1
|
Ultimo A, Jain A, Gomez-Gonzalez E, Alex TS, Moreno-Borrallo A, Jana S, Ghosh S, Ruiz-Hernandez E. Nanotherapeutic Formulations for the Delivery of Cancer Antiangiogenics. Mol Pharm 2025; 22:2322-2349. [PMID: 40184281 PMCID: PMC12056699 DOI: 10.1021/acs.molpharmaceut.4c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/06/2025]
Abstract
Antiangiogenic medications for cancer treatment have generally failed in showing substantial benefits in terms of prolonging life on their own; their effects are noticeable only when combined with chemotherapy. Moreover, treatments based on prolonged antiangiogenics administration have demonstrated to be ineffective in stopping tumor progression. In this scenario, nanotherapeutics can address certain issues linked to existing antiangiogenic treatments. More specifically, they can provide the ability to target the tumor's blood vessels to enhance drug accumulation and manage release, ultimately decreasing undesired side effects. Additionally, they enable the administration of multiple angiogenesis inhibitors at the same time as chemotherapy. Key reports in this field include the design of polymeric nanoparticles, inorganic nanoparticles, vesicles, and hydrogels for loading antiangiogenic substances like endostatin and interleukin-12. Furthermore, nanoformulations have been proposed to efficiently control relevant pro-angiogenic pathways such as VEGF, Tie2/Angiopoietin-1, HIF-1α/HIF-2α, and TGF-β, providing powerful approaches to block tumor growth and metastasis. In this article, we outline a selection of nanoformulations for antiangiogenic treatments for cancer that have been developed in the past ten years.
Collapse
Affiliation(s)
- Amelia Ultimo
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Ayushi Jain
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Elisabet Gomez-Gonzalez
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Thomson Santosh Alex
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Almudena Moreno-Borrallo
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Sukanya Jana
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Shubhrima Ghosh
- Trinity
Translational Medicine Institute, Trinity College Dublin, the University
of Dublin, St. James’s
Hospital, Dublin 8 D08 NHY1, Ireland
- School
of Biological, Health and Sports Sciences, Technological University Dublin, Grangegorman Lower, Dublin 7 D07 ADY7, Ireland
| | - Eduardo Ruiz-Hernandez
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| |
Collapse
|
2
|
Saxena M, Marron TU, Kodysh J, Finnigan JP, Onkar S, Kaminska A, Tuballes K, Guo R, Sabado RL, Meseck M, O'Donnell TJ, Sebra RP, Parekh S, Galsky MD, Blasquez A, Gimenez G, Bicak M, Cimen Bozkus C, Delbeau-Zagelbaum D, Rodriguez D, Acuna-Villaorduna A, Misiukiewicz KJ, Posner MR, Miles BA, Irie HY, Tiersten A, Doroshow DB, Wolf A, Mandeli J, Brody R, Salazar AM, Gnjatic S, Hammerbacher J, Schadt E, Friedlander P, Rubinsteyn A, Bhardwaj N. PGV001, a Multi-Peptide Personalized Neoantigen Vaccine Platform: Phase I Study in Patients with Solid and Hematologic Malignancies in the Adjuvant Setting. Cancer Discov 2025; 15:930-947. [PMID: 40094414 DOI: 10.1158/2159-8290.cd-24-0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
SIGNIFICANCE The PGV001 platform is feasible, safe, and immunogenic. The OpenVax pipeline predicted immunogenic neoantigens in tumors with wide-ranging mutational burdens. Data from this study prompted three additional PGV001 trials, one in newly diagnosed glioblastoma, one in urothelial cancer in combination with an ICI, and another in prostate cancer.
Collapse
Affiliation(s)
- Mansi Saxena
- Vaccine and Cell Therapy Laboratory, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Thomas U Marron
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Julia Kodysh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John P Finnigan
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sayali Onkar
- Vaccine and Cell Therapy Laboratory, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anna Kaminska
- Vaccine and Cell Therapy Laboratory, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kevin Tuballes
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ruiwei Guo
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Lubong Sabado
- Vaccine and Cell Therapy Laboratory, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marcia Meseck
- Vaccine and Cell Therapy Laboratory, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Timothy J O'Donnell
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samir Parekh
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Matthew D Galsky
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ana Blasquez
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gustavo Gimenez
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mesude Bicak
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cansu Cimen Bozkus
- Vaccine and Cell Therapy Laboratory, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniela Delbeau-Zagelbaum
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Denise Rodriguez
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ana Acuna-Villaorduna
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Krzysztof J Misiukiewicz
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marshall R Posner
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brett A Miles
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department Otolaryngology Head and Neck Surgery, Northwell Cancer Institute, Northwell Health, New York, New York
| | - Hanna Y Irie
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amy Tiersten
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Deborah B Doroshow
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrea Wolf
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Mandeli
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Brody
- Department of Pathology, Icahn School of Medicine, New York, New York
| | | | - Sacha Gnjatic
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jeff Hammerbacher
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric Schadt
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Philip Friedlander
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexander Rubinsteyn
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Nina Bhardwaj
- Vaccine and Cell Therapy Laboratory, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Parker Institute of Cancer Immunotherapy, San Francisco, California
| |
Collapse
|
3
|
Poppe LK, Roller N, Medina-Enriquez MM, Lassoued W, Burnett D, Lothstein KE, Khelifa AS, Miyamoto M, Gulley JL, Jochems C, Schlom J, Gameiro SR. Combination of HDAC inhibition and cytokine enhances therapeutic HPV vaccine therapy. J Immunother Cancer 2025; 13:e011074. [PMID: 40316302 PMCID: PMC12049950 DOI: 10.1136/jitc-2024-011074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/17/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Human papillomavirus (HPV)-associated malignancies continue to present a major health concern despite the development of prophylactic vaccines. Standard therapies offer limited benefit to patients with advanced-stage disease. Despite improved outcomes with programmed cell death protein-1 (PD-1) targeted therapies, treatment resistance and modest response rates highlight a significant unmet need to develop novel therapies for these patients. PDS0101 (designated HPV vaccine) is a liposomal nanoparticle HPV16-specific therapeutic vaccine that has been shown to generate strong HPV-specific responses in preclinical and clinical studies. Here we assess the efficacy of this HPV vaccine in combination with the tumor-targeting immunocytokine NHS-IL12 (PDS01ADC), plus either αPD-1 or the class I histone deacetylase inhibitor Entinostat. METHODS Mice bearing HPV16+, αPD-1 refractory TC-1 and mEER tumors were treated with HPV vaccine, NHS-IL12, and either αPD-1 or Entinostat to determine antitumor efficacy and survival benefits. A comprehensive analysis of the tumor microenvironment was performed using flow cytometry, multiplex immunofluorescence, chemokine and cytokine assessment, and single-cell RNA sequencing with T-cell receptor (TCR) enrichment. RESULTS Combination of HPV vaccine and NHS-IL12 with either Entinostat or αPD-1 yielded significant antitumor activity and prolonged survival in αPD-1 refractory models of HPV16+ cancer, with superior activity employing Entinostat versus αPD-1 combination. Entinostat triple therapy increased overall and HPV16-specific tumor CD8+ T-cell infiltration with heightened cytotoxicity. TCR sequencing revealed a CD8+ T-cell clone unique to vaccine-treated cohorts, which displayed an enriched cytotoxic transcriptional profile with triple therapy. These effects were paralleled by strong differentiation of tumor-associated macrophages (TAMs) towards pro-inflammatory, antitumor M1-like cell states. Single-cell transcriptomic analysis indicated all three agents were required for highest modulation of both CD8+ T cells and TAMs conducive to tumor control. A biomarker signature reflecting the preclinical findings was found to be associated with improved survival in patients with HPV-associated malignancies. CONCLUSION Together, these findings provide a rationale for the combination of HPV vaccine, NHS-IL12, and Entinostat in the clinical setting for patients with HPV16-associated malignancies.
Collapse
Affiliation(s)
- Lisa K Poppe
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas Roller
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Miriam Marlene Medina-Enriquez
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wiem Lassoued
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Burnett
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine E Lothstein
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Asma S Khelifa
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Masaya Miyamoto
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Jochems
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sofia R Gameiro
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Vlasova KY, Kerr A, Pennock ND, Jozic A, Sahel DK, Gautam M, Murthy NTV, Roberts A, Ali MW, MacDonald KD, Walker JM, Luxenhofer R, Sahay G. Synthesis of ionizable lipopolymers using split-Ugi reaction for pulmonary delivery of various size RNAs and gene editing. Nat Commun 2025; 16:4021. [PMID: 40301362 PMCID: PMC12041268 DOI: 10.1038/s41467-025-59136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/11/2025] [Indexed: 05/01/2025] Open
Abstract
We present an efficient method for synthesizing cationic poly(ethylene imine) derivatives using the multicomponent split-Ugi reaction to create a library of functional ionizable lipopolymers. Here we show 155 polymers, formulated into polyplexes, to establish structure-activity relationships essential for endosomal escape and transfection. A lead structure is identified, and lipopolymer-lipid hybrid nanoparticles are developed to deliver mRNA to lung endothelium and immune cells, including T cells, with low in vivo toxicity. These nanoparticles show significant improvements in mRNA delivery to the lung compared to in vivo-JetPEI® and demonstrate effective delivery of therapeutic mRNA(s) of various sizes. IL-12 mRNA-loaded nanoparticles delay Lewis Lung cancer progression, while human CFTR mRNA restores CFTR protein function in CFTR knockout mice. Additionally, we demonstrate in vivo CRISPR-Cas9 mRNA delivery, achieving gene editing in lung tissue and successful PD-1 knockout in T cells in mice. These results highlight the platform's potential for systemic gene therapy delivery.
Collapse
Affiliation(s)
- K Yu Vlasova
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
| | - A Kerr
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - N D Pennock
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - A Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
| | - D K Sahel
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
| | - M Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
| | - N T V Murthy
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
| | - A Roberts
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - M W Ali
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - K D MacDonald
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - J M Walker
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental, and Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - R Luxenhofer
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki, Finland.
| | - G Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA.
- Center for Innovative Drug Delivery and Imaging, College of Pharmacy, Oregon State University & Oregon Health & Sciences University, Portland, OR, USA.
| |
Collapse
|
5
|
Zaroon, Aslam S, Hafsa, Mustafa U, Fatima S, Bashir H. Interleukin in Immune-Mediated Diseases: An Updated Review. Mol Biotechnol 2024:10.1007/s12033-024-01347-8. [PMID: 39715931 DOI: 10.1007/s12033-024-01347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/29/2024] [Indexed: 12/25/2024]
Abstract
The immune system comprises various regulators and effectors that elicit immune responses against various attacks on the body. The pathogenesis of autoimmune diseases is derived from the deregulated expression of cytokines, the major regulators of the immune system. Among cytokines, interleukins have a major influence on immune-mediated diseases. These interleukins initiate the immune response against healthy and normal cells of the body, resulting in immune-mediated disease. The major interleukins in this respect are IL-1, IL-3, IL-4, IL-6, IL-10 and IL-12 which cause immune responses such as excessive inflammation, loss of immune tolerance, altered T-cell differentiation, immune suppression dysfunction, and inflammatory cell recruitment. Systemic Lupus Erythematosus (SLE) is an autoimmune illness characterized by dysregulation of interleukins. These immune responses are the signs of diseases such as rheumatoid arthritis, inflammatory bowel disease, psoriasis, type I diabetes, and multiple sclerosis.
Collapse
Affiliation(s)
- Zaroon
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shakira Aslam
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hafsa
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Usama Mustafa
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sana Fatima
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hamid Bashir
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
6
|
Mohammad Mirzaei N, Kevrekidis PG, Shahriyari L. Oxygen, angiogenesis, cancer and immune interplay in breast tumour microenvironment: a computational investigation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240718. [PMID: 39665095 PMCID: PMC11631512 DOI: 10.1098/rsos.240718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer is a challenging global health problem among women. This study investigates the intricate breast tumour microenvironment (TME) dynamics utilizing data from mammary-specific polyomavirus middle T antigen overexpression mouse models (MMTV-PyMT). It incorporates endothelial cells (ECs), oxygen and vascular endothelial growth factors (VEGF) to examine the interplay of angiogenesis, hypoxia, VEGF and immune cells in cancer progression. We introduce an approach to impute immune cell fractions within the TME using single-cell RNA-sequencing (scRNA-seq) data from MMTV-PyMT mice. We quantify our analysis by estimating cell counts using cell size data and laboratory findings from existing literature. We perform parameter estimation via a Hybrid Genetic Algorithm (HGA). Our simulations reveal various TME behaviours, emphasizing the critical role of adipocytes, angiogenesis, hypoxia and oxygen transport in driving immune responses and cancer progression. Global sensitivity analyses highlight potential therapeutic intervention points, such as VEGFs' role in EC growth and oxygen transportation and severe hypoxia's effect on cancer and the total number of cells. The VEGF-mediated production rate of ECs shows an essential time-dependent impact, highlighting the importance of early intervention in slowing cancer progression. These findings align with clinical observations demonstrating the VEGF inhibitors' efficacy and suggest a timely intervention for better outcomes.
Collapse
Affiliation(s)
- Navid Mohammad Mirzaei
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York10032, USA
| | - Panayotis G. Kevrekidis
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA01003-4515, USA
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA01003-4515, USA
| |
Collapse
|
7
|
Ene CD, Nicolae I, Căpușă C. Abnormalities of IL-12 Family Cytokine Pathways in Autosomal Dominant Polycystic Kidney Disease Progression. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1971. [PMID: 39768851 PMCID: PMC11677652 DOI: 10.3390/medicina60121971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most frequent genetic renal disease with a complex physiopathology. More and more studies sustain that inflammation plays a crucial role in ADPKD pathogenesis and progression. We evaluated IL-12 involvement in ADPKD pathophysiology by assessing the serum levels of its monomers and heterodimers. Materials and Methods: A prospective case-control study was developed and included 66 ADPKD subjects and a control group of 40 healthy subjects. The diagnosis of ADPKD was based on familial history clinical and imagistic exams. The study included subjects with eGFR > 60 mL/min/1.73 mp, with no history of hematuria or other renal disorders, with stable blood pressure in the last 6 months. We tested serum levels of monomers IL-12 p40 and IL-12 p35 and heterodimers IL-12 p70, IL-23, IL 35, assessed by ELISA method. Results: IL-12 family programming was abnormal in ADPKD patients. IL-12p70, IL-12p40, and IL-23 secretion increased, while IL-12p35 and IL-35 secretion decreased compared to control. IL-12p70, IL-12p40, and IL-23 had a progressive increase correlated with immune response amplification, a decrease of eGFR, an increase in TKV, and in albuminuria. On the other hand, IL-35 and IL-12p35 were correlated negatively with CRP and albuminuria and positively with eGFR in advanced ADPKD. Conclusions: The present study investigated IL-12 cytokine family members' involvement in ADPKD pathogenesis, enriching our understanding of inflammation in the most common renal genetic disorder.
Collapse
Affiliation(s)
- Corina-Daniela Ene
- Department of Internal Medicine and Nephrology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Nephrology Department, Dr Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania
| | - Ilinca Nicolae
- Research Department, Victor Babes Clinical Hospital of Infectious Diseases, 030303 Bucharest, Romania;
| | - Cristina Căpușă
- Department of Internal Medicine and Nephrology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Nephrology Department, Dr Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania
| |
Collapse
|
8
|
Dellalibera-Joviliano R, Garcia ME, Marins M, Fachin ALÚ, Couto LB, Mesquita E, Komoto TT, Silva G, Neto WC, Orlando L, Durand M, França SC, Bestetti RB. Interleukin-12 treatment reduces tumor growth and modulates the expression of CASKA and MIR-203 in athymic mice bearing tumors induced by the HGC-27 gastric cancer cell line. Pathol Res Pract 2024; 263:155625. [PMID: 39393266 DOI: 10.1016/j.prp.2024.155625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the digestive system and due to its poor prognosis, there is an increase in the demand for more effective anticancer therapies. Interleukins are potential anticancer agents which can modulate expression of cancer related genes and have therapeutic effects. Interleukin 12 (IL-12) exhibits potent anti-tumor, anti-angiogenic and anti-metastatic activities and represents the ideal candidate for tumor immunotherapy, due to its ability to activate both innate and adaptive immunities. The aim of this study was to evaluate the effect of IL-12 administration on GC tumor growth induced in the cancer xenograft nude mouse model. Tumor development was analyzed weekly and after 8 weeks, the animals were sacrificed for cytokine analysis (IL-4, TNF-alfa, IL-2, INF-gamma, IL-12, IL-10, TGF-beta) by ELISA. The tumor cells in the implanted areas of the animals that developed solid growth of the tumor (anatomopathological analysis was performed). We have also evaluated CASK and miR203 expression, two related cell invasion factors, in the induced tumors after administration of 6 n/kg IL-12. The development of tumor masses was observed in all groups of animals inoculated with HGC-27 neoplastic cells. In animals treated with 6 n/kg IL-12, there was no tumor development confirmed by anatomopathological analysis. Changes in the levels of pro and anti-inflammatory cytokines were also observed. Our results indicated that miR203 expression was elevated while CASK was downregulated. These results suggest that IL-12 treatment repress the tumor growth by induction of miR203 expression which in turn repress CASK expression.
Collapse
Affiliation(s)
| | - Marcelo E Garcia
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil.
| | - Mozart Marins
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil; Biotechnology Unit, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| | - Ana L Úcia Fachin
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil; Biotechnology Unit, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| | - Lucélio B Couto
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| | - Edgar Mesquita
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil; Syrian Lebanese Hospital, São Paulo, Brazil
| | - Tatiana T Komoto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Gabriel Silva
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto-USP, Ribeirão Preto, SP, Brazil
| | - Walter Campos Neto
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| | - Leonardo Orlando
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| | - Marina Durand
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| | - Suzelei C França
- Biotechnology Unit, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| | - Reinaldo B Bestetti
- Medicine School, University of Ribeirão Preto, Av. Costábile Romano, Ribeirão Preto, SP 2201, Brazil
| |
Collapse
|
9
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
10
|
Guo H, Xu X, Zhang J, Du Y, Yang X, He Z, Zhao L, Liang T, Guo L. The Pivotal Role of Preclinical Animal Models in Anti-Cancer Drug Discovery and Personalized Cancer Therapy Strategies. Pharmaceuticals (Basel) 2024; 17:1048. [PMID: 39204153 PMCID: PMC11357454 DOI: 10.3390/ph17081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The establishment and utilization of preclinical animal models constitute a pivotal aspect across all facets of cancer research, indispensably contributing to the comprehension of disease initiation and progression mechanisms, as well as facilitating the development of innovative anti-cancer therapeutic approaches. These models have emerged as crucial bridges between basic and clinical research, offering multifaceted support to clinical investigations. This study initially focuses on the importance and benefits of establishing preclinical animal models, discussing the different types of preclinical animal models and recent advancements in cancer research. It then delves into cancer treatment, studying the characteristics of different stages of tumor development and the development of anti-cancer drugs. By integrating tumor hallmarks and preclinical research, we elaborate on the path of anti-cancer drug development and provide guidance on personalized cancer therapy strategies, including synthetic lethality approaches and novel drugs widely adopted in the field. Ultimately, we summarize a strategic framework for selecting preclinical safety experiments, tailored to experimental modalities and preclinical animal species, and present an outlook on the prospects and challenges associated with preclinical animal models. These models undoubtedly offer new avenues for cancer research, encompassing drug development and personalized anti-cancer protocols. Nevertheless, the road ahead continues to be lengthy and fraught with obstacles. Hence, we encourage researchers to persist in harnessing advanced technologies to refine preclinical animal models, thereby empowering these emerging paradigms to positively impact cancer patient outcomes.
Collapse
Affiliation(s)
- Haochuan Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Jiaxi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Zhiheng He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.H.); (L.Z.)
| | - Linjie Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.H.); (L.Z.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (H.G.); (X.X.); (J.Z.); (Y.D.); (X.Y.)
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (Z.H.); (L.Z.)
| |
Collapse
|
11
|
Wang Z, Chen Y, Wu H, Wang M, Mao L, Guo X, Zhu J, Ye Z, Luo X, Yang X, Liu X, Yang J, Sheng Z, Lee J, Guo Z, Liu Y. Intravenous administration of IL-12 encoding self-replicating RNA-lipid nanoparticle complex leads to safe and effective antitumor responses. Sci Rep 2024; 14:7366. [PMID: 38548896 PMCID: PMC10978917 DOI: 10.1038/s41598-024-57997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
Interleukin 12 (IL-12) is a potent immunostimulatory cytokine mainly produced by antigen-presenting cells (e.g., dendritic cells, macrophages) and plays an important role in innate and adaptive immunity against cancers. Therapies that can synergistically modulate innate immunity and stimulate adaptive anti-tumor responses are of great interest for cancer immunotherapy. Here we investigated the lipid nanoparticle-encapsulated self-replicating RNA (srRNA) encoding IL-12 (referred to as JCXH-211) for the treatment of cancers. Both local (intratumoral) and systemic (intravenous) administration of JCXH-211 in tumor-bearing mice induced a high-level expression of IL-12 in tumor tissues, leading to modulation of tumor microenvironment and systemic activation of antitumor immunity. Particularly, JCXH-211 can inhibit the tumor-infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). When combined with anti-PD1 antibody, it was able to enhance the recruitment of T cells and NK cells into tumors. In multiple mouse solid tumor models, intravenous injection of JCXH-211 not only eradicated large preestablished tumors, but also induced protective immune memory that prevented the growth of rechallenged tumors. Finally, intravenous injection of JCXH-211 did not cause noticeable systemic toxicity in tumor-bearing mice and non-human primates. Thus, our study demonstrated the feasibility of intravenous administration of JCXH-211 for the treatment of advanced cancers.
Collapse
Affiliation(s)
- Zihao Wang
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China.
| | - Yanni Chen
- Immorna (Shanghai) Biotechnology, Co. Ltd., Shanghai, 201199, China
| | - Hongyue Wu
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Min Wang
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Li Mao
- Immorna (Shanghai) Biotechnology, Co. Ltd., Shanghai, 201199, China
| | - Xingdong Guo
- Immorna (Shanghai) Biotechnology, Co. Ltd., Shanghai, 201199, China
| | - Jianbo Zhu
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Zilan Ye
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Xiaoyan Luo
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Xiurong Yang
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Xueke Liu
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Junhao Yang
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Zhaolang Sheng
- Immorna (Shanghai) Biotechnology, Co. Ltd., Shanghai, 201199, China
| | - Jaewoo Lee
- Immorna Biotherapeutics, Inc., Morrisville, NC, 27560, USA
| | - Zhijun Guo
- Immorna (Hangzhou) Biotechnology, Co. Ltd., Hangzhou, 311215, Zhejiang, China
| | - Yuanqing Liu
- Immorna (Shanghai) Biotechnology, Co. Ltd., Shanghai, 201199, China
| |
Collapse
|