1
|
Fu X, Wu Z, Shi J, Han L, Wang L, Peng H, Wu J. Precision phenomapping of pediatric dilated cardiomyopathy using clustering models based on electronic hospital records. Int J Cardiol 2025; 428:133127. [PMID: 40064206 DOI: 10.1016/j.ijcard.2025.133127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/03/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Pediatric dilated cardiomyopathy (PDCM) is a heterogeneous disease, and its clinical management is still considered challenging. This study aimed to establish clinically relevant PDCM subtypes to evaluate prognosis and guide its treatments. METHODS Multidimensional data of study participants were derived from electronic hospital records based on a multicenter retrospective cohort in China. Six clustering models for heterogeneous data were adopted to identify PDCM subtypes, and multiple indices were used to select the best model. Multivariable Cox models were adopted to evaluate the association between PDCM subtypes and the risk of adverse clinical events. Finally, a clinical classifier was constructed for clinical application. RESULTS A total of 279 idiopathic PDCM cases were included in this study, and two phenotypes developed by the Kamila model were recognized as optimal. Group I was mainly infants and toddlers (median age: 6.32 months) with larger dimensions but mild systolic dysfunction of the left ventricle (LV) while group II was older children (median age: 111.77 months) with severe LV systolic dysfunction, reduced LV wall thickness, and higher prevalence of abnormal valvular regurgitation and arrhythmia. Moreover, group II had a significantly lower event-free survival probability than group I after adjusting for all covariates (HR = 8.096, P = 0.002). The conditional interference tree model with five parameters could accurately distinguish PDCM subtypes. CONCLUSIONS PDCM subtypes in our study showed distinct clinical profiles and risks of worse prognosis, and probably have different responses to current standard therapies, which would provide novel directions for precision management and pathological studies of PDCM.
Collapse
Affiliation(s)
- Xihang Fu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, Hubei 430030, China
| | - Zubo Wu
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Han
- Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Lin Wang
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hua Peng
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Chaudhary R, Suhan T, Tarhuni MW, Abdel-Latif A. Lysophosphatidic Acid-Mediated Inflammation at the Heart of Heart Failure. Curr Cardiol Rep 2024; 26:113-120. [PMID: 38340272 DOI: 10.1007/s11886-024-02023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE OF REVIEW The primary aim of this review is to provide an in-depth examination of the role bioactive lipids-namely lysophosphatidic acid (LPA) and ceramides-play in inflammation-mediated cardiac remodeling during heart failure. With the global prevalence of heart failure on the rise, it is critical to understand the underlying molecular mechanisms contributing to its pathogenesis. Traditional studies have emphasized factors such as oxidative stress and neurohormonal activation, but emerging research has shed light on bioactive lipids as central mediators in heart failure pathology. By elucidating these intricacies, this review aims to: Bridge the gap between basic research and clinical practice by highlighting clinically relevant pathways contributing to the pathogenesis and prognosis of heart failure. Provide a foundation for the development of targeted therapies that could mitigate the effects of LPA and ceramides on heart failure. Serve as a comprehensive resource for clinicians and researchers interested in the molecular biology of heart failure, aiding in better diagnostic and therapeutic decisions. RECENT FINDINGS Recent findings have shed light on the central role of bioactive lipids, specifically lysophosphatidic acid (LPA) and ceramides, in heart failure pathology. Traditional studies have emphasized factors such as hypoxia-mediated cardiomyocyte loss and neurohormonal activation in the development of heart failure. Emerging research has elucidated the intricacies of bioactive lipid-mediated inflammation in cardiac remodeling and the development of heart failure. Studies have shown that LPA and ceramides contribute to the pathogenesis of heart failure by promoting inflammation, fibrosis, and apoptosis in cardiac cells. Additionally, recent studies have identified potential targeted therapies that could mitigate the effects of bioactive lipids on heart failure, including LPA receptor antagonists and ceramide synthase inhibitors. These recent findings provide a promising avenue for the development of targeted therapies that could improve the diagnosis and treatment of heart failure. In this review, we highlight the pivotal role of inflammation induced by bioactive lipid signaling and its influence on the pathogenesis of heart failure. By critically assessing the existing literature, we provide a comprehensive resource for clinicians and researchers interested in the molecular mechanisms of heart failure. Our review aims to bridge the gap between basic research and clinical practice by providing actionable insights and a foundation for the development of targeted therapies that could mitigate the effects of bioactive lipids on heart failure. We hope that this review will aid in better diagnostic and therapeutic decisions, further advancing our collective understanding and management of heart failure.
Collapse
Affiliation(s)
- Rajesh Chaudhary
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Ann Arbor VA Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA
| | - Tahra Suhan
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Ann Arbor VA Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA
| | - Mahmud W Tarhuni
- Department of Kinesiology, University of Saskatchewan, Saskatchewan, Canada
| | - Ahmed Abdel-Latif
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA.
- Ann Arbor VA Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
3
|
Saha S, Singh P, Dutta A, Vaidya H, Negi PC, Sengupta S, Seth S, Basak T. A Comprehensive Insight and Mechanistic Understanding of the Lipidomic Alterations Associated With DCM. JACC. ASIA 2023; 3:539-555. [PMID: 37614533 PMCID: PMC10442885 DOI: 10.1016/j.jacasi.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/03/2023] [Indexed: 08/25/2023]
Abstract
Dilated cardiomyopathy (DCM) is one of the major causes of heart failure characterized by the enlargement of the left ventricular cavity and contractile dysfunction of the myocardium. Lipids are the major sources of energy for the myocardium. Impairment of lipid homeostasis has a potential role in the pathogenesis of DCM. In this review, we have summarized the role of different lipids in the progression of DCM that can be considered as potential biomarkers. Further, we have also explained the mechanistic pathways followed by the lipid molecules in disease progression along with the cardioprotective role of certain lipids. As the global epidemiological status of DCM is alarming, it is high time to define some disease-specific biomarkers with greater prognostic value. We are proposing an adaptation of a system lipidomics-based approach to profile DCM patients in order to achieve a better diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Shubham Saha
- School of Biosciences and Bioengineering. IIT-Mandi, Mandi, India
- BioX Center, Indian Institute of Technology-Mandi, Mandi, India
| | - Praveen Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Abhi Dutta
- School of Biosciences and Bioengineering. IIT-Mandi, Mandi, India
- BioX Center, Indian Institute of Technology-Mandi, Mandi, India
| | - Hiteshi Vaidya
- Department of Cardiology, Indira Gandhi Medical College & Hospital, Shimla, India
| | - Prakash Chand Negi
- Department of Cardiology, Indira Gandhi Medical College & Hospital, Shimla, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sandeep Seth
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering. IIT-Mandi, Mandi, India
- BioX Center, Indian Institute of Technology-Mandi, Mandi, India
| |
Collapse
|
4
|
Sun S, Xun G, Zhang J, Gao Y, Ge J, Liu F, Qian Q, Liu X, Tian Y, Sun Q, Wang Q, Wang X. An integrated approach for investigating pharmacodynamic material basis of Lingguizhugan Decoction in the treatment of heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115366. [PMID: 35551974 DOI: 10.1016/j.jep.2022.115366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classical formula of traditional Chinese medicine (TCM), Lingguizhugan Decoction (LGZGD) has been used for treating heart failure (HF) because it has an efficiency of yang-warming and fluid-dispersing. However, the pharmacodynamic material basis of LGZGD responsible for the therapeutic benefits is not well understood. AIM OF THE STUDY The aim of this study was to elucidate the pharmacodynamic material basis of LGZGD by an integrated approach. MATERIALS AND METHODS Following oral administration of LGZGD in mice, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to identify prototype substances. A heart failure (HF) model was established, followed by an untargeted metabolomics study to determine potential targets of LGZGD. The network pharmacology method was performed to screen substances that interacted with potential targets of LGZGD treating HF. Molecular docking technology was applied to further screen substances based on binding energy. Cell viability assays were conducted to verify pharmacodynamic effects of selected substances. RESULTS In all, forty-two prototype substances were identified in the blood, urine, and fecal samples of mice. A total of fifty-five differential metabolites were identified using heart tissue untargeted metabolomics. Twenty-five substances of LGZGD were screened relating to thirty-three targets treating HF. Twenty-two substances were filtered according to their binding energy using molecular docking technology. Cell experiments revealed cinnamaldehyde, glycyrrhetinic acid, kaempferol, daidzein, caffeic acid, and catechin could significantly improve the survival rate of H9c2 cells, which might be the pharmacodynamic material basis of LGZGD. CONCLUSIONS A scientific approach that integrated in vivo substances identification, metabolomics, network pharmacology, molecular docking, and cell pharmacodynamic assay has been developed to study the pharmacodynamic material basis of LGZGD in the treatment of HF.
Collapse
Affiliation(s)
- Shuo Sun
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Ge Xun
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Jia Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Yanhua Gao
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Jiachen Ge
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Fangfang Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Qi Qian
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Xin Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Yuhuan Tian
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Qian Sun
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Qiao Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China.
| | - Xu Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| |
Collapse
|