1
|
Thangaraj A, Tyagi R, Suri D, Gupta S. Infections in Disorders of Immune Regulation. Pathogens 2024; 13:259. [PMID: 38535602 PMCID: PMC10976012 DOI: 10.3390/pathogens13030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 02/11/2025] Open
Abstract
Primary immune regulatory disorders (PIRDs) constitute a spectrum of inborn errors of immunity (IEIs) that are primarily characterized by autoimmunity, lymphoproliferation, atopy, and malignancy. In PIRDs, infections are infrequent compared to other IEIs. While susceptibility to infection primarily stems from antibody deficiency, it is sometimes associated with additional innate immune and T or NK cell defects. The use of immunotherapy and chemotherapy further complicates the immune landscape, increasing the risk of diverse infections. Recurrent sinopulmonary infections, particularly bacterial infections such as those associated with staphylococcal and streptococcal organisms, are the most reported infectious manifestations. Predisposition to viral infections, especially Epstein-Barr virus (EBV)-inducing lymphoproliferation and malignancy, is also seen. Notably, mycobacterial and invasive fungal infections are rarely documented in these disorders. Knowledge about the spectrum of infections in these disorders would prevent diagnostic delays and prevent organ damage. This review delves into the infection profile specific to autoimmune lymphoproliferative syndrome (ALPS), Tregopathies, and syndromes with autoimmunity within the broader context of PIRD. Despite the critical importance of understanding the infectious aspects of these disorders, there remains a scarcity of comprehensive reports on this subject.
Collapse
Affiliation(s)
- Abarna Thangaraj
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Reva Tyagi
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Deepti Suri
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA;
| |
Collapse
|
2
|
Lucas CL. Human genetic errors of immunity illuminate an adaptive arsenal model of rapid defenses. Trends Immunol 2024; 45:113-126. [PMID: 38302340 DOI: 10.1016/j.it.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
New discoveries in the field of human monogenic immune diseases highlight critical genes and pathways governing immune responses. Here, I describe how the ~500 currently defined human inborn errors of immunity help shape what I propose is an 'adaptive arsenal model of rapid defenses', emphasizing the set of immunological defenses poised for rapid responses in the natural environment. This arsenal blurs the lines between innate and adaptive immunity and is established through molecular relays between cell types, often traversing from sensors (pathogen detection) to intermediates to executioners (pathogen clearance) via soluble factors. Predictions and missing information based on the adaptive arsenal model are discussed, as are emergent and outstanding questions fundamental to advances in the field.
Collapse
Affiliation(s)
- Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Uzel G, Keller B, Warnatz K. Hypogammaglobulinemia and immune dysregulation-not just 2 sides of a coin. J Allergy Clin Immunol 2024; 153:90-92. [PMID: 37984800 DOI: 10.1016/j.jaci.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Affiliation(s)
- Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Immunology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Tessarin G, Baronio M, Lougaris V. Monogenic forms of common variable immunodeficiency and implications on target therapeutic approaches. Curr Opin Allergy Clin Immunol 2023; 23:461-466. [PMID: 37767915 PMCID: PMC10621638 DOI: 10.1097/aci.0000000000000947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW Common variable immunodeficiency (CVID) is the most common symptomatic inborn error of immunity. The disorder is characterized by variable clinical and immunological manifestations, and, in a small minority of patients, a monogenic cause may be identified. In this review, we focalized on three different monogenic forms of CVID-like disease. RECENT FINDINGS Activated phosphoinositide 3-kinase delta syndrome (APDS) is a rare disorder characterized by hyperactivated class I phosphatidylinositol-3 kinase (PI3K) pathway. Affected patients present with respiratory infectious episodes, impaired viral clearance and lymphoproliferation. Recently, a direct PI3K inhibitor has been approved and it showed encouraging results both in controlling clinical and immunological manifestations of the disease. On the other hand, patients with defects in CTLA-4 or LRBA gene present with life-threatening immune dysregulation, autoimmunity and lymphocytic infiltration of multiple organs. Abatacept, a soluble cytotoxic T lymphocyte antigen 4 (CTLA-4) fusion protein that acts as a costimulation modulator, has been widely implemented for affected patients with good results as bridge treatment. SUMMARY Understanding the biological basis of CVID is important not only for enriching our knowledge of the human immune system, but also for setting the basis for potential targeted treatments in this disorder.
Collapse
Affiliation(s)
- Giulio Tessarin
- Pediatrics Clinic and Institute for Molecular Medicine 'A. Nocivelli', Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | | | | |
Collapse
|
5
|
Peng X, Kaviany S. Approach to Diagnosing Inborn Errors of Immunity. Rheum Dis Clin North Am 2023; 49:731-739. [PMID: 37821192 DOI: 10.1016/j.rdc.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Inborn errors of immunity are now understood to encompass manifold features including but not limited to immunodeficiency, autoimmunity, autoinflammation, atopy, bone marrow defects, and/or increased malignancy risk. As such, it is essential to maintain a high index of suspicion, as these disorders are not limited to specific demographics such as children or those with recurrent infections. Clinical presentations and standard immunophenotyping are informative for suggesting potential underlying etiologies, but integration of data from multimodal approaches including genomics is often required to achieve diagnosis.
Collapse
Affiliation(s)
- Xiao Peng
- McKusick-Nathans, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Blalock 1008, Baltimore, MD 21287, USA
| | - Saara Kaviany
- The University of Chicago & Biological Sciences, Department of Pediatrics, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Tsilifis C, Slatter MA, Gennery AR. Too much of a good thing: a review of primary immune regulatory disorders. Front Immunol 2023; 14:1279201. [PMID: 38022498 PMCID: PMC10645063 DOI: 10.3389/fimmu.2023.1279201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Primary immune regulatory disorders (PIRDs) are inborn errors of immunity caused by a loss in the regulatory mechanism of the inflammatory or immune response, leading to impaired immunological tolerance or an exuberant inflammatory response to various stimuli due to loss or gain of function mutations. Whilst PIRDs may feature susceptibility to recurrent, severe, or opportunistic infection in their phenotype, this group of syndromes has broadened the spectrum of disease caused by defects in immunity-related genes to include autoimmunity, autoinflammation, lymphoproliferation, malignancy, and allergy; increasing focus on PIRDs has thus redefined the classical 'primary immunodeficiency' as one aspect of an overarching group of inborn errors of immunity. The growing number of genetic defects associated with PIRDs has expanded our understanding of immune tolerance mechanisms and prompted identification of molecular targets for therapy. However, PIRDs remain difficult to recognize due to incomplete penetrance of their diverse phenotype, which may cross organ systems and present to multiple clinical specialists prior to review by an immunologist. Control of immune dysregulation with immunosuppressive therapies must be balanced against the enhanced infective risk posed by the underlying defect and accumulated end-organ damage, posing a challenge to clinicians. Whilst allogeneic hematopoietic stem cell transplantation may correct the underlying immune defect, identification of appropriate patients and timing of transplant is difficult. The relatively recent description of many PIRDs and rarity of individual genetic entities that comprise this group means data on natural history, clinical progression, and treatment are limited, and so international collaboration will be needed to better delineate phenotypes and the impact of existing and potential therapies. This review explores pathophysiology, clinical features, current therapeutic strategies for PIRDs including cellular platforms, and future directions for research.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary A. Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R. Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Mangodt TC, Vanden Driessche K, Norga KK, Moes N, De Bruyne M, Haerynck F, Bordon V, Jansen AC, Jonckheere AI. Central nervous system manifestations of LRBA deficiency: case report of two siblings and literature review. BMC Pediatr 2023; 23:353. [PMID: 37443020 PMCID: PMC10339488 DOI: 10.1186/s12887-023-04182-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND LPS-responsive beige-like anchor protein (LRBA) deficiency is a primary immunodeficiency disease (PID) characterized by a regulatory T cell defect resulting in immune dysregulation and autoimmunity. We present two siblings born to consanguineous parents of North African descent with LRBA deficiency and central nervous system (CNS) manifestations. As no concise overview of these manifestations is available in literature, we compared our patient's presentation with a reviewed synthesis of the available literature. CASE PRESENTATIONS The younger brother presented with enteropathy at age 1.5 years, and subsequently developed Evans syndrome and diabetes mellitus. These autoimmune manifestations led to the genetic diagnosis of LRBA deficiency through whole exome sequencing with PID gene panel. At 11 years old, he had two tonic-clonic seizures. Brain MRI showed multiple FLAIR-hyperintense lesions and a T2-hyperintense lesion of the cervical medulla. His sister presented with immune cytopenia at age 9 years, and developed diffuse lymphadenopathy and interstitial lung disease. Genetic testing confirmed the same mutation as her brother. At age 13 years, a brain MRI showed multiple T2-FLAIR-hyperintense lesions. She received an allogeneic hematopoietic stem cell transplantation (allo-HSCT) 3 months later. Follow-up MRI showed regression of these lesions. CONCLUSIONS Neurological disease is documented in up to 25% of patients with LRBA deficiency. Manifestations range from cerebral granulomas to acute disseminating encephalomyelitis, but detailed descriptions of neurological and imaging phenotypes are lacking. LRBA deficiency amongst other PIDs should be part of the differential diagnosis in patients with inflammatory brain lesions. We strongly advocate for a more detailed description of CNS manifestations in patients with LRBA deficiency, when possible with MR imaging. This will aid clinical decision concerning both anti-infectious and anti-inflammatory therapy and in considering the indication for allo-HSCT.
Collapse
Affiliation(s)
- T C Mangodt
- Division of Pediatric Neurology, Department of Pediatrics, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium.
| | - K Vanden Driessche
- Pediatric Infectious Diseases, Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - K K Norga
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - N Moes
- Division of Pediatric Gastro-Enterology, Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - M De Bruyne
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - F Haerynck
- Department of Pediatric Immunology and Pulmonology, Ghent University Hospital, Ghent, Belgium
| | - V Bordon
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - A C Jansen
- Division of Pediatric Neurology, Department of Pediatrics, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - A I Jonckheere
- Division of Pediatric Neurology, Department of Pediatrics, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| |
Collapse
|
8
|
Yuan Z, Zhong Y, Hu H, Zhang W, Wang G. DEF6 has potential to be a biomarker for cancer prognosis: A pan-cancer analysis. Front Oncol 2023; 12:1064376. [PMID: 36686789 PMCID: PMC9848736 DOI: 10.3389/fonc.2022.1064376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction DEF6 is a gene associated with the immune system and is thought to play a crucial role in autoimmunity. There are few DEF6-related studies in cancer, and it is assumed that DEF6 is a proto-oncogene. There is currently no pan-cancer analysis of DEF6, and we performed a systematic and comprehensive pan-cancer analysis of DEF6 in an attempt to reveal its role and function in cancer. Methods The data were analyzed by mining databases available to the public and by using R software. Moreover, immunohistochemistry was used to validate the results. Results Our results revealed that DEF6 is commonly aberrantly expressed in cancer and its expression is strongly correlated with survival prognosis in a variety of cancer types. Through correlation analysis we found that DEF6 was associated with multiple immune genes and was closely related to immune infiltration. In the enrichment analysis, DEF6 may have cross-talk with multiple cancer pathways and exert oncogenic or pro-cancer functions. In addition, we collected pathological samples from colorectal cancer patients for immunohistochemical analysis and found that patients with higher immunohistochemical scores had more lymph node metastases, higher CA199, and bigger tumor size. Discussion Overall, DEF6 expression is closely related to cancers and has the potential to act as a cancer biomarker.
Collapse
|
9
|
Margarit-Soler A, Deyà-Martínez À, Canizales JT, Vlagea A, García-García A, Marsal J, Del Castillo MT, Planas S, Simó S, Esteve-Sole A, Grande MSL, Badell I, Tarrats MR, Fernández-Avilés F, Alsina L. Case report: Challenges in immune reconstitution following hematopoietic stem cell transplantation for CTLA-4 insufficiency-like primary immune regulatory disorders. Front Immunol 2022; 13:1070068. [PMID: 36636328 PMCID: PMC9831655 DOI: 10.3389/fimmu.2022.1070068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
Cytotoxic T-lymphocyte antigen-4 (CTLA-4) haploinsufficiency is a T-cell hyperactivation disorder that can manifest with both immunodeficiency and immune dysregulation. Approximately one-third of patients may present mild symptoms and remain stable under supportive care. The remaining patients may develop severe multiorgan autoimmunity requiring lifelong immunosuppressive treatment. Hematopoietic stem cell transplantation (HSCT) is potentially curable for patients with treatment-resistant immune dysregulation. Nevertheless, little experience is reported regarding the management of complications post-HSCT. We present case 1 (CTLA-4 haploinsufficiency) and case 2 (CTLA-4 insufficiency-like phenotype) manifesting with severe autoimmunity including cytopenia and involvement of the central nervous system (CNS), lung, and gut and variable impairment of humoral responses. Both patients underwent HSCT for which the main complications were persistent mixed chimerism, infections, and immune-mediated complications [graft-versus-host disease (GVHD) and nodular lung disease]. Detailed management and outcomes of therapeutic interventions post-HSCT are discussed. Concretely, post-HSCT abatacept and human leukocyte antigen (HLA)-matched sibling donor lymphocyte infusions may be used to increase T-cell donor chimerism with the aim of correcting the immune phenotype of CTLA-4 haploinsufficiency.
Collapse
Affiliation(s)
- Adriana Margarit-Soler
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain,*Correspondence: Adriana Margarit-Soler, ; Laia Alsina,
| | - Àngela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Juan Torres Canizales
- Clinical Immunology Unit, Department of Immunology, Biomedical Diagnostic Center, Hospital Clínic of Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Department of Immunology, Biomedical Diagnostic Center, Hospital Clínic of Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana García-García
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Júlia Marsal
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Sílvia Planas
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Sílvia Simó
- Infectious Diseases Unit, Department of Pediatrics, Hospital Sant Joan de Déu, Barcelona, Spain,Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ana Esteve-Sole
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - María Suárez-Lledó Grande
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain,Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Badell
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain,Pediatric Haematology and Stem Cell Transplantation Unit, Pediatric Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Rovira Tarrats
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain,Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Francesc Fernández-Avilés
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain,Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain,*Correspondence: Adriana Margarit-Soler, ; Laia Alsina,
| |
Collapse
|
10
|
Ballow M, Sánchez-Ramón S, Walter JE. Secondary Immune Deficiency and Primary Immune Deficiency Crossovers: Hematological Malignancies and Autoimmune Diseases. Front Immunol 2022; 13:928062. [PMID: 35924244 PMCID: PMC9340211 DOI: 10.3389/fimmu.2022.928062] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022] Open
Abstract
Primary immunodeficiencies (PIDs), a heterogenous group of inborn errors of immunity, are predetermined at birth but may evolve with age, leading to a variable clinical and laboratory presentation. In contrast, secondary immunodeficiencies (SIDs) are acquired declines of immune cell counts and or/function. The most common type of SID is a decreased antibody level occurring as a consequence of extrinsic influences, such as an underlying condition or a side effect of some medications used to treat hematological malignancies and autoimmune disorders. Paradoxically, immune deficiencies initially attributed to secondary causes may partly be due to an underlying PID. Therefore, in the era of immune-modulating biologicals, distinguishing between primary and secondary antibody deficiencies is of great importance. It can be difficult to unravel the relationship between PID, SID and hematological malignancy or autoimmunity in the clinical setting. This review explores SID and PID crossovers and discusses challenges to diagnosis and treatment strategies. The case of an immunodeficient patient with follicular lymphoma treated with rituximab illustrates how SID in the setting of hematological cancer can mask an underlying PID, and highlights the importance of screening such patients. The risk of hematological cancer is increased in PID: for example, lymphomas in PID may be driven by infections such as Epstein-Barr virus, and germline mutations associated with PID are enriched among patients with diffuse large B-cell lymphoma. Clues suggesting an increased risk of hematological malignancy in patients with common variable immune deficiency (CVID) are provided, as well as pointers for distinguishing PID versus SID in lymphoma patients. Two cases of patients with autoimmune disorders illustrate how an apparent rituximab-induced antibody deficiency can be connected to an underlying PID. We highlight that PID is increasingly recognized among patients with autoimmune cytopenias, and provide guidance on how to identify PID and distinguish it from SID in such patients. Overall, healthcare professionals encountering patients with malignancy and/or autoimmunity who have post-treatment complications of antibody deficiencies or other immune abnormalities need to be aware of the possibility of PID or SID and how to differentiate them.
Collapse
Affiliation(s)
- Mark Ballow
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida at Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
| | - Silvia Sánchez-Ramón
- Department of Immunology, Hospital Clínico San Carlos, Instituto de Medicina del Laboratorio (IML), Complutense University of Madrid, Madrid, Spain
| | - Jolan E. Walter
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida at Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
- Division of Pediatric Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Cortesi M, Soresina A, Dotta L, Gorio C, Cattalini M, Lougaris V, Porta F, Badolato R. Pathogenesis of Autoimmune Cytopenias in Inborn Errors of Immunity Revealing Novel Therapeutic Targets. Front Immunol 2022; 13:846660. [PMID: 35464467 PMCID: PMC9019165 DOI: 10.3389/fimmu.2022.846660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Autoimmune diseases are usually associated with environmental triggers and genetic predisposition. However, a few number of autoimmune diseases has a monogenic cause, mostly in children. These diseases may be the expression, isolated or associated with other symptoms, of an underlying inborn error of immunity (IEI). Autoimmune cytopenias (AICs), including immune thrombocytopenic purpura (ITP), autoimmune hemolytic anemia (AIHA), autoimmune neutropenia (AN), and Evans’ syndrome (ES) are common presentations of immunological diseases in the pediatric age, with at least 65% of cases of ES genetically determined. Autoimmune cytopenias in IEI have often a more severe, chronic, and relapsing course. Treatment refractoriness also characterizes autoimmune cytopenia with a monogenic cause, such as IEI. The mechanisms underlying autoimmune cytopenias in IEI include cellular or humoral autoimmunity, immune dysregulation in cases of hemophagocytosis or lymphoproliferation with or without splenic sequestration, bone marrow failure, myelodysplasia, or secondary myelosuppression. Genetic characterization of autoimmune cytopenias is of fundamental importance as an early diagnosis improves the outcome and allows the setting up of a targeted therapy, such as CTLA-4 IgG fusion protein (Abatacept), small molecule inhibitors (JAK-inhibitors), or gene therapy. Currently, gene therapy represents one of the most attractive targeted therapeutic approaches to treat selected inborn errors of immunity. Even in the absence of specific targeted therapies, however, whole exome genetic testing (WES) for children with chronic multilineage cytopenias should be considered as an early diagnostic tool for disease diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Manuela Cortesi
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Annarosa Soresina
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Laura Dotta
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Chiara Gorio
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Marco Cattalini
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Vassilios Lougaris
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Fulvio Porta
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| |
Collapse
|
12
|
Flinn AM, Gennery AR. Primary immune regulatory disorders: Undiagnosed needles in the haystack? Orphanet J Rare Dis 2022; 17:99. [PMID: 35241125 PMCID: PMC8895571 DOI: 10.1186/s13023-022-02249-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/13/2022] [Indexed: 12/16/2022] Open
Abstract
Primary Immune Regulatory Disorders (PIRD) describe a group of conditions characterized by loss of normal inflammatory control and immune tolerance mechanisms, with autoimmunity as a predominant clinical feature. PIRD can arise due to defects in the number or function of regulatory T-lymphocytes, defects in the immune mechanisms required to ‘turn off’ inflammation such as in perforin-dependent cytotoxicity or alterations in cytokine signalling pathways. Diagnosis of PIRD is a significant challenge to physicians due to their rarity, complexity, and diversity in clinical manifestations. Many of these individual conditions lack a genotype–phenotype correlation and display incomplete penetrance. However, establishing a diagnosis is integral in optimizing patient management, including the use of individualized treatment approaches. Increasing awareness among physicians is necessary as patients are likely to present to different subspecialties. Due to the rarity of these conditions, worldwide collaboration and data-sharing is essential to improve our knowledge of the clinical spectrum and disease course in PIRD, and to optimize therapeutic strategies including identification of which patients can benefit from hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Aisling M Flinn
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
13
|
The Immune Deficiency and Dysregulation Activity (IDDA2.1 'Kaleidoscope') Score and Other Clinical Measures in Inborn Errors of Immunity. J Clin Immunol 2021; 42:484-498. [PMID: 34797428 PMCID: PMC9016022 DOI: 10.1007/s10875-021-01177-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/25/2021] [Indexed: 11/06/2022]
Abstract
Quantifying the phenotypic features of rare diseases such as inborn errors of immunity (IEI) helps clinicians make diagnoses, classify disorders, and objectify the disease severity at its first presentation as well as during therapy and follow-up. Furthermore, it may allow cross-sectional and cohort comparisons and support treatment decisions such as an evaluation for transplantation. On the basis of a literature review, we provide a descriptive comparison of ten selected scores and measures frequently used in IEI and divide these into three categories: (1) diagnostic tools (for Hyper-IgE syndrome, hemophagocytic lymphohistiocytosis, and Wiskott-Aldrich syndrome), (2) morbidity and disease activity measures (for common variable immune deficiency [CVID], profound combined immune deficiency, CTLA-4 haploinsufficiency, immune deficiency and dysregulation activity [IDDA], IPEX organ impairment, and the autoinflammatory disease activity index), and (3) treatment stratification scores (shown for hypogammaglobulinemia). The depth of preclinical and statistical validations varies among the presented tools, and disease-inherent and user-dependent factors complicate their broader application. To support a comparable, standardized evaluation for prospective monitoring of diseases with immune dysregulation, we propose the IDDA2.1 score (comprising 22 parameters on a 2–5-step scale) as a simple yet comprehensive and powerful tool. Originally developed for use in a retrospective study in LRBA deficiency, this new version may be applied to all IEI with immune dysregulation. Reviewing published aggregate cohort data from hundreds of patients, the IDDA kaleidoscope function is presented for 18 exemplary IEI as an instructive phenotype–pattern visualization tool, and an unsupervised, hierarchically clustered heatmap mathematically confirms similarities and differences in their phenotype expression profiles.
Collapse
|
14
|
Abatacept is useful in auto-immune cytopenia with immunopathologic manifestations caused by CTLA-4 defects. Blood 2021; 139:300-304. [PMID: 34714911 DOI: 10.1182/blood.2021013496] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022] Open
|