1
|
White B, Swietach P. What can we learn about acid-base transporters in cancer from studying somatic mutations in their genes? Pflugers Arch 2024; 476:673-688. [PMID: 37999800 PMCID: PMC11006749 DOI: 10.1007/s00424-023-02876-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Acidosis is a chemical signature of the tumour microenvironment that challenges intracellular pH homeostasis. The orchestrated activity of acid-base transporters of the solute-linked carrier (SLC) family is critical for removing the end-products of fermentative metabolism (lactate/H+) and maintaining a favourably alkaline cytoplasm. Given the critical role of pH homeostasis in enabling cellular activities, mutations in relevant SLC genes may impact the oncogenic process, emerging as negatively or positively selected, or as driver or passenger mutations. To address this, we performed a pan-cancer analysis of The Cancer Genome Atlas simple nucleotide variation data for acid/base-transporting SLCs (ABT-SLCs). Somatic mutation patterns of monocarboxylate transporters (MCTs) were consistent with their proposed essentiality in facilitating lactate/H+ efflux. Among all cancers, tumours of uterine corpus endometrial cancer carried more ABT-SLC somatic mutations than expected from median tumour mutation burden. Among these, somatic mutations in SLC4A3 had features consistent with meaningful consequences on cellular fitness. Definitive evidence for ABT-SLCs as 'cancer essential' or 'driver genes' will have to consider microenvironmental context in genomic sequencing because bulk approaches are insensitive to pH heterogeneity within tumours. Moreover, genomic analyses must be validated with phenotypic outcomes (i.e. SLC-carried flux) to appreciate the opportunities for targeting acid-base transport in cancers.
Collapse
Affiliation(s)
- Bobby White
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| |
Collapse
|
2
|
Stanescu S, Bravo-Alonso I, Belanger-Quintana A, Pérez B, Medina-Diaz M, Ruiz-Sala P, Flores NP, Buenache R, Arrieta F, Rodríguez-Pombo P. Mitochondrial bioenergetic is impaired in Monocarboxylate transporter 1 deficiency: a new clinical case and review of the literature. Orphanet J Rare Dis 2022; 17:243. [PMID: 35729663 PMCID: PMC9215049 DOI: 10.1186/s13023-022-02389-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background Monocarboxylate transporter 1 (MCT1) deficiency has recently been described as a rare cause of recurrent ketosis, the result of impaired ketone utilization in extrahepatic tissues. To date, only six patients with this condition have been identified, and clinical and biochemical details remain incomplete. Results The present work reports a patient suffering from severe, recurrent episodes of metabolic acidosis and psychomotor delay, showing a pathogenic loss-of-function variation c.747_750del in homozygosity in SLC16A1 (which codes for MCT1). Persistent ketotic and lactic acidosis was accompanied by an abnormal excretion of organic acids related to redox balance disturbances. Together with an altered bioenergetic profile detected in patient-derived fibroblasts, this suggests possible mitochondrial dysfunction. Brain MRI revealed extensive, diffuse bilateral, symmetric signal alterations for the subcortical white matter and basal ganglia, together with corpus callosum agenesia. Conclusions These findings suggest that the clinical spectrum of MCT1 deficiency not only involves recurrent atacks of ketoacidosis, but may also cause lactic acidosis and neuromotor delay with a distinctive neuroimaging pattern including agenesis of corpus callosum and other brain signal alterations. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02389-4.
Collapse
Affiliation(s)
- Sinziana Stanescu
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain.
| | - Irene Bravo-Alonso
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| | - Amaya Belanger-Quintana
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Belen Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| | - Montserrat Medina-Diaz
- Department of Neuroradiology, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| | - Nathaly Paola Flores
- Paediatric Department, Hospital General La Mancha Centro, Av. Constitución, 3, 13600, Alcázar de San Juan, Ciudad Real, Spain
| | - Raquel Buenache
- Neuropediatric Department, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Francisco Arrieta
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, CIBER-OBN, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Pilar Rodríguez-Pombo
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| |
Collapse
|
3
|
Alanazi IO, Alamery SF, Ebrahimie E, Mohammadi-Dehcheshmeh M. Splice-disrupt genomic variants in prostate cancer. Mol Biol Rep 2022; 49:4237-4246. [PMID: 35286517 PMCID: PMC9262760 DOI: 10.1007/s11033-022-07257-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022]
Abstract
Background Splice-disrupt genomic variants are one of the causes of cancer-causing errors in gene expression. Little is known about splice-disrupt genomic variants. Methods and results Here, pattern of splice-disrupt variants was investigated using 21,842,764 genomic variants in different types of prostate cancer. A particular attention was paid to genomic locations of splice-disrupt variants on target genes. HLA-A in prostate cancer, MSR1 in familial prostate cancer, and EGFR in both castration-resistant prostate cancer and metastatic castration-resistant had the highest allele frequencies of splice-disrupt variations. Some splice-disrupt variants, located on coding sequences of NCOR2, PTPRC, and CRP, were solely present in the advanced metastatic castration-resistant prostate cancer. High-risk splice-disrupt variants were identified based on computationally calculated Polymorphism Phenotyping (PolyPhen), Sorting Intolerant From Tolerant (SIFT), and Genomic Evolutionary Rate Profiling (GERP) + + scores as well as the recorded clinical significance in dbSNP database of NCBI. Functional annotation of damaging splice-disrupt variants highlighted important cancer-associated functions, including endocrine resistance, lipid metabolic process, steroid metabolic process, regulation of mitotic cell cycle, and regulation of metabolic process. This is the first study that profiles the splice-disrupt genomic variants and their target genes in prostate cancer. Literature mining based variant analysis highlighted the importance of rs1800716 variant, located on the CYP2D6 gene, involved in a range of important functions, such as RNA spicing, drug interaction, death, and urotoxicity. Conclusions This is the first study that profiles the splice-disrupt genomic variants and their target genes in different types of prostate cancer. Unravelling alternative splicing opens a new avenue towards the establishment of new diagnostic and prognostic markers for prostate cancer progression and metastasis. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07257-9.
Collapse
Affiliation(s)
- Ibrahim O. Alanazi
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Salman F. Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, VIC 3086 Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, 5371 Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - Manijeh Mohammadi-Dehcheshmeh
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, VIC 3086 Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, 5371 Australia
| |
Collapse
|
4
|
Maiorana A, Lepri FR, Novelli A, Dionisi-Vici C. Hypoglycaemia Metabolic Gene Panel Testing. Front Endocrinol (Lausanne) 2022; 13:826167. [PMID: 35422763 PMCID: PMC9001947 DOI: 10.3389/fendo.2022.826167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
A large number of inborn errors of metabolism present with hypoglycemia. Impairment of glucose homeostasis may arise from different biochemical pathways involving insulin secretion, fatty acid oxidation, ketone bodies formation and degradation, glycogen metabolism, fructose and galactose metabolism, branched chain aminoacids and tyrosine metabolism, mitochondrial function and glycosylation proteins mechanisms. Historically, genetic analysis consisted of highly detailed molecular testing of nominated single genes. However, more recently, the genetic heterogeneity of these conditions imposed to perform extensive molecular testing within a useful timeframe via new generation sequencing technology. Indeed, the establishment of a rapid diagnosis drives specific nutritional and medical therapies. The biochemical and clinical phenotypes are critical to guide the molecular analysis toward those clusters of genes involved in specific pathways, and address data interpretation regarding the finding of possible disease-causing variants at first reported as variants of uncertain significance in known genes or the discovery of new disease genes. Also, the trio's analysis allows genetic counseling for recurrence risk in further pregnancies. Besides, this approach is allowing to expand the phenotypic characterization of a disease when pathogenic variants give raise to unexpected clinical pictures. Multidisciplinary input and collaboration are increasingly key for addressing the analysis and interpreting the significance of the genetic results, allowing rapidly their translation from bench to bedside.
Collapse
Affiliation(s)
- Arianna Maiorana
- Division of Metabolism, Department of Pediatrics Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
- *Correspondence: Arianna Maiorana,
| | - Francesca Romana Lepri
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unity, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatrics Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| |
Collapse
|
5
|
Mir A, Almudhry M, Alghamdi F, Albaradie R, Ibrahim M, Aldurayhim F, Alhedaithy A, Alamr M, Bawazir M, Mohammad S, Abdelhay S, Bashir S, Housawi Y. SLC gene mutations and pediatric neurological disorders: diverse clinical phenotypes in a Saudi Arabian population. Hum Genet 2021; 141:81-99. [PMID: 34797406 DOI: 10.1007/s00439-021-02404-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
The uptake and efflux of solutes across a plasma membrane is controlled by transporters. There are two main superfamilies of transporters, adenosine 5'-triphosphate (ATP) binding cassettes (ABCs) and solute carriers (SLCs). In the brain, SLC transporters are involved in transporting various solutes across the blood-brain barrier, blood-cerebrospinal fluid barrier, astrocytes, neurons, and other brain cell types including oligodendrocytes and microglial cells. SLCs play an important role in maintaining normal brain function. Hence, mutations in the genes that encode SLC transporters can cause a variety of neurological disorders. We identified the following SLC gene variants in 25 patients in our cohort: SLC1A2, SLC2A1, SLC5A1, SLC6A3, SLC6A5, SLC6A8, SLC9A6, SLC9A9, SLC12A6, SLC13A5, SLC16A1, SLC17A5, SLC19A3, SLC25A12, SLC25A15, SLC27A4, SLC45A1, SLC46A1, and SLC52A3. Eight patients harbored pathogenic or likely pathogenic mutations (SLC5A1, SLC9A6, SLC12A6, SLC16A1, SLC19A3, and SLC52A3), and 12 patients were found to have variants of unknown clinical significance (VOUS); these variants occurred in 11 genes (SLC1A2, SLC2A1, SLC6A3, SLC6A5, SLC6A8, SLC9A6, SLC9A9, SLC13A5, SLC25A12, SLC27A4, and SLC45A1). Five patients were excluded as they were carriers. In the remaining 20 patients with SLC gene variants, we identified 16 possible distinct neurological disorders. Based on the clinical presentation, we categorized them into genes causing intellectual delay (ID) or autism spectrum disorder (ASD), those causing epilepsy, those causing vitamin-related disorders, and those causing other neurological diseases. Several variants were detected that indicated possible personalized therapies: SLC2A1 led to dystonia or epilepsy, which can be treated with a ketogenic diet; SLC6A3 led to infantile parkinsonism-dystonia 1, which can be treated with levodopa; SLC6A5 led to hyperekplexia 3, for which unnecessary treatment with antiepileptic drugs should be avoided; SLC6A8 led to creatine deficiency syndrome type 1, which can be treated with creatine monohydrate; SLC16A1 led to monocarboxylate transporter 1 deficiency, which causes seizures that should not be treated with a ketogenic diet; SLC19A3 led to biotin-thiamine-responsive basal ganglia disease, which can be treated with biotin and thiamine; and SLC52A3 led to Brown-Vialetto-Van-Laere syndrome 1, which can be treated with riboflavin. The present study examines the prevalence of SLC gene mutations in our cohort of children with epilepsy and other neurological disorders. It highlights the diverse phenotypes associated with mutations in this large family of SLC transporter proteins, and an opportunity for personalized genomics and personalized therapeutics.
Collapse
Affiliation(s)
- Ali Mir
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia.
| | - Montaha Almudhry
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Fouad Alghamdi
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Raidah Albaradie
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Mona Ibrahim
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Fatimah Aldurayhim
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Abdullah Alhedaithy
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Mushari Alamr
- Genetic and Metabolic Department, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Maryam Bawazir
- Genetic and Metabolic Department, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Sahar Mohammad
- Department of Pediatric, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Salma Abdelhay
- Department of Pediatric, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Shahid Bashir
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Yousef Housawi
- Genetic and Metabolic Department, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Drachmann D, Hoffmann E, Carrigg A, Davis-Yates B, Weaver V, Thornton P, Weinstein DA, Petersen JS, Shah P, Christesen HT. Towards enhanced understanding of idiopathic ketotic hypoglycemia: a literature review and introduction of the patient organization, Ketotic Hypoglycemia International. Orphanet J Rare Dis 2021; 16:173. [PMID: 33849624 PMCID: PMC8045369 DOI: 10.1186/s13023-021-01797-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic Ketotic hypoglycemia (IKH) is a diagnosis of exclusion. Although considered as the most frequent cause of hypoglycemia in childhood, little progress has been made to advance the understanding of IKH since the medical term was coined in 1964. We aimed to review the literature on ketotic hypoglycemia (KH) and introduce a novel patient organization, Ketotic Hypoglycemia International (KHI). RESULTS IKH may be diagnosed after the exclusion of various metabolic and hormonal diseases with KH. Although often mild and self-limiting, more severe and long-lasting IKH occurs. We therefore divide IKH in physiological KH and pathological KH, the latter defined as recurrent symptomatic, or occasionally symptomatic, episodes with beta-hydroxybutyrate ≥ 1.0 mmol/L and blood glucose < 70 mg/dL (3.9 mol/L), in the absence of prolonged fasting, acute infections and chronic diseases known to cause KH. Pathological KH may represent undiscovered diseases, e.g. glycogen storage disease IXa, Silver-Russel syndrome, and ketone transporter defects, or suggested novel disease entities identified by exome sequencing. The management of KH aims to prevent hypoglycemia, fatty acid oxidation and protein deficiency by supplying adequate amounts of carbohydrates and protein, including nutritional therapy, uncooked cornstarch, and sometimes continuous tube feeding by night. Still, intravenous dextrose may be needed in acute KH episodes. Failure to acknowledge that IKH can be more than normal variation may lead to under-treatment. KHI is a non-profit, patient-centric, global organization established in 2020. The organization was created by adult IKH patients, patient family members, and volunteers. The mission of KHI is to enhance the understanding of IKH while advocating for patients, their families and the continued research into KH. CONCLUSION IKH is a heterogeneous disorder including physiological KH and pathological KH. IKH may represent missed diagnoses or novel disease entities, but shares common management principles to prevent fatty acid oxygenation. KHI, a novel patient organization, aims to enhance the understanding of IKH by supporting IKH families and research into IKH.
Collapse
Affiliation(s)
| | - Erica Hoffmann
- Ketotic Hypoglycemia International (KHI), Skanderborg, Denmark
| | - Austin Carrigg
- Ketotic Hypoglycemia International (KHI), Skanderborg, Denmark
| | - Beccie Davis-Yates
- Ketotic Hypoglycemia International (KHI), Skanderborg, Denmark.,School of Social Science, Nottingham Institute of Education, Nottingham, UK
| | - Valerie Weaver
- Ketotic Hypoglycemia International (KHI), Skanderborg, Denmark
| | | | - David A Weinstein
- Glycogen Storage Disease Program, University of Connecticut, Farmington, CT, USA
| | | | - Pratik Shah
- Endocrinology Department, The Royal London Children's Hospital, Barts Health NHS Trust and Queen Mary University London, London, UK
| | - Henrik Thybo Christesen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark. .,Hans Christian Andersen Children's Hospital and Steno Diabetes Centre Odense, Odense University Hospital, JB Windsloews Vej 4, 5000, Odense C, Denmark.
| |
Collapse
|
7
|
Peng D, Li H, Hu B, Zhang H, Chen L, Lin S, Zuo Z, Xue Y, Ren J, Xie Y. PTMsnp: A Web Server for the Identification of Driver Mutations That Affect Protein Post-translational Modification. Front Cell Dev Biol 2020; 8:593661. [PMID: 33240890 PMCID: PMC7683509 DOI: 10.3389/fcell.2020.593661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
High-throughput sequencing technologies have identified millions of genetic mutations in multiple human diseases. However, the interpretation of the pathogenesis of these mutations and the discovery of driver genes that dominate disease progression is still a major challenge. Combining functional features such as protein post-translational modification (PTM) with genetic mutations is an effective way to predict such alterations. Here, we present PTMsnp, a web server that implements a Bayesian hierarchical model to identify driver genetic mutations targeting PTM sites. PTMsnp accepts genetic mutations in a standard variant call format or tabular format as input and outputs several interactive charts of PTM-related mutations that potentially affect PTMs. Additional functional annotations are performed to evaluate the impact of PTM-related mutations on protein structure and function, as well as to classify variants relevant to Mendelian disease. A total of 4,11,574 modification sites from 33 different types of PTMs and 1,776,848 somatic mutations from TCGA across 33 different cancer types are integrated into the web server, enabling identification of candidate cancer driver genes based on PTM. Applications of PTMsnp to the cancer cohorts and a GWAS dataset of type 2 diabetes identified a set of potential drivers together with several known disease-related genes, indicating its reliability in distinguishing disease-related mutations and providing potential molecular targets for new therapeutic strategies. PTMsnp is freely available at: http://ptmsnp.renlab.org.
Collapse
Affiliation(s)
- Di Peng
- Precision Medicine Institute, The First Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huiqin Li
- Precision Medicine Institute, The First Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bosu Hu
- Precision Medicine Institute, The First Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongwan Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li Chen
- Precision Medicine Institute, The First Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaofeng Lin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Ren
- Precision Medicine Institute, The First Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- Precision Medicine Institute, The First Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Bosshart PD, Charles RP, Garibsingh RAA, Schlessinger A, Fotiadis D. SLC16 Family: From Atomic Structure to Human Disease. Trends Biochem Sci 2020; 46:28-40. [PMID: 32828650 DOI: 10.1016/j.tibs.2020.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
The solute carrier 16 (SLC16) family represents a diverse group of membrane proteins mediating the transport of monocarboxylates across biological membranes. Family members show a variety of functional roles ranging from nutrient transport and intracellular pH regulation to thyroid hormone homeostasis. Changes in the expression levels and transport function of certain SLC16 transporters are manifested in severe health disorders including cancer, diabetes, and neurological disorders. L-Lactate-transporting SLC16 family members play essential roles in the metabolism of certain tumors and became validated drug targets. This review illuminates the SLC16 family under a new light using structural information obtained from a SLC16 homolog. Furthermore, the role of these transporters in cancer metabolism and how their inhibition can contribute to anticancer therapy are discussed.
Collapse
Affiliation(s)
- Patrick D Bosshart
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Roch-Philippe Charles
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Rachel-Ann A Garibsingh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
9
|
Nicolas-Jilwan M, Medlej R, Sulaiman RA, AlSayed M. The neuroimaging findings of monocarboxylate transporter 1 deficiency. Neuroradiology 2020; 62:891-894. [PMID: 32318771 DOI: 10.1007/s00234-020-02435-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/13/2020] [Indexed: 11/26/2022]
Abstract
Monocarboxylate transporter 1 (MCT1) deficiency was first described in 2014 by Hasselt et al. as a novel genetic cause of recurrent ketoacidosis. Patients present in the first year of life with acute episodes of ketoacidosis triggered by fasting or infections. Patients with homozygous mutations are known to have a more severe phenotype with mild to moderate developmental delay and an increased prevalence of epilepsy. There is only one recent report of the neuroimaging findings of this disorder as reported by Al-Khawaga et al. (Front Pediatr. 7:299, 2019). We report the neuroimaging abnormalities in two siblings with similar clinical presentation of recurrent ketoacidosis, seizures, and developmental delay. Whole exome sequencing in the younger sibling confirmed a known pathogenic homozygous mutation in MCT1, also known as SLC16A1 gene. Brain MRI showed a similar very distinctive pattern of signal abnormality at the gray-white matter junction, basal ganglia, and thalami in both patients. Both siblings had agenesis of the corpus callosum. Knowledge of this pattern of brain involvement might contribute to an earlier diagnosis and timely management of this rare and under recognized disorder.
Collapse
Affiliation(s)
- Manal Nicolas-Jilwan
- Division of Neuroradiology, Department of Radiology, King Faisal Specialist Hospital and Research Centre, Al Zahrawi Street, Riyadh, 11211, Saudi Arabia.
| | - Rita Medlej
- Department of Endocrinology, Hotel-Dieu de France Hospital, Alfred Naccache Boulevard, Beirut, Lebanon
| | - Raashda A Sulaiman
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Al Zahrawi Street, Riyadh, 11211, Saudi Arabia
| | - Moeenaldeen AlSayed
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Al Zahrawi Street, Riyadh, 11211, Saudi Arabia
| |
Collapse
|