M. von Euw
- Translational Oncology Research Labs, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - José Mordoh
- Centro de Investigaciones Oncológicas (FUCA), Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Marcela Barrio
- Centro de Investigaciones Oncológicas (FUCA), Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
3
|
Anvari S, Nikbakht M, Vaezi M, Amini-Kafiabad S, Ahmadvand M. Immune checkpoints and ncRNAs: pioneering immunotherapy approaches for hematological malignancies. Cancer Cell Int 2024; 24:410. [PMID: 39702293 DOI: 10.1186/s12935-024-03596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Hematological malignancies are typically treated with chemotherapy and radiotherapy as the first-line conventional therapies. However, non-coding RNAs (ncRNAs) are a rapidly expanding field of study in cancer biology that influences the growth, differentiation, and proliferation of tumors by targeting immunological checkpoints. This study reviews the results of studies (from 2012 to 2024) that consider the immune checkpoints and ncRNAs in relation to hematological malignancies receiving immunotherapy. This article provides a summary of the latest advancements in immunotherapy for treating hematological malignancies, focusing on the role of immune checkpoints and ncRNAs in the immune response and their capacity for innovative strategies. The paper also discusses the function of immune checkpoints in maintaining immune homeostasis and how their dysregulation can contribute to developing leukemia and lymphoma. Finally, this research concludes with a discussion on the obstacles and future directions in this rapidly evolving field, emphasizing the need for continued research to fully harness the capacity of immune checkpoints and ncRNAs in immunotherapy for hematological malignancies.
Collapse
Affiliation(s)
- Samira Anvari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohsen Nikbakht
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology, Oncology, and Stem Cell Transplantation Research Center Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini-Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kovalovsky D, Noonepalle S, Suresh M, Kumar D, Berrigan M, Gajendran N, Upadhyay S, Horvath A, Kim A, Quiceno-Torres D, Musunuri K, Villagra A. The HDAC6 inhibitor AVS100 (SS208) induces a pro-inflammatory tumor microenvironment and potentiates immunotherapy. SCIENCE ADVANCES 2024; 10:eadp3687. [PMID: 39546602 PMCID: PMC11566997 DOI: 10.1126/sciadv.adp3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Histone deacetylase 6 (HDAC6) inhibition is associated with an increased pro-inflammatory tumor microenvironment and antitumoral immune responses. Here, we show that the HDAC6 inhibitor AVS100 (SS208) had an antitumoral effect in SM1 melanoma and CT26 colon cancer models and increased the efficacy of anti-programmed cell death protein 1 treatment, leading to complete remission in melanoma and increased response in colon cancer. AVS100 treatment increased pro-inflammatory tumor-infiltrating macrophages and CD8 effector T cells with an inflammatory and T cell effector gene signature. Acquired T cell immunity and long-term protection were evidenced as increased immunodominant T cell clones after AVS100 treatment. Last, AVS100 showed no mutagenicity, toxicity, or adverse effects in preclinical good laboratory practice studies, part of the package that has led to US Food and Drug Administration clearance of an investigational new drug application for initiating clinical trials. This would be a first-in-human combination therapy of pembrolizumab with HDAC6 inhibition for locally advanced or metastatic solid tumors.
Collapse
Affiliation(s)
- Damian Kovalovsky
- Avstera Therapeutics Corp, 365 Phoenixville Pike, Malvern, PA 19355, USA
| | - Satish Noonepalle
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| | - Manasa Suresh
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| | - Dileep Kumar
- Avstera Therapeutics Corp, 365 Phoenixville Pike, Malvern, PA 19355, USA
| | - Michael Berrigan
- McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, 2300 Eye Street NW, Ross Hall 541, Washington, DC 20037, USA
| | - Nithya Gajendran
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| | - Sumit Upadhyay
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| | - Anelia Horvath
- McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, 2300 Eye Street NW, Ross Hall 541, Washington, DC 20037, USA
| | - Allen Kim
- McCormick Genomics and Proteomics Center, School of Medicine and Health Sciences, The George Washington University, 2300 Eye Street NW, Ross Hall 541, Washington, DC 20037, USA
| | - David Quiceno-Torres
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| | - Karthik Musunuri
- Avstera Therapeutics Corp, 365 Phoenixville Pike, Malvern, PA 19355, USA
| | - Alejandro Villagra
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, E416 Research Bldg., Washington, DC 20057, USA
| |
Collapse
|
5
|
Zhang A, Fan T, Liu Y, Yu G, Li C, Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer 2024; 23:251. [PMID: 39516941 PMCID: PMC11545879 DOI: 10.1186/s12943-024-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Regulatory T cells (Tregs), an essential component of the human immune system, are a heterogeneous group of T lymphocytes with the ability to suppress immune responses and maintain immune homeostasis. Recent evidence indicates that Tregs may impair antitumor immunity and facilitate cancer progression by weakening functions of effector T cells (Teffs). Consequently, targeting Tregs to eliminate them from tumor microenvironments to improve Teffs' activity could emerge as an effective strategy for cancer immunotherapy. This review outlines the biology of Tregs, detailing their origins, classification, and crucial markers. Our focus lies on the complex role of Tregs in cancer's development, progression and treatment, particularly on their suppressive role upon antitumor responses via multiple mechanisms. We delve into Tregs' involvement in immune checkpoint blockade (ICB) therapy, their dual effect on cancer immunotherapy and their potential biomarkers for ICB therapy effectiveness. We also summarize advances in the therapies that adjust Tregs to optimize ICB therapy, which may be crucial for devising innovative cancer treatment strategies.
Collapse
Affiliation(s)
- An Zhang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guanhua Yu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
6
|
Ye Z, Li G, Lei J. Influencing immunity: role of extracellular vesicles in tumor immune checkpoint dynamics. Exp Mol Med 2024; 56:2365-2381. [PMID: 39528800 PMCID: PMC11612210 DOI: 10.1038/s12276-024-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 11/16/2024] Open
Abstract
Immune checkpoint proteins (ICPs) serve as critical regulators of the immune system, ensuring protection against damage due to overly activated immune responses. However, within the tumor environment, excessive ICP activation weakens antitumor immunity. Despite the development of numerous immune checkpoint blockade (ICB) drugs in recent years, their broad application has been inhibited by uncertainties about their clinical efficacy. A thorough understanding of ICP regulation in the tumor microenvironment is essential for advancing the development of more effective and safer ICB therapies. Extracellular vesicles (EVs), which are pivotal mediators of cell-cell communication, have been extensively studied and found to play key roles in the functionality of ICPs. Nonetheless, a comprehensive review summarizing the current knowledge about the crosstalk between EVs and ICPs in the tumor environment is lacking. In this review, we summarize the interactions between EVs and several widely studied ICPs as well as their potential clinical implications, providing a theoretical basis for further investigation of EV-related ICB therapeutic approaches.
Collapse
Affiliation(s)
- Ziyang Ye
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Yan X, Zhang N, Wang G, Wang J. Association of CTLA-4 polymorphisms with hematologic malignancy susceptibility: a meta-analysis. Front Oncol 2024; 14:1467740. [PMID: 39464701 PMCID: PMC11502471 DOI: 10.3389/fonc.2024.1467740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Background Recent studies have reported an association between Cytotoxic T-lymphocyte antigen-4 (CTLA-4) polymorphisms and hematologic malignancy susceptibility, while the results remain inconsistent. Hence, we performed a meta-analysis to investigate the association between CTLA-4 polymorphisms with hematologic malignancy susceptibility. Methods A comprehensive and systematic search of Cochrane Library, PubMed, Embase databases was performed up to Sep. 20, 2024. The pooled odds ratio (OR) and its 95% confidence interval (CI) were used to determine the strength of the association between CTLA-4 polymorphisms and hematologic malignancy susceptibility. Statistical analysis was performed in STATA 12.0. Results A total of 13 studies concerning the CTLA-4 49A/G, CTLA-4 60A/G, CTLA-4 318T/C, CTLA-4 1661A/G, and CTLA-4 319C/T polymorphisms were included in the meta-analysis. The pooled results suggested the CTLA-4 49A/G polymorphism was significantly associated with an increased hematologic malignancy risk (AA vs. GA+GG: OR = 1.77, 95% CI = 1.56-2.02), especially in NHL, multiple myeloma, and leukemia. Similarly, CTLA-4 319C/T polymorphism was found to be associated with decreased chronic lymphocytic leukemia risk. There was no significant association between the CTLA-4 60A/G, 318T/C, and 1661A/G polymorphism and hematologic malignancy risk. Conclusion CTLA-4 49A/G and 319C/T polymorphisms were associated with hematologic malignancy susceptibility.
Collapse
Affiliation(s)
| | | | | | - Jiaheng Wang
- Department of Hematology, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
8
|
Hu Y, Zhang Y, Shi F, Yang R, Yan J, Han T, Guan L. Reversal of T-cell exhaustion: Mechanisms and synergistic approaches. Int Immunopharmacol 2024; 138:112571. [PMID: 38941674 DOI: 10.1016/j.intimp.2024.112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
T cells suffer from long-term antigen stimulation and insufficient energy supply, leading to a decline in their effector functions, memory capabilities, and proliferative capacity, ultimately resulting in T cell exhaustion and an inability to perform normal immune functions in the tumor microenvironment. Therefore, exploring how to restore these exhausted T cells to a state with effector functions is of great significance. Exhausted T cells exhibit a spectrum of molecular alterations, such as heightened expression of inhibitory receptors, shifts in transcription factor profiles, and modifications across epigenetic, metabolic, and transcriptional landscapes. This review provides a comprehensive overview of various strategies to reverse T cell exhaustion, including immune checkpoint blockade, and explores the potential synergistic effects of combining multiple approaches to reverse T cell exhaustion. It offers new insights and methods for achieving more durable and effective reversal of T cell exhaustion.
Collapse
Affiliation(s)
- Yang Hu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yaqi Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China
| | - Fenfen Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ruihan Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jiayu Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China.
| | - Liping Guan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
9
|
Tufail M, Wan WD, Jiang C, Li N. Targeting PI3K/AKT/mTOR signaling to overcome drug resistance in cancer. Chem Biol Interact 2024; 396:111055. [PMID: 38763348 DOI: 10.1016/j.cbi.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
This review comprehensively explores the challenge of drug resistance in cancer by focusing on the pivotal PI3K/AKT/mTOR pathway, elucidating its role in oncogenesis and resistance mechanisms across various cancer types. It meticulously examines the diverse mechanisms underlying resistance, including genetic mutations, feedback loops, and microenvironmental factors, while also discussing the associated resistance patterns. Evaluating current therapeutic strategies targeting this pathway, the article highlights the hurdles encountered in drug development and clinical trials. Innovative approaches to overcome resistance, such as combination therapies and precision medicine, are critically analyzed, alongside discussions on emerging therapies like immunotherapy and molecularly targeted agents. Overall, this comprehensive review not only sheds light on the complexities of resistance in cancer but also provides a roadmap for advancing cancer treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Mordoh J, Schwab E, Bravo AI, Aris M, Barrio MM. Vaccimel immunization is associated with enhanced response to treatment with anti-PD-1 monoclonal antibodies in cutaneous melanoma patients - a case reports study. Front Immunol 2024; 15:1354710. [PMID: 38726010 PMCID: PMC11079628 DOI: 10.3389/fimmu.2024.1354710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer vaccines are gaining ground as immunotherapy options. We have previously demonstrated in cutaneous melanoma (CM) patients that adjuvant treatment with VACCIMEL, a mixture of four irradiated CM cell lines co-adjuvanted with BCG and GM-CSF, increases the cellular immune response to melanocyte differentiation antigens, cancer-testis antigens and neoantigens, with respect to basal levels. On the other hand, it is also known that treatment with anti-PD-1 monoclonal antibodies (MAbs), acting on pre-existing tumor-reactive lymphocytes, induces clinical responses in CM patients, albeit in a fraction of treated patients. A combination of both treatments would appear therefore desirable. In this paper, we describe CM patients who, having progressed even years after vaccination, were treated with anti-PD-1 MAbs. In 5/5 of such progressor patients, complete responses were obtained which lasted between 3 and 65+ months. Three of the patients remain disease-free and two recurred. One of the patients passed away after a recurrence of brain metastases. We suggest that clonally expanded reactive lymphocytes induced by VACCIMEL partially remain as memory cells, which may be recalled after tumor recurrence and may foster ulterior activity of anti-PD-1 MAbs.
Collapse
Affiliation(s)
- José Mordoh
- Centro de Investigaciones Oncológicas, Fundación Cáncer (FUCA), Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
11
|
Schad F, Thronicke A, Hofheinz RD, Matthes H, Grah C. Patients with Advanced or Metastasised Non-Small-Cell Lung Cancer with Viscum album L. Therapy in Addition to PD-1/PD-L1 Blockade: A Real-World Data Study. Cancers (Basel) 2024; 16:1609. [PMID: 38672690 PMCID: PMC11049173 DOI: 10.3390/cancers16081609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Immunotherapy with PD-1/PD-L1 inhibitors has significantly improved the survival rates of patients with metastatic non-small-cell lung cancer (NSCLC). Results of a real-world data study investigating add-on VA (Viscum album L.) to chemotherapy have shown an association with the improved overall survival of patients with NSCLC. We sought to investigate whether the addition of VA to PD-1/PD-L1 inhibitors in patients with advanced or metastasised NSCLC would have an additional survival benefit. In the present real-world data study, we enrolled patients from the accredited national registry, Network Oncology, with advanced or metastasised NSCLC. The reporting of data was performed in accordance with the ESMO-GROW criteria for the optimal reporting of oncological real-world evidence (RWE) studies. Overall survival was compared between patients receiving PD-1/PD-L1 inhibitor therapy (control, CTRL group) versus the combination of anti-PD-1/PD-L1 therapy and VA (combination, COMB group). An adjusted multivariate Cox proportional hazard analysis was performed to investigate variables associated with survival. From 31 July 2015 to 9 May 2023, 415 patients with a median age of 68 years and a male/female ratio of 1.2 were treated with anti-PD-1/PD-L1 therapy with or without add-on VA. Survival analyses included 222 (53.5%) patients within the CRTL group and 193 (46.5%) in the COMB group. Patients in the COMB group revealed a median survival of 13.8 months and patients in the CRTL group a median survival of 6.8 months (adjusted hazard ratio, aHR: 0.60, 95% CI: 0.43-0.85, p = 0.004) after adjustment for age, gender, tumour stage, BMI, ECOG status, oncological treatment, and PD-L1 tumour proportion score. A reduction in the adjusted hazard of death by 56% was seen with the addition of VA (aHR 0.44, 95% CI: 0.26-0.74, p = 0.002) in patients with PD-L1-positive tumours (tumour proportion score > 1%) treated with first-line anti-PD-1/PD-L1 therapy. Our findings suggest that add-on VA correlates with improved survival in patients with advanced or metastasised NSCLC who were treated with PD-1/PD-L1 inhibitors irrespective of age, gender, tumour stage, or oncological treatment. The underlying mechanisms may include the synergistic modulation of the immune response. A limitation of this study is the observational non-randomised study design, which only allows limited conclusions to be drawn and prospective randomised trials are warranted.
Collapse
Affiliation(s)
- Friedemann Schad
- Research Institute Havelhöhe, Network Oncology Registry, Kladower Damm 221, 14089 Berlin, Germany
- Hospital Gemeinschaftskrankenhaus Havelhöhe, Interdisciplinary Oncological Centre, Kladower Damm 221, 14089 Berlin, Germany
| | - Anja Thronicke
- Research Institute Havelhöhe, Network Oncology Registry, Kladower Damm 221, 14089 Berlin, Germany
| | - Ralf-Dieter Hofheinz
- Mannheim University Hospital, Mannheim Cancer Center, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Harald Matthes
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Hindenburgdamm 30, 12203 Berlin, Germany
- Hospital Gemeinschaftskrankenhaus Havelhöhe, Daycare Clinic, Kladower Damm 221, 14089 Berlin, Germany
| | - Christian Grah
- Hospital Gemeinschaftskrankenhaus Havelhöhe, Lung Cancer Center, Kladower Damm 221, 14089 Berlin, Germany;
| |
Collapse
|
12
|
Zhang Y, Huang C, Li S. Influence of treatment-related lymphopenia on the efficacy of immune checkpoint inhibitors in lung cancer: a meta-analysis. Front Oncol 2023; 13:1287555. [PMID: 38107070 PMCID: PMC10722281 DOI: 10.3389/fonc.2023.1287555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
Background Treatment-related lymphopenia (TRL) is common in patients with lung cancer, particularly in those with radiotherapy. However, the influence of TRL on the efficacy of immune checkpoint inhibitors (ICIs) for patients with lung cancer remains poorly understood. We performed a systematic review and meta-analysis to investigate the influence of TRL on survival of lung cancer patients on ICIs. Methods In order to accomplish the aim of the meta-analysis, a comprehensive search was conducted on databases including PubMed, Embase, Cochrane Library, and the Web of Science to identify observational studies with longitudinal follow-up. The Cochrane Q test was employed to evaluate heterogeneity among the included studies, while the I2 statistic was estimated. Random-effects models were utilized to merge the results, considering the potential impact of heterogeneity. Results Ten cohort studies with 1130 lung cancer patients who were treated with ICIs were included. Among them, 427 (37.8%) had TRL. Pooled results showed that compared to patients without TRL, patients with TRL were associated with poor progression-free survival (hazard ratio [HR]: 2.05, 95% confidence interval [CI]: 1.62 to 2.60, p < 0.001; I2 = 22%) and overall survival (HR: 2.69, 95% CI: 2.10 to 3.43, p < 0.001; I2 = 0%). Sensitivity analysis limited to patients with non-small cell lung cancer showed similar results (HR: 2.66 and 2.62, both p < 0.05). Moreover, subgroup analyses according to the diagnostic criteria of TRL, regression analysis model (univariate or multivariate), and indications of ICIs (for locally advanced or advanced lung cancer) showed consistent results (p for subgroup difference all > 0.05). Conclusion TRL was associated with poor survival of lung cancer patients who were treated with ICIs.
Collapse
Affiliation(s)
| | | | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|