1
|
Kita K, Gawinowska M, Chełmińska M, Niedoszytko M. The Role of Exhaled Breath Condensate in Chronic Inflammatory and Neoplastic Diseases of the Respiratory Tract. Int J Mol Sci 2024; 25:7395. [PMID: 39000502 PMCID: PMC11242091 DOI: 10.3390/ijms25137395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic respiratory diseases. Chronic inflammation of the airways leads to an increased production of inflammatory markers by the effector cells of the respiratory tract and lung tissue. These biomarkers allow the assessment of physiological and pathological processes and responses to therapeutic interventions. Lung cancer, which is characterized by high mortality, is one of the most frequently diagnosed cancers worldwide. Current screening methods and tissue biopsies have limitations that highlight the need for rapid diagnosis, patient differentiation, and effective management and monitoring. One promising non-invasive diagnostic method for respiratory diseases is the assessment of exhaled breath condensate (EBC). EBC contains a mixture of volatile and non-volatile biomarkers such as cytokines, leukotrienes, oxidative stress markers, and molecular biomarkers, providing significant information about inflammatory and neoplastic states in the lungs. This article summarizes the research on the application and development of EBC assessment in diagnosing and monitoring respiratory diseases, focusing on asthma, COPD, and lung cancer. The process of collecting condensate, potential issues, and selected groups of markers for detailed disease assessment in the future are discussed. Further research may contribute to the development of more precise and personalized diagnostic and treatment methods.
Collapse
Affiliation(s)
- Karolina Kita
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marika Gawinowska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marta Chełmińska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
2
|
Seyfinejad B, Nemutlu E, Taghizadieh A, Khoubnasabjafari M, Ozkan SA, Jouyban A. Biomarkers in exhaled breath condensate as fingerprints of asthma, chronic obstructive pulmonary disease and asthma-chronic obstructive pulmonary disease overlap: a critical review. Biomark Med 2023; 17:811-837. [PMID: 38179966 DOI: 10.2217/bmm-2023-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Asthma, chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap are the third leading cause of mortality around the world. They share some common features, which can lead to misdiagnosis. To properly manage these conditions, reliable markers for early and accurate diagnosis are needed. Over the past 20 years, many molecules have been investigated in the exhaled breath condensate to better understand inflammation pathways and mechanisms related to these disorders. Recently, more advanced techniques, such as sensitive metabolomic and proteomic profiling, have been used to obtain a more comprehensive understanding. This article reviews the use of targeted and untargeted metabolomic methodology to study asthma, COPD and asthma-COPD overlap.
Collapse
Affiliation(s)
- Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkiye
| | - Ali Taghizadieh
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anesthesiology & Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, 06560, Turkiye
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, PO Box 99138 Nicosia, North Cyprus, Mersin 10, Turkiye
| |
Collapse
|
3
|
Sardon-Prado O, Diaz-Garcia C, Corcuera-Elosegui P, Korta-Murua J, Valverde-Molina J, Sanchez-Solis M. Severe Asthma and Biological Therapies: Now and the Future. J Clin Med 2023; 12:5846. [PMID: 37762787 PMCID: PMC10532431 DOI: 10.3390/jcm12185846] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Recognition of phenotypic variability in pediatric asthma allows for a more personalized therapeutic approach. Knowledge of the underlying pathophysiological and molecular mechanisms (endotypes) of corresponding biomarkers and new treatments enables this strategy to progress. Biologic therapies for children with severe asthma are becoming more relevant in this sense. The T2 phenotype is the most prevalent in childhood and adolescence, and non-T2 phenotypes are usually rare. This document aims to review the mechanism of action, efficacy, and potential predictive and monitoring biomarkers of biological drugs, focusing on the pediatric population. The drugs currently available are omalizumab, mepolizumab, benralizumab, dupilumab, and 1ezepelumab, with some differences in administrative approval prescription criteria between the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Previously, we described the characteristics of severe asthma in children and its diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Olaia Sardon-Prado
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
- Department of Pediatrics, University of the Basque Country (UPV/EHU), 20014 Leioa, Spain
| | - Carolina Diaz-Garcia
- Paediatric Pulmonology and Allergy Unit, Santa Lucia General University Hospital, 30202 Cartagena, Spain;
| | - Paula Corcuera-Elosegui
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
| | - Javier Korta-Murua
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
| | - Jose Valverde-Molina
- Department of Paediatrics, Santa Lucía General University Hospital, 30202 Cartagena, Spain
- IMIB Biomedical Research Institute, 20120 Murcia, Spain;
| | - Manuel Sanchez-Solis
- IMIB Biomedical Research Institute, 20120 Murcia, Spain;
- Department of Pediatrics, University of Murcia, 20120 Murcia, Spain
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, 20120 Murcia, Spain
| |
Collapse
|
4
|
Fireman Klein E, Yaacoby-Bianu K, Orlin I, Zetser A, Purits N, Livnat G. Exhaled Breath Condensate and Respiratory Sequelae in Children Post-COVID-19. Respiration 2023; 102:479-486. [PMID: 37393889 DOI: 10.1159/000530971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/02/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes an acute respiratory illness. A substantial proportion of adults experience persistent symptoms. There is a paucity of data on respiratory sequelae in children. Exhaled breath condensate (EBC) is a non-invasive tool used to assess airway inflammation. OBJECTIVES This study aimed to evaluate EBC parameters, respiratory, mental and physical ability among children post COVID-19 infection. METHODS Observational study of confirmed SARS-CoV-2 infection cases among children, aged 5-18 years, evaluated once, 1-6 months post positive SARS-CoV-2 PCR testing. All subjects performed spirometry, 6-min walk test (6MWT), EBC (pH, interleukin-6), and completed medical history questionnaires, Depression, Anxiety, and Stress Scale (DASS-21), and physical activity scores. Severity of COVID-19 disease was classified according to WHO criteria. RESULTS Fifty-eight children were included and classified asymptomatic (n = 14), mild (n = 37), and moderate (n = 7) disease. The asymptomatic group included younger patients compared to the mild and moderate groups (8.9 ± 2.5y vs. 12.3 ± 3.6y and 14.6 ± 2.5y, respectively, p = 0.001), as well as lower DASS-21 total scores (3.4 ± 4 vs. 8.7 ± 9.4 and 8.7 ± 0.6 respectively, p = 0.056), with higher scores in proximity to positive PCR (p = 0.011). No differences were found between the 3 groups regarding EBC, 6MWT, spirometry, body mass index percentile, and activity scores. CONCLUSIONS COVID-19 is an asymptomatic-mild disease in most young healthy children, with gradually diminishing emotional symptoms. Children without prolonged respiratory symptoms revealed no significant pulmonary sequelae as evaluated by EBC markers, spirometry, 6MWT, and activity scores. Larger studies are required to assess long-term pediatric consequences of post SARS-CoV-2 infection, to assess the need for pulmonology surveillance.
Collapse
Affiliation(s)
- Einat Fireman Klein
- Pulmonology division, Carmel Medical Center, Haifa, Israel
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Karin Yaacoby-Bianu
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Pediatric Pulmonology unit, Carmel Medical Center, Haifa, Israel
| | - Ido Orlin
- Department of Pediatrics, Carmel Medical Center, Haifa, Israel
| | - Anna Zetser
- Chemistry Laboratory, Carmel Medical Center, Haifa, Israel
| | - Nona Purits
- Pediatric Pulmonology unit, Carmel Medical Center, Haifa, Israel
| | - Galit Livnat
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Pediatric Pulmonology unit, Carmel Medical Center, Haifa, Israel
| |
Collapse
|
5
|
Xepapadaki P, Adachi Y, Pozo Beltrán CF, El-Sayed ZA, Gómez RM, Hossny E, Filipovic I, Le Souef P, Morais-Almeida M, Miligkos M, Nieto A, Phipatanakul W, Pitrez PM, Wang JY, Wong GW, Papadopoulos NG. Utility of biomarkers in the diagnosis and monitoring of asthmatic children. World Allergy Organ J 2022; 16:100727. [PMID: 36601259 PMCID: PMC9791923 DOI: 10.1016/j.waojou.2022.100727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Asthma imposes a heavy morbidity burden during childhood; it affects over 10% of children in Europe and North America and it is estimated to exceed 400 million people worldwide by the year 2025. In clinical practice, diagnosis of asthma in children is mostly based on clinical criteria; nevertheless, assessment of both physiological and pathological processes through biomarkers, support asthma diagnosis, aid monitoring, and further lead to better treatment outcomes and reduced morbidity. Recently, identification and validation of biomarkers in pediatric asthma has emerged as a top priority across leading experts, researchers, and clinicians. Moreover, the implementation of non-invasive biomarkers for the assessment and monitoring of paediatric patients with asthma, has been prioritized; however, only a proportion of them are currently included in the clinical practise. Although, the use of non-invasive biomarkers is highly supported in recent asthma guidelines for documenting diagnosis and supporting monitoring of asthmatic patients, data on the Pediatric population are limited. In the present report, the Pediatric Asthma Committee of the World Allergy Organization (WAO), aims to summarize and discuss available data for the implementation of non-invasive biomarkers in the diagnosis and monitoring in children with asthma. Information on the most studied biomarkers, including spirometry, oscillometry, markers of allergic sensitization, fractional exhaled nitric oxide, and the most recent exhaled breath markers and "omic" approaches, will be reviewed. Practical limitations and considerations based on both experts' opinion and critical review of the literature, on the utility of all "well-known" and newly introduced non-invasive biomarkers will be presented. A critical commentary on biomarkers' use in diagnosing and monitoring asthma during the COVID-19 pandemic, cost and availability of biomarkers in different settings and in developing countries, the differences on the biomarkers use between Primary Practitioners, Pediatricians, and Specialists and their role on the longitudinal aspect of asthma is provided.
Collapse
Affiliation(s)
- Paraskevi Xepapadaki
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
- Corresponding author.
| | - Yuichi Adachi
- Department of Pediatrics, Faculty of Medicine, University of Toyam, Japan
| | | | - Zeinab A. El-Sayed
- Pediatric Allergy, Immunology and Rheumatology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | | | - Elham Hossny
- Pediatric Allergy, Immunology and Rheumatology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Ivana Filipovic
- University Hospital Center Dr Dragiša Mišović Hospital Pediatric Department, Serbia
| | - Peter Le Souef
- Faculty of Health and Medical Sciences, Dept of Respiratory Medicine, Child and Adolescent Health Service, University of Western Australia, Perth, Australia
| | | | - Michael Miligkos
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
| | - Antonio Nieto
- Pediatric Pulmonology & Allergy Unit Children's. Health Research Institute. Hospital La Fe, 46026, Valencia, Spain
| | - Wanda Phipatanakul
- Pediatric Allergy and Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Paulo M. Pitrez
- School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jiu-Yao Wang
- Center for Allergy and Clinical Immunology Research, College of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Gary W.K. Wong
- Department of Paediatrics, The Chinese University of Hong Kong, China
| | | |
Collapse
|
6
|
Marpole R, Ohn M, O'Dea CA, von Ungern-Sternberg BS. Clinical utility of preoperative pulmonary function testing in pediatrics. Paediatr Anaesth 2022; 32:191-201. [PMID: 34875135 DOI: 10.1111/pan.14356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
Perioperative respiratory adverse events pose a significant risk in pediatric anesthesia, and identifying these risks is vital. Traditionally, this is assessed using history and examination. However, the perioperative risk is multifactorial, and children with complex medical backgrounds such as chronic lung disease or obesity may benefit from additional objective preoperative pulmonary function tests. This article summarizes the utility of available pulmonary function assessment tools as preoperative tests in improving post-anesthetic outcomes. Currently, there is no evidence to support or discourage any pulmonary function assessment as a routine preoperative test for children undergoing anesthesia. In addition, there is uncertainty about which patients with the known or suspected respiratory disease require preoperative pulmonary function tests, what time period prior to surgery these are required, and whether spirometry or more sophisticated tests are indicated. Therefore, the need for any test should be based on information obtained from the history and examination, the child's age, and the complexity of the surgery.
Collapse
Affiliation(s)
- Rachael Marpole
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,Division of Paediatrics, School of Medical, University of Western Australia, Crawley, WA, Australia
| | - Mon Ohn
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,Division of Paediatrics, School of Medical, University of Western Australia, Crawley, WA, Australia.,Perioperative Medicine Team, Telethon Kids Institute, Nedlands, WA, Australia
| | - Christopher A O'Dea
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia
| | - Britta S von Ungern-Sternberg
- Perioperative Medicine Team, Telethon Kids Institute, Nedlands, WA, Australia.,Division of Emergency Medicine, Anaesthesia and Pain Medicine, School of Medical, University of Western Australia, Crawley, WA, Australia.,Department of Anaesthesia and Pain Management, Perth Children's Hospital, Nedlands, WA, Australia
| |
Collapse
|
7
|
Połomska J, Bar K, Sozańska B. Exhaled Breath Condensate-A Non-Invasive Approach for Diagnostic Methods in Asthma. J Clin Med 2021; 10:jcm10122697. [PMID: 34207327 PMCID: PMC8235112 DOI: 10.3390/jcm10122697] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
The pathophysiology of asthma has been intensively studied, but its underlying mechanisms such as airway inflammation, control of airway tone, and bronchial reactivity are still not completely explained. There is an urgent need to implement novel, non-invasive diagnostic tools that can help to investigate local airway inflammation and connect the molecular pathways with the broad spectrum of clinical manifestations of asthma. The new biomarkers of different asthma endotypes could be used to confirm diagnosis, predict asthma exacerbations, or evaluate treatment response. In this paper, we briefly describe the characteristics of exhaled breath condensate (EBC) that is considered to be an interesting source of biomarkers of lung disorders. We look at the composition of EBC, some aspects of the collection procedure, the proposed biomarkers for asthma, and its clinical implications. We also indicate the limitations of the method and potential strategies to standardize the procedure of EBC collection and analytical methods.
Collapse
|
8
|
Papadopoulos NG, Miligkos M, Xepapadaki P. A Current Perspective of Allergic Asthma: From Mechanisms to Management. Handb Exp Pharmacol 2021; 268:69-93. [PMID: 34085124 DOI: 10.1007/164_2021_483] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Asthma is a result of heterogenous, complex gene-environment interactions with variable clinical phenotypes, inflammation, and remodeling. It affects more than 330 million of people worldwide throughout their educational and working lives, while exacerbations put a heavy cost/burden on productivity. Childhood asthma is characterized by a predominance of allergic sensitization and multimorbidity, while in adults polysensitization has been positively associated with asthma occurrence. Despite significant improvements in recent decades, asthma management remains challenging. Recently, a group of specialists suggested that the term "asthma" should be preferably used as a descriptive term for symptoms. Moreover, type 2 inflammation has emerged as a pivotal disease mechanism including overlapping endotypes of specific IgE production, while type 2-low asthma includes several disease endotypes. Optimal asthma control requires both appropriate pharmacological interventions, tailored to each patient, as well as trigger avoidance measures. Regular monitoring for maintenance of symptom control, preservation of lung function, and detection of treatment-related adverse effects are warranted. Allergen-specific immunotherapy and the advent of new targeted therapies for patients with difficult to control asthma offer diverse treatment options. The current review summarizes up-to-date knowledge on epidemiology, definitions, diagnosis, and current therapeutic strategies.
Collapse
Affiliation(s)
- Nikolaos G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece. .,Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK.
| | - Michael Miligkos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
The Predictive Role of Biomarkers and Genetics in Childhood Asthma Exacerbations. Int J Mol Sci 2021; 22:ijms22094651. [PMID: 33925009 PMCID: PMC8124320 DOI: 10.3390/ijms22094651] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
Asthma exacerbations are associated with significant childhood morbidity and mortality. Recurrent asthma attacks contribute to progressive loss of lung function and can sometimes be fatal or near-fatal, even in mild asthma. Exacerbation prevention becomes a primary target in the management of all asthmatic patients. Our work reviews current advances on exacerbation predictive factors, focusing on the role of non-invasive biomarkers and genetics in order to identify subjects at higher risk of asthma attacks. Easy-to-perform tests are necessary in children; therefore, interest has increased on samples like exhaled breath condensate, urine and saliva. The variability of biomarker levels suggests the use of seriate measurements and composite markers. Genetic predisposition to childhood asthma onset has been largely investigated. Recent studies highlighted the influence of single nucleotide polymorphisms even on exacerbation susceptibility, through involvement of both intrinsic mechanisms and gene-environment interaction. The role of molecular and genetic aspects in exacerbation prediction supports an individual-shaped approach, in which follow-up planning and therapy optimization take into account not only the severity degree, but also the risk of recurrent exacerbations. Further efforts should be made to improve and validate the application of biomarkers and genomics in clinical settings.
Collapse
|
10
|
Abstract
While asthma has a strong genetic component, our current ability to systematically understand and predict asthma risk remains low, despite over a hundred genetic associations. The reasons for this unfilled gap range from technical limitations of current approaches to fundamental deficiencies in the way we understand asthma. These are discussed in the context of genomic advances.
Collapse
Affiliation(s)
- Mayank Bansal
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mayank Garg
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anurag Agrawal
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
11
|
Ferraro VA, Carraro S, Pirillo P, Gucciardi A, Poloniato G, Stocchero M, Giordano G, Zanconato S, Baraldi E. Breathomics in Asthmatic Children Treated with Inhaled Corticosteroids. Metabolites 2020; 10:metabo10100390. [PMID: 33003349 PMCID: PMC7600137 DOI: 10.3390/metabo10100390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND "breathomics" enables indirect analysis of metabolic patterns underlying a respiratory disease. In this study, we analyze exhaled breath condensate (EBC) in asthmatic children before (T0) and after (T1) a three-week course of inhaled beclomethasone dipropionate (BDP). METHODS we recruited steroid-naive asthmatic children for whom inhaled steroids were indicated and healthy children, evaluating asthma control, spirometry and EBC (in asthmatics at T0 and T1). A liquid-chromatography-mass-spectrometry untargeted analysis was applied to EBC and a mass spectrometry-based target analysis to urine samples. RESULTS metabolomic analysis discriminated asthmatic (n = 26) from healthy children (n = 16) at T0 and T1, discovering 108 and 65 features relevant for the discrimination, respectively. Searching metabolomics databases, seven putative biomarkers with a plausible role in asthma biochemical-metabolic processes were found. After BDP treatment, asthmatic children, in the face of an improved asthma control (p < 0.001) and lung function (p = 0.01), showed neither changes in EBC metabolomic profile nor in urinary endogenous steroid profile. CONCLUSIONS "breathomics" can discriminate asthmatic from healthy children, with prostaglandin, fatty acid and glycerophospholipid as putative markers. The three-week course of BDP-in spite of a significant clinical improvement-was not associated with changes in EBC metabolic arrangement and urinary steroid profile.
Collapse
Affiliation(s)
- Valentina Agnese Ferraro
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Correspondence:
| | - Silvia Carraro
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
| | - Paola Pirillo
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Antonina Gucciardi
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Gabriele Poloniato
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Matteo Stocchero
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Giuseppe Giordano
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| | - Stefania Zanconato
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
| | - Eugenio Baraldi
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (S.C.); (P.P.); (A.G.); (G.P.); (M.S.); (G.G.); (S.Z.); (E.B.)
- Institute of Pediatric Research (IRP), Fondazione Città della Speranza, 35128 Padova, Italy
| |
Collapse
|
12
|
Zani C, Ceretti E, Zerbini I, Viola GCV, Donato F, Gelatti U, Feretti D. Comet Test in Saliva Leukocytes of Pre-School Children Exposed to Air Pollution in North Italy: The Respira Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3276. [PMID: 32397090 PMCID: PMC7246791 DOI: 10.3390/ijerph17093276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023]
Abstract
Air pollution is a well-known problem for human health, especially for children living in highly polluted urban areas. This study aimed to assess the relationship between airborne pollutants concentration and biomarkers of DNA damage in the buccal mucosa cells of pre-school children. DNA damage was investigated with comet test in saliva leukocytes taken from sputum of 3- to 6-year-old children living in Brescia, Northern Italy, collected during two consecutive winter seasons (2012-2013). The daily levels of PM10, PM2.5, NO2, CO, SO2, benzene and O3 in urban air were collected for the whole period. A questionnaire filled in by the children's parents was used to evaluate indoor and outdoor exposure. DNA damage in saliva leukocytes was evaluated in 152 children and the means of tail intensity and visual score as DNA damage were 6.2 ± 4.3 and 182.1 ± 30.9, respectively. No demographic and indoor or outdoor exposure variable was associated with the two measures of DNA damage. No significant association between air pollution and DNA damage in children's buccal leukocytes was found. In this study, the comet assay does not appear to be a valuable biomarker to detect DNA damage in children exposed to high levels of air pollutants, such as PM10, PM2.5 and NO2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy; (C.Z.); (E.C.); (I.Z.); (G.C.V.V.); (F.D.); (U.G.)
| |
Collapse
|
13
|
Licari A, Manti S, Castagnoli R, Leonardi S, Marseglia GL. Measuring inflammation in paediatric severe asthma: biomarkers in clinical practice. Breathe (Sheff) 2020; 16:190301. [PMID: 32494300 PMCID: PMC7249787 DOI: 10.1183/20734735.0301-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Severe asthma in children is a highly heterogeneous disorder, encompassing different clinical characteristics (phenotypes) and immunopathological pathways (endotypes). Research is focusing on the identification of noninvasive biomarkers able to predict treatment response and assist in designing personalised therapies for severe asthma. Blood and sputum eosinophils, serum IgE and exhaled nitric oxide fraction mostly reflect type 2 airway inflammation in children. However, in the absence of available point-of-care biomarkers, the diagnosis of non-type 2 asthma is still reached by exclusion. In this review, we present the most recent evidence on biomarkers for severe asthma and discuss their implementation in clinical practice. We address the methods for guiding treatment decisions and patient identification, focusing on the paediatric age group. KEY POINTS Severe asthma in children is a highly heterogeneous disorder, encompassing different clinical characteristics (phenotypes) and immunopathological pathways (endotypes).Research is focusing on the identification of noninvasive biomarkers able to predict treatment response and assist in designing personalised therapies for severe asthma.Blood and sputum eosinophils, serum IgE and exhaled nitric oxide fraction mostly reflect type 2 airway inflammation in children. However, knowledge regarding non-type 2 inflammation and related biomarkers is still lacking. EDUCATIONAL AIMS To summarise the most recent evidence on biomarkers for severe asthma in children.To discuss their implementation in clinical practice through guiding patient identification and treatment decisions.
Collapse
Affiliation(s)
- Amelia Licari
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
- These authors contributed equally
| | - Sara Manti
- Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- These authors contributed equally
| | - Riccardo Castagnoli
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Salvatore Leonardi
- Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Gian Luigi Marseglia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Ferraro VA, Zanconato S, Baraldi E, Carraro S. Nitric Oxide and Biological Mediators in Pediatric Chronic Rhinosinusitis and Asthma. J Clin Med 2019; 8:jcm8111783. [PMID: 31731479 PMCID: PMC6912805 DOI: 10.3390/jcm8111783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In the context of the so-called unified airway theory, chronic rhinosinusitis (CRS) and asthma may coexist. The inflammation underlying these conditions can be studied through the aid of biomarkers. Main body: We described the main biological mediators that have been studied in pediatric CRS and asthma, and, according to the available literature, we reported their potential role in the diagnosis and management of these conditions. As for CRS, we discussed the studies that investigated nasal nitric oxide (nNO), pendrin, and periostin. As for asthma, we discussed the role of fractional exhaled nitric oxide (feNO), the role of periostin, and that of biological mediators measured in exhaled breath condensate (EBC) and exhaled air (volatile organic compounds, VOCs). CONCLUSION Among non-invasive biomarkers, nNO seems the most informative in CRS and feNO in asthma. Other biological mediators seem promising, but further studies are needed before they can be applied in clinical practice.
Collapse
|