1
|
Anand JP, Moore SC, Dixon EE, Perrien Naccarato CM, West JL, Delong LJ, Burgess E, Twarozynski JJ, Traynor JR. Structure-Activity Relationships of the Fentanyl Scaffold: Identification of Antagonists as Potential Opioid Overdose Reversal Agents. ACS Chem Neurosci 2024; 15:2830-2841. [PMID: 38994846 PMCID: PMC11459602 DOI: 10.1021/acschemneuro.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Opioid-related overdoses account for almost half of all drug overdose deaths in the United States and cause more preventable deaths every year than car crashes. Fentanyl, a highly potent mu opioid receptor (MOR) agonist and its analogues (fentalogues) are increasingly found in illicit drug samples, both where the primary drug of abuse is an opioid and where it is not. The prevalence of fentalogues in the illicit drug market is thought to be the primary driver of the increased number of opioid-related overdose deaths since 2016. In fact, fentanyl and its analogues are involved in more than 70% of opioid-related overdoses. The standard opioid overdose rescue therapy naloxone is often insufficient to reverse opioid overdoses caused by fentalogue agonists under current treatment paradigms. However, the pharmacology of many fentalogues is unknown. Moreover, within the fentalogue series of compounds, it is possible that antagonists could be identified that might be superior to naloxone as opioid overdose reversal agents. In this report, we explore the pharmacology of 70 fentalogues and identify compounds that behave as MOR antagonists in vitro and demonstrate with one of these reversals of fentanyl-induced respiratory depression in the mouse. Such compounds could provide leads for the development of effective agents for the reversal of opioid overdose.
Collapse
Affiliation(s)
- Jessica P Anand
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sierra C Moore
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Emma E Dixon
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Joshua L West
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lennon J Delong
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Emily Burgess
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jack J Twarozynski
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R Traynor
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Kajino K, Tokuda A, Saitoh T. Morphinan Evolution: The Impact of Advances in Biochemistry and Molecular Biology. J Biochem 2024; 175:337-355. [PMID: 38382631 DOI: 10.1093/jb/mvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Morphinan-based opioids, derived from natural alkaloids like morphine, codeine and thebaine, have long been pivotal in managing severe pain. However, their clinical utility is marred by significant side effects and high addiction potential. This review traces the evolution of the morphinan scaffold in light of advancements in biochemistry and molecular biology, which have expanded our understanding of opioid receptor pharmacology. We explore the development of semi-synthetic and synthetic morphinans, their receptor selectivity and the emergence of biased agonism as a strategy to dissociate analgesic properties from undesirable effects. By examining the molecular intricacies of opioid receptors and their signaling pathways, we highlight how receptor-type selectivity and signaling bias have informed the design of novel analgesics. This synthesis of historical and contemporary perspectives provides an overview of the morphinan landscape, underscoring the ongoing efforts to mitigate the problems facing opioids through smarter drug design. We also highlight that most morphinan derivatives show a preference for the G protein pathway, although detailed experimental comparisons are still necessary. This fact underscores the utility of the morphinan skeleton in future opioid drug discovery.
Collapse
Affiliation(s)
- Keita Kajino
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Akihisa Tokuda
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|