1
|
Butler Tjaden NE, Shannon SR, Seidel CW, Childers M, Aoto K, Sandell LL, Trainor PA. Rdh10-mediated Retinoic Acid Signaling Regulates the Neural Crest Cell Microenvironment During ENS Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634504. [PMID: 39896510 PMCID: PMC11785139 DOI: 10.1101/2025.01.23.634504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The enteric nervous system (ENS) is formed from vagal neural crest cells (NCC), which generate most of the neurons and glia that regulate gastrointestinal function. Defects in the migration or differentiation of NCC in the gut can result in gastrointestinal disorders such as Hirschsprung disease (HSCR). Although mutations in many genes have been associated with the etiology of HSCR, a significant proportion of affected individuals have an undetermined genetic diagnosis. Therefore, it's important to identify new genes, modifiers and environmental factors that regulate ENS development and disease. Rdh10 catalyzes the first oxidative step in the metabolism of vitamin A to its active metabolite, RA, and is therefore a central regulator of vitamin A metabolism and retinoic acid (RA) synthesis during embryogenesis. We discovered that retinol dehydrogenase 10 (Rdh10) loss-of-function mouse embryos exhibit intestinal aganglionosis, characteristic of HSCR. Vagal NCC form and migrate in Rdh10 mutant embryos but fail to invade the foregut. Rdh10 is highly expressed in the mesenchyme surrounding the entrance to the foregut and is essential between E7.5-E9.5 for NCC invasion into the gut. Comparative RNA-sequencing revealed downregulation of the Ret-Gdnf-Gfrα1 gene signaling network in Rdh10 mutants, which is critical for vagal NCC chemotaxis. Furthermore, the composition of the extracellular matrix through which NCC migrate is also altered, in part by increased collagen deposition. Collectively this restricts NCC entry into the gut, demonstrating that Rdh10-mediated vitamin A metabolism and RA signaling pleiotropically regulates the NCC microenvironment during ENS formation and in the pathogenesis of intestinal aganglionosis.
Collapse
Affiliation(s)
- Naomi E. Butler Tjaden
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Gastroenterology, Hepatology & Nutrition, Children’s Hospital of Philadelphia, Philadelphia PA 19104
| | - Stephen R. Shannon
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Melissa Childers
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Kazushi Aoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu City, Shizuoka, Japan 431-3192
| | - Lisa L. Sandell
- University of Louisville, Department of Oral Immunology and Infectious Diseases, Louisville, KY, 40201, USA
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Hosseini SM, Panahi-Azar A, Sheybani-Arani M, Morovatshoar R, Mirzadeh M, Salimi Asl A, Naghdipour Mirsadeghi M, Khajavi-Mayvan F. Vitamins, minerals and their maternal levels' role in brain development: An updated literature-review. Clin Nutr ESPEN 2024; 63:31-45. [PMID: 38907995 DOI: 10.1016/j.clnesp.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/26/2024] [Accepted: 05/16/2024] [Indexed: 06/24/2024]
Abstract
One's neurobehavioural and mental health are built during the exact and complex process of brain development. It is thought that fetal development is where neuropsychiatric disorders first emerged. Behavioural patterns can change as a result of neuropsychiatric illnesses. The incidence is rising quickly; nevertheless, providing exceptional care remains a significant challenge for families and healthcare systems. It has been demonstrated that one of the main factors causing the transmission of these diseases is maternal exposure. Through physiologic pathways, maternal health and intrauterine exposures can affect brain development. Our attention has been focused on epigenetic factors, particularly in the gestational environment, which may be responsible for human neurodegenerative diseases since our main mental development occurs during the nine months of intrauterine life. After thoroughly searching numerous databases, this study examined the effect of fat-soluble vitamins, water-soluble vitamins, and minerals and their maternal-level effect on brain development.
Collapse
Affiliation(s)
| | - Ava Panahi-Azar
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | | | - Reza Morovatshoar
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Mahdieh Mirzadeh
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Ali Salimi Asl
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Misa Naghdipour Mirsadeghi
- Department of Gynecology, School of Medicine, Reproductive Health Research Center, Alzahra Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | | |
Collapse
|
3
|
Bu L, He L, Wang X, Du G, Wu R, Liu W. Proteomic Analysis Provides a New Sight Into the CRABP1 Expression in the Pathogenesis of Hirschsprung Disease. Biochem Genet 2024:10.1007/s10528-024-10913-3. [PMID: 39298027 DOI: 10.1007/s10528-024-10913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Hirschsprung's disease (HSCR) is the most common developmental disorder of the enteric nervous system and its etiology and pathogenesis remain largely unknown. This study aims to identify the differential proteomic patterns linked to the occurrence and development of Hirschsprung disease in colonic tissues. Biopsies were obtained from the aganglionic colon in human HSCR and the corresponding ganglionic colon segments for direct quantitative determination of the data-independent acquisition (DIA) followed by bioinformatics analysis. The differentially expressed main proteins were confirmed by Western blot and immunostaining. A total of 5832 proteins were identified in human colon tissues. Among them, 97 differentially expressed proteins (DEP) with fold change (FC) > 1.2 were screened, including 18 upregulated proteins and 79 downregulated proteins, and GO and KEGG enrichment analyses were performed on differential proteins. By comparing down-regulated proteins with highly connected protein nodes in the PPI network with those related to intracellular metabolic processes in the above analysis, we identified cellular retinoic acid binding protein 1(CRABP1). Its expression was verified in the aganglionic part of the colon by western blotting in an expanded sample set (P = 0.0031). The immunostaining results revealed that CRABP1 was highly expressed in the myenteric plexus ganglion in ganglionic colons compared to aganglionic segments (P = 0.0004). This study demonstrated the down-regulation of CRABP1 in the aganglionic hindgut of HSCR, which could provide potential markers or promising new candidate actors for the pathogenesis of HSCR.
Collapse
Affiliation(s)
- Lingyun Bu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China
| | - Lingxiao He
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China
| | - Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China
| | - Guoqiang Du
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China
| | - Rongde Wu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China.
| |
Collapse
|
4
|
Liu Z, Wang J, Xu Q, Hong Q, Zhu J, Chi X. Research Progress in Vitamin A and Autism Spectrum Disorder. Behav Neurol 2021; 2021:5417497. [PMID: 34917197 PMCID: PMC8670912 DOI: 10.1155/2021/5417497] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder. Over the past few decades, many studies have investigated the effects of VA supplementation in ASD patients and the relationship between vitamin A (VA) levels and ASD. VA is an essential micronutrient that plays an important role in various systems and biological processes in the form of retinoic acid (RA). Recent studies have shown that serum VA concentration is negatively correlated with the severity of ASD. The lack of VA during pregnancy or early fetal development can affect brain development and lead to long-term or even permanent impairment in the learning process, memory formation, and cognitive function. In addition, VA deficiency has been reported to have a major impact on the gastrointestinal function of children with ASD, while VA supplementation has been shown to improve the symptoms of ASD to a certain extent. This paper provides a comprehensive review of the relationship between VA and ASD.
Collapse
Affiliation(s)
- Zhonghui Liu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, China
- Institute of Pediatrics, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
| | - Jingyu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, China
- Institute of Pediatrics, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
| | - Qu Xu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, China
| | - Qin Hong
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, China
| | - Jiansheng Zhu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, China
| | - Xia Chi
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Alley, Mochou Road, Nanjing 210004, China
- Institute of Pediatrics, Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China
| |
Collapse
|
5
|
Neural is Fundamental: Neural Stemness as the Ground State of Cell Tumorigenicity and Differentiation Potential. Stem Cell Rev Rep 2021; 18:37-55. [PMID: 34714532 DOI: 10.1007/s12015-021-10275-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
Tumorigenic cells are similar to neural stem cells or embryonic neural cells in regulatory networks, tumorigenicity and pluripotent differentiation potential. By integrating the evidence from developmental biology, tumor biology and evolution, I will make a detailed discussion on the observations and propose that neural stemness underlies two coupled cell properties, tumorigenicity and pluripotent differentiation potential. Neural stemness property of tumorigenic cells can hopefully integrate different observations/concepts underlying tumorigenesis. Neural stem cells and tumorigenic cells share regulatory networks; both exhibit neural stemness, tumorigenicity and pluripotent differentiation potential; both depend on expression or activation of ancestral genes; both rely primarily on aerobic glycolytic metabolism; both can differentiate into various cells/tissues that are derived from three germ layers, leading to tumor formation resembling severely disorganized or more degenerated process of embryonic tissue differentiation; both are enriched in long genes with more splice variants that provide more plastic scaffolds for cell differentiation, etc. Neural regulatory networks, which include higher levels of basic machineries of cell physiological functions and developmental programs, work concertedly to define a basic state with fast cell cycle and proliferation. This is predestined by the evolutionary advantage of neural state, the ground or initial state for multicellularity with adaptation to an ancient environment. Tumorigenesis might represent a process of restoration of neural ground state, thereby restoring a state with fast proliferation and pluripotent differentiation potential in somatic cells. Tumorigenesis and pluripotent differentiation potential might be better understood from understanding neural stemness, and cancer therapy should benefit more from targeting neural stemness.
Collapse
|
6
|
Sharma AR, Batra G, Saini L, Sharma S, Mishra A, Singla R, Singh A, Singh RS, Jain A, Bansal S, Modi M, Medhi B. Valproic acid and Propionic acid modulated mechanical pathways associated with Autism Spectrum Disorder at prenatal and neonatal exposure. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:399-408. [PMID: 34365961 DOI: 10.2174/1871527320666210806165430] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Autism Spectrum Disorder (ASD) is a composite disorder of brain development with uncertain etiology and pathophysiology. Genetic factors are important in ASD causation, although environmental factors are also involved in ASD pathophysiology. Environmental factors might affect the genetic processes of brain development through the modulation of molecular pathways that might be involved with ASD. Valproic acid and Propionic acid are the major environmental factors that serve as medicine and food preservative. VPA is used as an anti-epileptic medicine, but it has adverse effects on pregnant women and alters the developmental patterns of the embryo. It is a multi-targeting agent and affects through the 5-HT, GABA, etc. PPA is a secondary metabolite of gut microbiota that is commonly used as a food preservative. PPA plays a significant role in ASD causation by altering the several developmental molecular pathways like PTEN/Akt, mTOR/Gskβ, Cytokines activated pathways, etc., at the prenatal and neonatal stage. Moreover, ASD complexity might be increased by some other important factors like vitamin A deficiency and Vitamin A is important for cortical brain development and neuronal cell differentiation. Additionally, several important genes such as RELN, Lhx2, CREB, IL-6, NMDA, BDNF, etc. also altered in ASD that involved in brain development, Central Nervous System, Enteric Nervous System. These genes affect the neuronal differentiation, hyperactivity, oxidative stress, oxytocin, and GABA imbalance that lead the improper behavior in autistic individuals. These genes are also studied in VPA and PPA ASD-like animal models. In this review, we explored the mechanical pathways that might be altered with VPA and PPA exposures at the embryonic developmental stage or neonatal developmental stage.
Collapse
Affiliation(s)
- Amit Raj Sharma
- Department of Neurology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Gitika Batra
- Department of Neurology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Lokesh Saini
- Department of Paediatric Neurology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Saurabh Sharma
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Abhishek Mishra
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Rubal Singla
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Ashutosh Singh
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Rahul Soloman Singh
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Ashish Jain
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Seema Bansal
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Manish Modi
- Department of Neurology,Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh. India
| |
Collapse
|
7
|
Tang W, Chen M, Guo X, Zhou K, Wen Z, Liu F, Liu X, Mao X, He X, Hu W, Sun X, Tang J, Li H, White RA, Lv W, Wang P, Hang B, Sun R, Wang X, Xia Y. Multiple 'omics'-analysis reveals the role of prostaglandin E2 in Hirschsprung's disease. Free Radic Biol Med 2021; 164:390-398. [PMID: 33465467 DOI: 10.1016/j.freeradbiomed.2020.12.456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/18/2022]
Abstract
The etiology and pathogenesis of Hirschsprung's disease (HSCR) remain largely unknown. We examined colon tissues from three independent populations with a combined analysis of metabolomics, transcriptomics and proteomics to understand HSCR pathogenesis, according to which mouse model was used to examine prostaglandin E2 (PGE2) induced clinical presentation of HSCR. SH-SY5Y and SK-N-BE(2) cell lines were studied for PGE2 inhibited cell migration through EP2. Our integrated multiple 'omics'-analysis suggests that the levels of PGE2, the expression of the gene encoding PGE2 receptor (EP2), and PGE2 synthesis enzyme genes (PTGS1 and PTGES) increased in HSCR colon tissues, together with a decreased synthesis of PGE2-related byproducts. In vivo, the pregnant mice treated with PGE2 gave birth to offspring with the decrease of ganglion cells in their colon and gut function. In in vitro study, when EP2 was blocked, the PGE2-inhibited cell migration was recovered. Our study identified a novel pathway highlighting the link between expression of PTGS1 and PTGES, levels of PGE2, expression of PTGER2, and neural crest cell migration in HSCR, providing a novel strategy for future diagnosis and prevention of HSCR.
Collapse
Affiliation(s)
- Weibing Tang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zechao Wen
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Fengli Liu
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou, 221006, China
| | - Xiang Liu
- Anhui Provincial Children's Hospital, Hefei, 230051, China
| | - Xiaohua Mao
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaowei He
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xian Sun
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Junwei Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Richard Allen White
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Wei Lv
- School of Business, Nanjing University, Nanjing, 210093, China
| | - Pin Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, 94720, USA; Department of Gastroenterology, The Drum Tower Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, 94720, USA
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
8
|
Tan M, Yang T, Liu H, Xiao L, Li C, Zhu J, Chen J, Li T. Maternal vitamin A deficiency impairs cholinergic and nitrergic neurons, leading to gastrointestinal dysfunction in rat offspring via RARβ. Life Sci 2021; 264:118688. [PMID: 33130074 DOI: 10.1016/j.lfs.2020.118688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
AIMS Many gastrointestinal (GI) disorders are developmental in origin and are caused by abnormal enteric nervous system (ENS) formation. Maternal vitamin A deficiency (VAD) during pregnancy affects multiple central nervous system developmental processes during embryogenesis and fetal life. Here, we evaluated whether maternal diet-induced VAD during pregnancy alone can cause changes in the ENS that lead to GI dysfunction in rat offspring. MAIN METHODS Rats were selected to construct animal models of normal VA, VA deficiency and VA supplementation. The fecal water content, total gastrointestinal transmission time and colonic motility were measured to evaluate gastrointestinal function of eight-week-old offspring rats. The expression levels of RARβ, SOX10, cholinergic (ChAT) and nitrergic (nNOS) enteric neurons in colon tissues were detected through western blot and immunofluorescence. Primary enteric neurospheres were treated with retinoic acid (RA), infection with Ad-RARβ and siRARβ adenovirus, respectively. KEY FINDINGS Our data revealed marked reductions in the mean densities of cholinergic and nitrergic enteric neurons in the colon and GI dysfunction evidenced by mild intestinal flatulence, increased fecal water content, prolonged total GI transit time and reduced colon motility in adult offspring of the VAD group. Interestingly, maternal VA supplementation (VAS) during pregnancy rescued these changes. In addition, in vitro experiments demonstrated that exposure to appropriate doses of RA promoted enteric neurosphere differentiation into cholinergic and nitrergic neurons, possibly by upregulating RARβ expression, leading to enhanced SOX10 expression. SIGNIFICANCE Maternal VAD during pregnancy is an environmental risk factor for GI dysfunction in rat offspring.
Collapse
Affiliation(s)
- Mei Tan
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Huan Liu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Lu Xiao
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Cheng Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Jiang Zhu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China.
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China.
| |
Collapse
|
9
|
Abstract
BACKGROUND/AIMS Hirschsprung's disease (HSCR) is the most common digestive disease caused by disorders of neural crest development. Despite the known involvement of miR-140-5p in many human diseases, its biological role in Hirschsprung's disease (HSCR) remains undefined. In this study, we sought to reveal the roles of miR-140-5p in the pathogenesis of HSCR. METHODS Quantitative real-time PCR and western blotting were used to measure the relative expression levels of miRNAs, mRNAs, and proteins in stenotic and dilated sections of the colon of 32 HSCR patients. Targets and proteins were evaluated by western blotting, and Transwell, CCK-8, and flow cytometry assays were adopted to detect the functional effects of miR-140-5p on SH-SY5Y cells. RESULTS miR-140-5p was significantly downregulated in HSCR tissue samples with increased expression of EGR2, and knockdown of miR-140-5p inhibited cell migration and proliferation and promoted apoptosis in SH-SY5Y cell lines. EGR2 expression was inversely correlated with that of miR-140-5p in cell lines. CONCLUSIONS miR-140-5p may influence the pathogenesis of HSCR by targeting EGR2.
Collapse
|
10
|
Vitamin A deficiency exacerbates autism-like behaviors and abnormalities of the enteric nervous system in a valproic acid-induced rat model of autism. Neurotoxicology 2020; 79:184-190. [DOI: 10.1016/j.neuro.2020.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
|