1
|
Butson C, Ntekim N, Acord S, Marks W. Genetic Panel Reveals Coexisting Neuromuscular Disorders in Patients With Duchenne Muscular Dystrophy. J Child Neurol 2025; 40:83-90. [PMID: 39429168 DOI: 10.1177/08830738241284683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Duchenne muscular dystrophy is a genetically based neuromuscular disorder characterized by progressive physical impairment and cardiomyopathy in children, leading to fatal cardiac or respiratory failure. Duchenne muscular dystrophy shares some overlapping clinical features with other disorders, complicating clinical differentiation. We hypothesized that some Duchenne muscular dystrophy patients may have a secondary neuromuscular disorders that could negatively skew data during pharmaceutical clinical trials and lead to incomplete treatment plans. Consecutive genetic panels on 353 patients were reviewed. Thirty-two (32; 9.1%) patients with Duchenne muscular dystrophy were identified. Three (3; 9.4%) were found to have at least 1 genetically confirmed secondary neuromuscular disorder. Overlooking these coexisting disorders could lead to unexpected treatment failures, potentially affecting medication efficacy in trials or commercial use. Secondary neuromuscular disorders should be considered in Duchenne muscular dystrophy patients before clinical trial enrollment or treatment planning, with expanded genetic testing, such as whole exome sequencing or whole genome sequencing, likely to reveal even more secondary disorders.
Collapse
Affiliation(s)
- Carter Butson
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA
| | - Nedeke Ntekim
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA
| | - Stephanie Acord
- Department of Neurology, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Warren Marks
- Department of Neurology, Cook Children's Medical Center, Fort Worth, TX, USA
| |
Collapse
|
2
|
Wijekoon N, Gonawala L, Ratnayake P, Liyanage R, Amaratunga D, Hathout Y, Steinbusch HWM, Dalal A, Hoffman EP, de Silva KRD. Title-molecular diagnostics of dystrophinopathies in Sri Lanka towards phenotype predictions: an insight from a South Asian resource limited setting. Eur J Med Res 2024; 29:37. [PMID: 38195599 PMCID: PMC10775540 DOI: 10.1186/s40001-023-01600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The phenotype of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) patients is determined by the type of DMD gene variation, its location, effect on reading frame, and its size. The primary objective of this investigation was to determine the frequency and distribution of DMD gene variants (deletions/duplications) in Sri Lanka through the utilization of a combined approach involving multiplex polymerase chain reaction (mPCR) followed by Multiplex Ligation Dependent Probe Amplification (MLPA) and compare to the international literature. The current consensus is that MLPA is a labor efficient yet expensive technique for identifying deletions and duplications in the DMD gene. METHODOLOGY Genetic analysis was performed in a cohort of 236 clinically suspected pediatric and adult myopathy patients in Sri Lanka, using mPCR and MLPA. A comparative analysis was conducted between our findings and literature data. RESULTS In the entire patient cohort (n = 236), mPCR solely was able to identify deletions in the DMD gene in 131/236 patients (DMD-120, BMD-11). In the same cohort, MLPA confirmed deletions in 149/236 patients [DMD-138, BMD -11]. These findings suggest that mPCR has a detection rate of 95% (131/138) among all patients who received a diagnosis. The distal and proximal deletion hotspots for DMD were exons 45-55 and 6-15. Exon 45-60 identified as a novel in-frame variation hotspot. Exon 45-59 was a hotspot for BMD deletions. Comparisons with the international literature show significant variations observed in deletion and duplication frequencies in DMD gene across different populations. CONCLUSION DMD gene deletions and duplications are concentrated in exons 45-55 and 2-20 respectively, which match global variation hotspots. Disparities in deletion and duplication frequencies were observed when comparing our data to other Asian and Western populations. Identified a 95% deletion detection rate for mPCR, making it a viable initial molecular diagnostic approach for low-resource countries where MLPA could be used to evaluate negative mPCR cases and cases with ambiguous mutation borders. Our findings may have important implications in the early identification of DMD with limited resources in Sri Lanka and to develop tailored molecular diagnostic algorithms that are regional and population specific and easily implemented in resource limited settings.
Collapse
Affiliation(s)
- Nalaka Wijekoon
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | - Lakmal Gonawala
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | | | - Roshan Liyanage
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | | | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - Harry W M Steinbusch
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Eric P Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, 13902, USA
| | - K Ranil D de Silva
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200, Maastricht, The Netherlands.
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana, 10390, Sri Lanka.
| |
Collapse
|
3
|
Ahuja M, Gulati R, Bose T, Katoch N, Pandit S. A rare case of dystrophinopathy: Duchenne muscular dystrophy–Becker muscular dystrophy intermediate complex. JOURNAL OF MEDICINE IN SCIENTIFIC RESEARCH 2022. [DOI: 10.4103/jmisr.jmisr_9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
|