1
|
Thompson MD, Chidiac P, Jose PA, Hauser AS, Gorvin CM. Genetic variants of accessory proteins and G proteins in human genetic disease. Crit Rev Clin Lab Sci 2025; 62:113-134. [PMID: 39743506 PMCID: PMC11854058 DOI: 10.1080/10408363.2024.2431853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
We present a series of three articles on the genetics and pharmacogenetics of G protein- coupled receptors (GPCR). In the first article, we discuss genetic variants of the G protein subunits and accessory proteins that are associated with human phenotypes; in the second article, we build upon this to discuss "G protein-coupled receptor (GPCR) gene variants and human genetic disease" and in the third article, we survey "G protein-coupled receptor pharmacogenomics". In the present article, we review the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane in the context of human genetic disease resulting from pathogenic variants of accessory proteins and G proteins. Pathogenic variants of the genes encoding G protein α and β subunits are examined in diverse phenotypes. Variants in the genes encoding accessory proteins that modify or organize G protein coupling have been associated with disease; these include the contribution of variants of the regulator of G protein signaling (RGS) to hypertension; the role of variants of activator of G protein signaling type III in phenotypes such as hypoxia; the contribution of variation at the RGS10 gene to short stature and immunological compromise; and the involvement of variants of G protein-coupled receptor kinases (GRKs), such as GRK4, in hypertension. Variation in genes that encode proteins involved in GPCR signaling are outlined in the context of the changes in structure and function that may be associated with human phenotypes.
Collapse
Affiliation(s)
- Miles D. Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Departments of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Alexander S. Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M. Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
2
|
Thompson MD, Reiner-Link D, Berghella A, Rana BK, Rovati GE, Capra V, Gorvin CM, Hauser AS. G protein-coupled receptor (GPCR) pharmacogenomics. Crit Rev Clin Lab Sci 2024; 61:641-684. [PMID: 39119983 DOI: 10.1080/10408363.2024.2358304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 05/18/2024] [Indexed: 08/10/2024]
Abstract
The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - David Reiner-Link
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brinda K Rana
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerie Capra
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Murphy VE, Whalen OM, Williams EJ, Gibson PG, Campbell LE, Karayanidis F, Mallise CA, Woolard A, Robijn AL, Mattes J, Collison AM, Lane AE, Baines KJ. Autism likelihood in infants born to mothers with asthma is associated with blood inflammatory gene biomarkers in pregnancy. Brain Behav Immun Health 2024; 40:100845. [PMID: 39247132 PMCID: PMC11378081 DOI: 10.1016/j.bbih.2024.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
Mothers with asthma or atopy have a higher likelihood of having autistic children, with maternal immune activation in pregnancy implicated as a mechanism. This study aimed to determine, in a prospective cohort of mothers with asthma and their infants, whether inflammatory gene expression in pregnancy is associated with likelihood of future autism. Mothers with asthma were recruited to the Breathing for Life Trial. RNA was extracted from blood samples collected at mid-pregnancy. 300 ng total RNA was hybridized with the nCounter Human Inflammation gene expression panel (Nanostring Technologies, 249 inflammation-related genes). Parents completed the First Year Inventory (FYI) at 12-month follow-up, which assessed an infant's likelihood for autism across 2 behavioural domains: social communication and sensory regulation. A total score ≥19.2 indicated increased likelihood for future autism. Inflammatory gene expression was profiled from 24 mothers: four infants scored in the high autism likelihood range; 20 scored in the low autism likelihood range. Six inflammatory genes were differentially expressed and significantly up-regulated in the high autism likelihood group: CYSLTR2, NOX1, C1QA, CXCL10, C8A, IL23R. mRNA count significantly correlated with social communication FYI score for CYSLTR2 (Pearson r = 0.46, p = 0.024) and CXCL10 (r = 0.43, p = 0.036) and with sensory regulation score for ALOX5 (r = -0.43, p = 0.038) and MAFK (r = -0.46, p = 0.022). In this proof-of-concept study, inflammatory gene expression during pregnancy in mothers with asthma was associated with an infant's likelihood of future autism as well as scores relating to social communication and sensory regulation.
Collapse
Affiliation(s)
- Vanessa E Murphy
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Olivia M Whalen
- School of Psychological Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Evan J Williams
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Peter G Gibson
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, 2305, Australia
| | - Linda E Campbell
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Frini Karayanidis
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Carly A Mallise
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Population Health, Hunter New England Local Health District, Wallsend, NSW, 2287, Australia
| | - Alix Woolard
- Telethon Kids Institute, Perth Children's Hospital, Perth, WA, 6009, Australia
| | - Annelies L Robijn
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Joerg Mattes
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Paediatric Respiratory and Sleep Medicine Department, John Hunter Children's Hospital, Newcastle, NSW, 2305, Australia
| | - Adam M Collison
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Alison E Lane
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Katherine J Baines
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
4
|
Pérez-Pazos J, García-Sánchez A, Estravís M, Moreno-Jimenez E, Morgado N, Gómez-García M, Ramos-González J, Gil-Melcón M, Martín-García C, Muñoz-Bellido F, Sanz C, Isidoro-García M, Dávila I. Beyond type 2 asthma biomarkers: risk stratification for NSAID-exacerbated respiratory disease. ERJ Open Res 2024; 10:00909-2023. [PMID: 39104947 PMCID: PMC11299009 DOI: 10.1183/23120541.00909-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/20/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Type 2 (T2) asthma is often associated with chronic rhinosinusitis with nasal polyposis (CRSwNP). Additionally, nonsteroidal anti-inflammatory drug (NSAID) intolerance leads to NSAID-exacerbated respiratory disease (N-ERD). Previous transcriptomic data in non-CRSwNP T2 asthma patients showed differentially expressed genes. We focused on ALOX15, CLC, CYSLTR2, HRH4 and SMPD3 to investigate their role in T2 asthma. Methods The study included 100 healthy controls and 103 T2 asthma patients, divided into patients with asthma (n=54), patients with asthma and CRSwNP (n=29) and patients with N-ERD (n=20). Quantitative PCR analysis was performed on blood-derived RNA samples first to validate the five differentially expressed genes. The data were further analysed to find potential associations and biomarkers. Results Patients, regardless of stratification, exhibited significantly higher gene expression than healthy controls. The patterns of association revealed that ALOX15 was exclusively present in the non-comorbidity group, SMPD3 and CLC in the comorbidity groups, and HRH4 in all patient groups. ALOX15, CYSLTR2 and SMPD3 expression showed potential as biomarkers to confirm the diagnosis of T2 asthma using peripheral blood eosinophils as the initial criterion. Peripheral blood eosinophils combined with gene expression, especially SMPD3, may improve the diagnosis. CLC and CYSLTR2 expression play a specific role in discriminating N-ERD. Discussion We validated the transcriptomic data of five differentially expressed genes in T2 asthma. Different patterns of association were identified in patient stratification, suggesting that different molecular mechanisms underlie the spectrum of T2 asthma. Potential biomarkers were also found and used to design an algorithm with practical diagnostic utility for T2 asthma, including risk stratification for N-ERD.
Collapse
Affiliation(s)
- Jacqueline Pérez-Pazos
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Hospital Universitario de Salamanca, Pharmacogenetics and Precision Medicine Unit, Clinical Biochemistry Department, Salamanca, Spain
| | - Asunción García-Sánchez
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias – RICORS, Madrid, Spain
- Universidad de Salamanca, Biomedical and Diagnostics Sciences Department, Salamanca, Spain
| | - Miguel Estravís
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias – RICORS, Madrid, Spain
| | - Emma Moreno-Jimenez
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Universidad de Salamanca, Microbiology and Genetics Department, Salamanca, Spain
| | - Natalia Morgado
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Universidad de Salamanca, Biomedical and Diagnostics Sciences Department, Salamanca, Spain
| | - Manuel Gómez-García
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Hospital Universitario de Salamanca, Pharmacogenetics and Precision Medicine Unit, Clinical Biochemistry Department, Salamanca, Spain
| | | | - María Gil-Melcón
- Hospital Universitario de Salamanca, Otorhinolaryngology and Head and Neck Surgery Department, Salamanca, Spain
| | - Cristina Martín-García
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Hospital Universitario de Salamanca, Allergy Department, Salamanca, Spain
| | - Francisco Muñoz-Bellido
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias – RICORS, Madrid, Spain
- Hospital Universitario de Salamanca, Allergy Department, Salamanca, Spain
| | - Catalina Sanz
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias – RICORS, Madrid, Spain
- Universidad de Salamanca, Microbiology and Genetics Department, Salamanca, Spain
| | - María Isidoro-García
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias – RICORS, Madrid, Spain
- Universidad de Salamanca, Medicine Department, Salamanca, Spain
- Hospital Universitario de Salamanca, Clinical Biochemistry Department, Salamanca, Spain
- These authors shared senior authorship
| | - Ignacio Dávila
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias – RICORS, Madrid, Spain
- Universidad de Salamanca, Biomedical and Diagnostics Sciences Department, Salamanca, Spain
- Hospital Universitario de Salamanca, Allergy Department, Salamanca, Spain
- These authors shared senior authorship
| |
Collapse
|
5
|
Mao ZD, Liu ZG, Qian Y, Shi YJ, Zhou LZ, Zhang Q, Qi CJ. RNA Sequencing and Bioinformatics Analysis to Reveal Potential Biomarkers in Patients with Combined Allergic Rhinitis and Asthma Syndrome. J Inflamm Res 2023; 16:6211-6225. [PMID: 38145010 PMCID: PMC10748568 DOI: 10.2147/jir.s438758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Combined allergic rhinitis and asthma syndrome (CARAS) is a concurrent clinical or subclinical allergic symptom of diseases of the upper and lower respiratory tract. This study is the first to explore the expression profiles of mRNA, lncRNA, and circRNA in CARAS using RNA sequencing, which may provide insight into the mechanisms underlying CARAS. Material and Methods Whole blood samples from nine participants (three CARAS patients, three AR patients, and three normal control participants) were subjected to perform RNA sequencing, followed by identification of differentially expressed lncRNAs (DElncRNAs), circRNAs (DEcircRNAs) and mRNAs (DEmRNAs). Then, lncRNA/circRNA-mRNA regulatory pairs were constructed, followed by functional analysis, immune infiltration analysis, drug prediction, and expression validation with RT-qPCR and ELISA. Results The results showed that 61 DEmRNAs, 23 DElncRNAs and 3 DEcircRNAs may be related to the occurrence and development of CARAS. KRT8 may be implicated in the development of AR into CARAS. Three immunity-related mRNAs (IDO1, CYSLTR2, and TEC) and two hypoxia-related mRNAs (TKTL1 and VLDLR) were associated with the occurrence and development of CARAS. TEC may be considered a drug target for Dasatinib in treating CARAS. Several lncRNA/circRNA-mRNA regulatory pairs were identified in CARAS, including LINC00452/MIR4280HG/hsa_circ_0007272/hsa_circ_0070934-CLC, HEATR6-DT/LINC00639/LINC01783/hsa_circ_0008903-TEC, RP11-71L14.3-IDO1/SMPD3, RP11-178F10.2-IDO1/HRH4, and hsa_circ_0008903-CYSLTR2, which may indicate potential regulatory effects of lncRNAs/circRNAs in CARAS. Dysregulated levels of immune cell infiltration may be closely related to CARAS. Conclusion The regulating effect of lncRNA/circRNA-immunity/hypoxia-related mRNA regulatory pairs may be involved in the occurrence and development of CARAS.
Collapse
Affiliation(s)
- Zheng-Dao Mao
- Department of Respiratory and Critical Care Medicine, Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Zhi-Guang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Yan Qian
- Department of Respiratory and Critical Care Medicine, Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Yu-Jia Shi
- Department of Respiratory and Critical Care Medicine, Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Lian-Zheng Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Chun-Jian Qi
- Central Laboratory, Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| |
Collapse
|
6
|
Mirra D, Esposito R, Spaziano G, Rafaniello C, Iovino P, Cione E, Gallelli L, D'Agostino B. Association between Sex-Related ALOX5 Gene Polymorphisms and Lung Atopy Risk. J Clin Med 2023; 12:jcm12082775. [PMID: 37109111 PMCID: PMC10145460 DOI: 10.3390/jcm12082775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Atopy is an exaggerated IgE-mediated immune response to foreign antigens in which metabolic abnormalities of the leukotrienes (LTs) pathway play a crucial role. Recent studies have described sex as a key variable in LT biosynthesis, partly explaining why treatment with anti-LT drugs in atopic subjects leads to better control of symptoms in women. In addition, variability in LT production is often associated with single nucleotide polymorphisms (SNPs) in the arachidonate 5-lipoxygenase (ALOX5) gene, which encodes the leukotriene-synthesizing enzyme machinery, 5-lipoxygenase (5-LO). This study aimed to investigate whether two SNPs of ALOX5 are implicated in sex differences in allergic diseases in a prospective cohort of 150 age- and sex-matched atopic and healthy subjects. Rs2029253 and rs2115819 were genotyped using allele-specific RT-PCR, and serum levels of 5-LO and LTB4 were measured by ELISA. Both polymorphisms are significantly more common in women than in men, and their influences on LT production vary as a function of sex, leading to a decrease in men's and an increase in women's serum levels of 5-LO and LTB4. These data represent a new resource for understanding sex-related differences in lung inflammatory diseases, partly explaining why women are more likely to develop allergic disorders than men.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Concetta Rafaniello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Pasquale Iovino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, Mater Domini Hospital, University of Catanzaro, 88100 Catanzaro, Italy
| | - Bruno D'Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
7
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
8
|
Eicosanoid receptors as therapeutic targets for asthma. Clin Sci (Lond) 2021; 135:1945-1980. [PMID: 34401905 DOI: 10.1042/cs20190657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Eicosanoids comprise a group of oxidation products of arachidonic and 5,8,11,14,17-eicosapentaenoic acids formed by oxygenases and downstream enzymes. The two major pathways for eicosanoid formation are initiated by the actions of 5-lipoxygenase (5-LO), leading to leukotrienes (LTs) and 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and cyclooxygenase (COX), leading to prostaglandins (PGs) and thromboxane (TX). A third group (specialized pro-resolving mediators; SPMs), including lipoxin A4 (LXA4) and resolvins (Rvs), are formed by the combined actions of different oxygenases. The actions of the above eicosanoids are mediated by approximately 20 G protein-coupled receptors, resulting in a variety of both detrimental and beneficial effects on airway smooth muscle and inflammatory cells that are strongly implicated in asthma pathophysiology. Drugs targeting proinflammatory eicosanoid receptors, including CysLT1, the receptor for LTD4 (montelukast) and TP, the receptor for TXA2 (seratrodast) are currently in use, whereas antagonists of a number of other receptors, including DP2 (PGD2), BLT1 (LTB4), and OXE (5-oxo-ETE) are under investigation. Agonists targeting anti-inflammatory/pro-resolving eicosanoid receptors such as EP2/4 (PGE2), IP (PGI2), ALX/FPR2 (LXA4), and Chemerin1 (RvE1/2) are also being examined. This review summarizes the contributions of eicosanoid receptors to the pathophysiology of asthma and the potential therapeutic benefits of drugs that target these receptors. Because of the multifactorial nature of asthma and the diverse pathways affected by eicosanoid receptors, it will be important to identify subgroups of asthmatics that are likely to respond to any given therapy.
Collapse
|
9
|
Biringer RG. A review of non-prostanoid, eicosanoid receptors: expression, characterization, regulation, and mechanism of action. J Cell Commun Signal 2021; 16:5-46. [PMID: 34173964 DOI: 10.1007/s12079-021-00630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Eicosanoid signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and resolution thereof to the perception of pain and to cell survival itself. Disruption of normal eicosanoid signaling is implicated in numerous disease states. Eicosanoid signaling is facilitated by G-protein-coupled, eicosanoid-specific receptors and the array of associated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of non-prostanoid, eicosanoid receptors.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL, 34211, USA.
| |
Collapse
|
10
|
Michael J, Bessa de Sousa D, Conway J, Gonzalez-Labrada E, Obeid R, Tevini J, Felder T, Hutter-Paier B, Zerbe H, Paiement N, Aigner L. Improved Bioavailability of Montelukast through a Novel Oral Mucoadhesive Film in Humans and Mice. Pharmaceutics 2020; 13:E12. [PMID: 33374646 PMCID: PMC7822410 DOI: 10.3390/pharmaceutics13010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022] Open
Abstract
The leukotriene receptor antagonist Montelukast (MTK) is an approved medication for the treatment of asthma and allergic rhinitis. The existing marketed tablet forms of MTK exhibit inconsistent uptake and bioavailability, which partially explains the presence of a significant proportion of MTK low- and non-responders in the population. Besides that, tablets are suboptimal formulations for patients suffering from dysphagia, for example, seen in patients with neurodegenerative diseases such as Alzheimer's disease, a disease with increasing interest in repurposing of MTK. This, and the need for an improved bioavailability, triggered us to reformulate MTK. Our aim was to develop a mucoadhesive MTK film with good safety and improved pharmacological features, i.e., an improved bioavailability profile in humans as well as in a mouse model of Alzheimer's disease. We tested dissolution of the MTK mucoadhesive film and assessed pharmacoexposure and kinetics after acute and chronic oral application in mice. Furthermore, we performed a Phase I analysis in humans, which included a comparison with the marketed tablet form as well as a quantitative analysis of the MTK levels in the cerebrospinal fluid. The novel MTK film demonstrated significantly improved bioavailability compared to the marketed tablet in the clinical Phase 1a study. Furthermore, there were measurable amounts of MTK present in the cerebrospinal fluid (CSF). In mice, MTK was detected in serum and CSF after acute and chronic exposure in a dose-dependent manner. The mucoadhesive film of MTK represents a promising alternative for the tablet delivery. The oral film might lower the non-responder rate in patients with asthma and might be an interesting product for repurposing of MTK in other diseases. As we demonstrate Blood-Brain-Barrier (BBB) penetrance in a preclinical model, as well as in a clinical study, the oral film of MTK might find its use as a therapeutic for acute and chronic neurodegenerative diseases such as dementias and stroke.
Collapse
Affiliation(s)
- Johanna Michael
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (D.B.d.S.)
| | - Diana Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (D.B.d.S.)
| | - Justin Conway
- IntelgenX Corp., Saint-Laurent, QC H4S 1Y2, Canada; (J.C.); (E.G.-L.); (R.O.); (H.Z.)
| | | | - Rodolphe Obeid
- IntelgenX Corp., Saint-Laurent, QC H4S 1Y2, Canada; (J.C.); (E.G.-L.); (R.O.); (H.Z.)
| | - Julia Tevini
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.T.); (T.F.)
| | - Thomas Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (J.T.); (T.F.)
| | | | - Horst Zerbe
- IntelgenX Corp., Saint-Laurent, QC H4S 1Y2, Canada; (J.C.); (E.G.-L.); (R.O.); (H.Z.)
| | - Nadine Paiement
- IntelgenX Corp., Saint-Laurent, QC H4S 1Y2, Canada; (J.C.); (E.G.-L.); (R.O.); (H.Z.)
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria; (J.M.); (D.B.d.S.)
- QPS Neuropharmacology, 8074 Grambach/Graz, Austria;
- Austrian Cluster of Tissue Regeneration Affiliation, 1200 Vienna, Austria
| |
Collapse
|
11
|
Aigner L, Pietrantonio F, Bessa de Sousa DM, Michael J, Schuster D, Reitsamer HA, Zerbe H, Studnicka M. The Leukotriene Receptor Antagonist Montelukast as a Potential COVID-19 Therapeutic. Front Mol Biosci 2020; 7:610132. [PMID: 33392263 PMCID: PMC7773944 DOI: 10.3389/fmolb.2020.610132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence and global impact of COVID-19 has focused the scientific and medical community on the pivotal influential role of respiratory viruses as causes of severe pneumonia, on the understanding of the underlying pathomechanisms, and on potential treatment for COVID-19. The latter concentrates on four different strategies: (i) antiviral treatments to limit the entry of the virus into the cell and its propagation, (ii) anti-inflammatory treatment to reduce the impact of COVID-19 associated inflammation and cytokine storm, (iii) treatment using cardiovascular medication to reduce COVID-19 associated thrombosis and vascular damage, and (iv) treatment to reduce the COVID-19 associated lung injury. Ideally, effective COVID-19 treatment should target as many of these mechanisms as possible arguing for the search of common denominators as potential drug targets. Leukotrienes and their receptors qualify as such targets: they are lipid mediators of inflammation and tissue damage and well-established targets in respiratory diseases like asthma. Besides their role in inflammation, they are involved in various other aspects of lung pathologies like vascular damage, thrombosis, and fibrotic response, in brain and retinal damages, and in cardiovascular disease. In consequence, leukotriene receptor antagonists might be potential candidates for COVID-19 therapeutics. This review summarizes the current knowledge on the potential involvement of leukotrienes in COVID-19, and the rational for the use of the leukotriene receptor antagonist montelukast as a COVID-19 therapeutic.
Collapse
Affiliation(s)
- Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | - Diana Marisa Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Johanna Michael
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Herbert Anton Reitsamer
- Department of Ophthalmology and Optometry, University Clinic Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program of Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Michael Studnicka
- Department of Pulmonary Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
12
|
Folkerts J, Redegeld F, Folkerts G, Blokhuis B, Berg MPM, Bruijn MJW, IJcken WFJ, Junt T, Tam S, Galli SJ, Hendriks RW, Stadhouders R, Maurer M. Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling. Allergy 2020; 75:1966-1978. [PMID: 32112426 DOI: 10.1111/all.14254] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) are fermented dietary components that regulate immune responses, promote colonic health, and suppress mast cell-mediated diseases. However, the effects of SCFAs on human mast cell function, including the underlying mechanisms, remain unclear. Here, we investigated the effects of the SCFAs (acetate, propionate, and butyrate) on mast cell-mediated pathology and human mast cell activation, including the molecular mechanisms involved. METHOD Precision-cut lung slices (PCLS) of allergen-exposed guinea pigs were used to assess the effects of butyrate on allergic airway contraction. Human and mouse mast cells were co-cultured with SCFAs and assessed for degranulation after IgE- or non-IgE-mediated stimulation. The underlying mechanisms involved were investigated using knockout mice, small molecule inhibitors/agonists, and genomics assays. RESULTS Butyrate treatment inhibited allergen-induced histamine release and airway contraction in guinea pig PCLS. Propionate and butyrate, but not acetate, inhibited IgE- and non-IgE-mediated human or mouse mast cell degranulation in a concentration-dependent manner. Notably, these effects were independent of the stimulation of SCFA receptors GPR41, GPR43, or PPAR, but instead were associated with inhibition of histone deacetylases. Transcriptome analyses revealed butyrate-induced downregulation of the tyrosine kinases BTK, SYK, and LAT, critical transducers of FcεRI-mediated signals that are essential for mast cell activation. Epigenome analyses indicated that butyrate redistributed global histone acetylation in human mast cells, including significantly decreased acetylation at the BTK, SYK, and LAT promoter regions. CONCLUSION Known health benefits of SCFAs in allergic disease can, at least in part, be explained by epigenetic suppression of human mast cell activation.
Collapse
Affiliation(s)
- Jelle Folkerts
- Division of Pharmacology Utrecht Institute for Pharmaceutical Sciences Faculty of Science Utrecht University Utrecht The Netherlands
- Department of Pulmonary Medicine Erasmus MC Rotterdam Rotterdam The Netherlands
- Department of Pathology Stanford University School of Medicine Stanford CA USA
- Dermatological Allergology, Dermatology and Allergy Charité – Universitätsmedizin Berlin Berlin Germany
| | - Frank Redegeld
- Division of Pharmacology Utrecht Institute for Pharmaceutical Sciences Faculty of Science Utrecht University Utrecht The Netherlands
| | - Gert Folkerts
- Division of Pharmacology Utrecht Institute for Pharmaceutical Sciences Faculty of Science Utrecht University Utrecht The Netherlands
| | - Bart Blokhuis
- Division of Pharmacology Utrecht Institute for Pharmaceutical Sciences Faculty of Science Utrecht University Utrecht The Netherlands
| | - Mariska P. M. Berg
- Department of Molecular Pharmacology Faculty of Science and Engineering University of Groningen Groningen The Netherlands
| | | | | | - Tobias Junt
- Department of Autoimmunity, Transplantation and Inflammation Novartis Institutes for BioMedical Research Basel Switzerland
| | - See‐Ying Tam
- Department of Pathology Stanford University School of Medicine Stanford CA USA
| | - Stephen J. Galli
- Department of Pathology Stanford University School of Medicine Stanford CA USA
- Department of Microbiology & Immunology Stanford University School of Medicine Stanford CA USA
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine Erasmus MC Rotterdam Rotterdam The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine Erasmus MC Rotterdam Rotterdam The Netherlands
- Department of Cell Biology Erasmus MC Rotterdam Rotterdam The Netherlands
| | - Marcus Maurer
- Dermatological Allergology, Dermatology and Allergy Charité – Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
13
|
Trinh HKT, Lee SH, Cao TBT, Park HS. Asthma pharmacotherapy: an update on leukotriene treatments. Expert Rev Respir Med 2019; 13:1169-1178. [PMID: 31544544 DOI: 10.1080/17476348.2019.1670640] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Asthma is a chronic inflammatory disease of the airways with a large heterogeneity of clinical phenotypes. There has been increasing interest regarding the role of cysteinyl leukotriene (LT) and leukotriene receptor antagonists (LTRA) in asthma treatment.Areas covered: This review summarized the data (published in PubMed during 1984-2019) regarding LTRA treatment in asthma and LTs-related airway inflammation mechanisms. Involvement of LTs C4/D4/E4 has been demonstrated in the several aspects of airway inflammation and remodeling. Novel pathways related to LTE4, the most potent mediator, and its respective receptors have recently been studied. Antagonists against cysteinyl leukotriene receptor (CysLTR) type 1, including montelukast, pranlukast and zafirlukast, have been widely prescribed in clinical practices; however, some clinical trials have shown insignificant responses to LTRAs in adult asthmatics, while some phenotypes of adult asthma showed more favorable responses to LTRAs including aspirin-exacerbated respiratory disease, elderly asthma, asthma associated with smoking, obesity and allergic rhinitis.Expert opinion: Further investigations are needed to understand the role of LTs in airway inflammation and remodeling of the asthmatic airways. There is a lack of biomarkers to predict responsiveness to LTRA, especially in adult asthmatics. Besides CysLTR1 antagonists, targets aiming other LT pathways should be considered.
Collapse
Affiliation(s)
- Hoang Kim Tu Trinh
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea.,Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh city, Vietnam
| | - So-Hee Lee
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| | | | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea.,Department of Biomedicine, Ajou University, Suwon, South Korea
| |
Collapse
|
14
|
Venter C, Meyer RW, Nwaru BI, Roduit C, Untersmayr E, Adel‐Patient K, Agache I, Agostoni C, Akdis CA, Bischoff S, du Toit G, Feeney M, Frei R, Garn H, Greenhawt M, Hoffmann‐Sommergruber K, Lunjani N, Maslin K, Mills C, Muraro A, Pali I, Poulson L, Reese I, Renz H, Roberts GC, Smith P, Smolinska S, Sokolowska M, Stanton C, Vlieg‐Boerstra B, O'Mahony L. EAACI position paper: Influence of dietary fatty acids on asthma, food allergy, and atopic dermatitis. Allergy 2019; 74:1429-1444. [PMID: 31032983 DOI: 10.1111/all.13764] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022]
Abstract
The prevalence of allergic diseases such as allergic rhinitis, asthma, food allergy, and atopic dermatitis has increased dramatically during the last decades, which is associated with altered environmental exposures and lifestyle practices. The purpose of this review was to highlight the potential role for dietary fatty acids, in the prevention and management of these disorders. In addition to their nutritive value, fatty acids have important immunoregulatory effects. Fatty acid-associated biological mechanisms, human epidemiology, and intervention studies are summarized in this review. The influence of genetics and the microbiome on fatty acid metabolism is also discussed. Despite critical gaps in our current knowledge, it is increasingly apparent that dietary intake of fatty acids may influence the development of inflammatory and tolerogenic immune responses. However, the lack of standardized formats (ie, food versus supplement) and standardized doses, and frequently a lack of prestudy serum fatty acid level assessments in clinical studies significantly limit our ability to compare allergy outcomes across studies and to provide clear recommendations at this time. Future studies must address these limitations and individualized medical approaches should consider the inclusion of specific dietary factors for the prevention and management of asthma, food allergy, and atopic dermatitis.
Collapse
Affiliation(s)
- Carina Venter
- Section of Allergy and Immunology University of Colorado Denver School of Medicine, Children's Hospital Colorado Colorado
| | | | - Bright I. Nwaru
- Krefting Research Centre, Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Caroline Roduit
- University Children's Hospital Zurich Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| | - Eva Untersmayr
- Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Karine Adel‐Patient
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Immuno‐Allergie Alimentaire (LIAA) INRA, CEA, Université Paris Saclay Gif sur Yvette Cedex France
| | | | - Carlo Agostoni
- Fondazione IRCCS Ca' Granda ‐ Ospedale Maggiore Policlinico Milano Italy
- Dipartimento di Scienze Cliniche e di Comunita Universita' degli Studi Milano Italy
| | - Cezmi A. Akdis
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Stephan Bischoff
- Institut für Ernährungsmedizin Universität Hohenheim Stuttgart Germany
| | - George du Toit
- Division of Asthma, Allergy and Lung Biology, Department of Paediatric Allergy King's College London London UK
- Guy's & St Thomas' Hospital London UK
| | - Mary Feeney
- Division of Asthma, Allergy and Lung Biology, Department of Paediatric Allergy King's College London London UK
- Guy's & St Thomas' Hospital London UK
| | - Remo Frei
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Holger Garn
- Center for Tumor‐ and Immunobiology (ZTI), Institute of Laboratory Medicine and Pathobiochemistry Philipps University of Marburg ‐ Medical Faculty Marburg Germany
| | - Matthew Greenhawt
- School of Medicine, Section of Allergy and Immunology Children's Hospital Colorado, University of Colorado Aurora Colorado
| | - Karin Hoffmann‐Sommergruber
- Institute for Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Nonhlanhla Lunjani
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- University of Cape Town Cape Town South Africa
| | - Kate Maslin
- MRC Lifecourse Epidemiology Unit University of Southampton Southampton UK
| | - Clare Mills
- School of Biological Sciences, Manchester Academic Health Sciences Centre, Manchester Institute of Biotechnology The University of Manchester Manchester UK
| | - Antonella Muraro
- Centro di Specializzazione Regionale per lo Studio e la Cura delle Allergie e delle Intolleranze Alimentari presso l'Azienda Ospedaliera Università di Padova Padova Italy
| | - Isabella Pali
- Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University Vienna Vienna Austria
| | - Lars Poulson
- Allergy Clinic, Dept. of Skin and Allergy Diseases Copenhagen University Hospital at Gentofte Copenhagen Denmark
| | - Imke Reese
- Dietary Counseling and Nutrition Therapy Centre Munich Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL) Philipps Universität Marburg Marburg Germany
| | - Graham C. Roberts
- The David Hide Asthma and Allergy Research Centre St Mary's Hospital Newport UK
- NIHR Biomedical Research Centre University Hospital Southampton NHS Foundation Trust Southampton UK
- Faculty of Medicine, Clinical and Experimental Sciences and Human Development in Health Academic Units University of Southampton Southampton UK
| | - Peter Smith
- School of Medicine Griffith University Southport Australia
| | - Sylwia Smolinska
- Department of Clinical Immunology Wroclaw Medical University Wroclaw Poland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | | | | | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Depts of Medicine and Microbiology APC Microbiome Ireland, National University of Ireland Cork Ireland
| |
Collapse
|
15
|
García-Menaya JM, Cordobés-Durán C, García-Martín E, Agúndez JAG. Pharmacogenetic Factors Affecting Asthma Treatment Response. Potential Implications for Drug Therapy. Front Pharmacol 2019; 10:520. [PMID: 31178722 PMCID: PMC6537658 DOI: 10.3389/fphar.2019.00520] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/25/2019] [Indexed: 12/27/2022] Open
Abstract
Asthma is a frequent disease, mainly characterized by airway inflammation, in which drug therapy is crucial in its management. The potential of pharmacogenomics testing in asthma therapy has been, to date, little explored. In this review, we discuss pharmacogenetic factors affecting asthma treatment, both related to drugs used as controller medications for regular maintenance, such as inhaled corticosteroids, anti-leukotriene agents, long-acting beta-agonists, and the new biologic agents used to treat severe persistent asthma. In addition, we discuss current pharmacogenomics knowledge for rescue medications provided to all patients for as-needed relief, such as short-acting beta-agonists. Evidence for genetic variations as a factor related to drugs response has been provided for the following genes and groups of drugs: Inhaled corticosteroids: FCER2; anti-leukotriene agents: ABCC1, and LTC4S; beta-agonists: ADRB2. However, the following genes require further studies confirming or rejecting association with the response to asthma therapy: ADCY9, ALOX5, ARG1, ARG2, CRHR1, CRHR2, CYP3A4, CYP3A5, CYSLTR1, CYSLTR2, GLCCI1, IL4RA, LTA4H, ORMDL3, SLCO2B1, SPATS2L, STIP1, T, TBX21, THRA, THRB, and VEGFA. Although only a minority of these genes are, at present, listed as associated with drugs used in asthma therapy, in the Clinical Pharmacogenomics Implementation Consortium gene-drug pair list, this review reveals that sufficient evidence to start testing the potential of clinical pharmacogenomics in asthma therapy already exists. This evidence supports the inclusion in pilot pharmacogenetics tests of at least four genes. Hopefully these tests, if proven useful, will increase the efficiency and the safety of asthma therapy.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Cáceres, Spain
| | - José A. G. Agúndez
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
16
|
Ali HEA, Lung PY, Sholl AB, Gad SA, Bustamante JJ, Ali HI, Rhim JS, Deep G, Zhang J, Abd Elmageed ZY. Dysregulated gene expression predicts tumor aggressiveness in African-American prostate cancer patients. Sci Rep 2018; 8:16335. [PMID: 30397274 PMCID: PMC6218553 DOI: 10.1038/s41598-018-34637-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
Molecular mechanisms underlying the health disparity of prostate cancer (PCa) have not been fully determined. In this study, we applied bioinformatic approach to identify and validate dysregulated genes associated with tumor aggressiveness in African American (AA) compared to Caucasian American (CA) men with PCa. We retrieved and analyzed microarray data from 619 PCa patients, 412 AA and 207 CA, and we validated these genes in tumor tissues and cell lines by Real-Time PCR, Western blot, immunocytochemistry (ICC) and immunohistochemistry (IHC) analyses. We identified 362 differentially expressed genes in AA men and involved in regulating signaling pathways associated with tumor aggressiveness. In PCa tissues and cells, NKX3.1, APPL2, TPD52, LTC4S, ALDH1A3 and AMD1 transcripts were significantly upregulated (p < 0.05) compared to normal cells. IHC confirmed the overexpression of TPD52 (p = 0.0098) and LTC4S (p < 0.0005) in AA compared to CA men. ICC and Western blot analyses additionally corroborated this observation in PCa cells. These findings suggest that dysregulation of transcripts in PCa may drive the disparity of PCa outcomes and provide new insights into development of new therapeutic agents against aggressive tumors. More studies are warranted to investigate the clinical significance of these dysregulated genes in promoting the oncogenic pathways in AA men.
Collapse
Affiliation(s)
- Hamdy E A Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA
- Department of Radiobiological Applications, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Andrew B Sholl
- Departments of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Shaimaa A Gad
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA
| | - Juan J Bustamante
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA
| | - Hamed I Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA
| | - Johng S Rhim
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Zakaria Y Abd Elmageed
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA.
| |
Collapse
|
17
|
Hussain SRA, Mejias A, Ramilo O, Peeples ME, Grayson MH. Post-viral atopic airway disease: pathogenesis and potential avenues for intervention. Expert Rev Clin Immunol 2018; 15:49-58. [PMID: 30370798 DOI: 10.1080/1744666x.2019.1541737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: In early childhood, wheezing due to lower respiratory tract illness is often associated with infection by commonly known respiratory viruses such as respiratory syncytial virus (RSV) and human rhinovirus (RV). How respiratory viral infections lead to wheeze and/or asthma is an area of active research. Areas covered: This review provides an updated summary of the published information on the development of post-viral induced atopy and asthma and the mechanisms involved. We focus on the contribution of animal models in identifying pathways that may contribute to atopy and asthma following respiratory virus infection, different polymorphisms that have been associated with asthma development, and current options for disease management and potential future interventions. Expert commentary: Currently there are no prophylactic therapies that prevent infants infected with respiratory viruses from developing asthma or atopy. Neither are there curative therapies for patients with asthma. Therefore, a better understanding of genetic factors and other associated biomarkers in respiratory viral induced pathogenesis is important for developing effective personalized therapies.
Collapse
Affiliation(s)
- Syed-Rehan A Hussain
- a Division of Allergy and Immunology , Nationwide Children's Hospital - The Ohio State University College of Medicine , Columbus , OH , USA.,b Center for Clinical and Translational Research , Research Institute at Nationwide Children's Hospital , Columbus , OH , USA.,c Department of Pediatrics , The Ohio State University College of Medicine , Columbus , OH , USA
| | - Asuncion Mejias
- c Department of Pediatrics , The Ohio State University College of Medicine , Columbus , OH , USA.,d Division of Infectious Diseases , Nationwide Children's Hospital - The Ohio State University College of Medicine , Columbus , OH , USA.,e Center for Vaccines and Immunity , Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| | - Octavio Ramilo
- c Department of Pediatrics , The Ohio State University College of Medicine , Columbus , OH , USA.,d Division of Infectious Diseases , Nationwide Children's Hospital - The Ohio State University College of Medicine , Columbus , OH , USA.,e Center for Vaccines and Immunity , Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| | - Mark E Peeples
- c Department of Pediatrics , The Ohio State University College of Medicine , Columbus , OH , USA.,e Center for Vaccines and Immunity , Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| | - Mitchell H Grayson
- a Division of Allergy and Immunology , Nationwide Children's Hospital - The Ohio State University College of Medicine , Columbus , OH , USA.,b Center for Clinical and Translational Research , Research Institute at Nationwide Children's Hospital , Columbus , OH , USA.,c Department of Pediatrics , The Ohio State University College of Medicine , Columbus , OH , USA
| |
Collapse
|
18
|
Pavón-Romero GF, Pérez-Rubio G, Ramírez-Jiménez F, Ambrocio-Ortiz E, Bañuelos-Ortiz E, Alvarado-Franco N, Xochipa-Ruiz KE, Hernández-Juárez E, Flores-García BA, Camarena ÁE, Terán LM, Falfán-Valencia R. MS4A2-rs573790 Is Associated With Aspirin-Exacerbated Respiratory Disease: Replicative Study Using a Candidate Gene Strategy. Front Genet 2018; 9:363. [PMID: 30254660 PMCID: PMC6141666 DOI: 10.3389/fgene.2018.00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/21/2018] [Indexed: 01/08/2023] Open
Abstract
Aspirin exacerbated respiratory disease (AERD) is a set of diseases of the unified airway, and its physiopathology is related to disruption of the metabolism of arachidonic acid (AA). Genetic association studies in AERD had explored single nucleotide polymorphism (SNPs) in several genes related to many mechanisms (AA metabolism, inflammation, drug metabolism, etc.) but most lack validation stages in second populations. Our aim is to evaluated whether contribution to susceptibility of SNPs reported in other populations are associated with AERD in Mexican Mestizo patients. We developed a replicative study in two stages. In the first, 381 SNPs selected by fine mapping of associated genes, (previously reported in the literature), were integrated into a microarray and tested in three groups (AERD, asthma and healthy controls -HC-) using the GoldenGate array. Results associated to risk based on genetic models [comparing: AERD vs. HC (comparison 1, C1), AERD vs. asthma (C2), and asthma vs. HC (C3)] were validated in the second stage in other population groups using qPCR. In the first stage, we identified 11 SNPs associated with risk in C1.The top SNPs were ACE-rs4309C (p = 0.0001) and MS4A2-rs573790C (p = 0.0002). In C2, we detected 14 SNPs, including ACE-rs4309C (p = 0.0001). In C3, we found MS4A2-rs573790C (p = 0.001). Using genetic models, C1 MS4A2-rs57370 CC (p = 0.001), and ACE-rs4309 CC (p = 0.002) had associations. In C2 ACE-rs4309 CC (p = 0.0001) and C3 MS4A2-rs573790 CC (p = 0.001) were also associate with risk. In the second stage, only MS4A2-rs573790 CC had significance in C1 and C3 (p = 0.008 and p = 0.03). We concluded that rs573790 in the MS4A2 gene is the only SNP that supports an association with AERD in Mexican Mestizo patients in both stages of the study.
Collapse
Affiliation(s)
- Gandhi F Pavón-Romero
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Fernando Ramírez-Jiménez
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Enrique Ambrocio-Ortiz
- HLA Laboratory, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Elisé Bañuelos-Ortiz
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Norma Alvarado-Franco
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Karen E Xochipa-Ruiz
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Elizabeth Hernández-Juárez
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Beatriz A Flores-García
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ángel E Camarena
- HLA Laboratory, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Luis M Terán
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Biomedicine in the Post-Genomic Era, Mexico City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
19
|
Dyjack N, Goleva E, Rios C, Kim BE, Bin L, Taylor P, Bronchick C, Hall CF, Richers BN, Seibold MA, Leung DYM. Minimally invasive skin tape strip RNA sequencing identifies novel characteristics of the type 2-high atopic dermatitis disease endotype. J Allergy Clin Immunol 2018; 141:1298-1309. [PMID: 29309794 DOI: 10.1016/j.jaci.2017.10.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/11/2017] [Accepted: 10/11/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Expression profiling of skin biopsy specimens has established molecular features of the skin in patients with atopic dermatitis (AD). The invasiveness of biopsies has prevented their use in defining individual-level AD pathobiological mechanisms (endotypes) in large research studies. OBJECTIVE We sought to determine whether minimally invasive skin tape strip transcriptome analysis identifies gene expression dysregulation in AD and molecular disease endotypes. METHODS We sampled nonlesional and lesional skin tape strips and biopsy specimens from white adult patients with AD (18 male and 12 female patients; age [mean ± SE], 36.3 ± 2.2 years) and healthy control subjects (9 male and 16 female subjects; age [mean ± SE], 34.8 ± 2.2 years). AmpliSeq whole-transcriptome sequencing was performed on extracted RNA. Differential expression, clustering/pathway analyses, immunostaining of skin biopsy specimens, and clinical trait correlations were performed. RESULTS Skin tape expression profiles were distinct from skin biopsy profiles and better sampled epidermal differentiation complex genes. Skin tape expression of 29 immune and epidermis-related genes (false discovery rate < 5%) separated patients with AD from healthy subjects. Agnostic gene set analyses and clustering revealed 50% of patients with AD exhibited a type 2 inflammatory signature (type 2-high endotype) characterized by differential expression of 656 genes, including overexpression of IL13, IL4R, CCL22, CCR4 (log2 fold change = 5.5, 2.0, 4.0, and 4.1, respectively) and at a pathway level by TH2/dendritic cell activation. Both expression and immunostaining of skin biopsy specimens indicated this type 2-high group was enriched for inflammatory, type 2-skewed dendritic cells expressing FcεRI. The type 2-high endotype group exhibited more severe disease by using both the Eczema Area and Severity Index score and body surface area covered by lesions. CONCLUSION Minimally invasive expression profiling of nonlesional skin reveals stratification in AD molecular pathology by type 2 inflammation that correlates with disease severity.
Collapse
Affiliation(s)
- Nathan Dyjack
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colo
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Cydney Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colo
| | - Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Lianghua Bin
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Patricia Taylor
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Clifton F Hall
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colo; Department of Pediatrics, National Jewish Health, Denver, Colo; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colo.
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colo; Department of Pediatrics, University of Colorado Denver, Aurora, Colo.
| |
Collapse
|
20
|
Lui JK, Lutchen KR. The role of heterogeneity in asthma: a structure-to-function perspective. Clin Transl Med 2017; 6:29. [PMID: 28776171 PMCID: PMC5543015 DOI: 10.1186/s40169-017-0159-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
A number of methods have evolved through the years in probing the dysfunction that impacts mechanics and ventilation in asthma. What has been consistently found is the notion of heterogeneity that is not only captured in the frequency dependence of lung mechanics measurements but also rendered on imaging as patchy diffuse areas of ventilation defects. The degree of heterogeneity has been linked to airway hyperresponsiveness, a hallmark feature of asthma. How these heterogeneous constriction patterns lead to functional impairment in asthma have only been recently explored using computational airway tree models. By synthesizing measurements of lung mechanics and advances in imaging, computational airway tree models serve as a powerful engine to accelerate our understanding of the physiologic changes that occur in asthma. This review will be focused on the current state of investigational work on the role of heterogeneity in asthma, specifically exploring the structural and functional relationships.
Collapse
Affiliation(s)
- Justin K. Lui
- Department of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Kenneth R. Lutchen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| |
Collapse
|
21
|
Hirvensalo P, Tornio A, Neuvonen M, Tapaninen T, Paile-Hyvärinen M, Kärjä V, Männistö VT, Pihlajamäki J, Backman JT, Niemi M. Comprehensive Pharmacogenomic Study Reveals an Important Role of UGT1A3 in Montelukast Pharmacokinetics. Clin Pharmacol Ther 2017; 104:158-168. [PMID: 28940478 PMCID: PMC6033076 DOI: 10.1002/cpt.891] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/01/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022]
Abstract
To identify the genetic basis of interindividual variability in montelukast exposure, we determined its pharmacokinetics and sequenced 379 pharmacokinetic genes in 191 healthy volunteers. An intronic single nucleotide variation (SNV), strongly linked with UGT1A3*2, associated with reduced area under the plasma concentration–time curve (AUC0‐∞) of montelukast (by 18% per copy of the minor allele; P = 1.83 × 10−10). UGT1A3*2 was associated with increased AUC0‐∞ of montelukast acyl‐glucuronide M1 and decreased AUC0‐∞ of hydroxymetabolites M5R, M5S, and M6 (P < 10−9). Furthermore, SNVs in SLCO1B1 and ABCC9 were associated with the AUC0‐∞ of M1 and M5R, respectively. In addition, a candidate gene analysis suggested that CYP2C8 and ABCC9 SNVs also affect the AUC0‐∞ of montelukast. The found UGT1A3 and ABCC9 variants associated with increased expression of the respective genes in human liver samples. Montelukast and its hydroxymetabolites were glucuronidated by UGT1A3 in vitro. These results indicate that UGT1A3 plays an important role in montelukast pharmacokinetics, especially in UGT1A3*2 carriers.
Collapse
Affiliation(s)
- Päivi Hirvensalo
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuija Tapaninen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Paile-Hyvärinen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Vesa Kärjä
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Ville T Männistö
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jussi Pihlajamäki
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
22
|
Thompson MD, Sakurai T, Rainero I, Maj MC, Kukkonen JP. Orexin Receptor Multimerization versus Functional Interactions: Neuropharmacological Implications for Opioid and Cannabinoid Signalling and Pharmacogenetics. Pharmaceuticals (Basel) 2017; 10:ph10040079. [PMID: 28991183 PMCID: PMC5748636 DOI: 10.3390/ph10040079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/17/2022] Open
Abstract
Orexins/hypocretins are neuropeptides formed by proteolytic cleavage of a precursor peptide, which are produced by neurons found in the lateral hypothalamus. The G protein-coupled receptors (GPCRs) for these ligands, the OX₁ and OX₂ orexin receptors, are more widely expressed throughout the central nervous system. The orexin/hypocretin system has been implicated in many pathways, and its dysregulation is under investigation in a number of diseases. Disorders in which orexinergic mechanisms are being investigated include narcolepsy, idiopathic sleep disorders, cluster headache and migraine. Human narcolepsy has been associated with orexin deficiency; however, it has only rarely been attributed to mutations in the gene encoding the precursor peptide. While gene variations within the canine OX₂ gene hcrtr2 have been directly linked with narcolepsy, the majority of human orexin receptor variants are weakly associated with diseases (the idiopathic sleep disorders, cluster headache and polydipsia-hyponatremia in schizophrenia) or are of potential pharmacogenetic significance. Evidence for functional interactions and/or heterodimerization between wild-type and variant orexin receptors and opioid and cannabinoid receptors is discussed in the context of its relevance to depression and epilepsy.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Pediatrics, University of California, San Diego 92093, CA, USA.
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa 920-8620, Japan.
| | - Innocenzo Rainero
- Department of Neuroscience, University of Turin, Torino 10124, Italy.
| | - Mary C Maj
- Department of Biochemistry, School of Medicine, Saint George's University, Saint George's 11739, Grenada.
| | - Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki, Helsinki 11739, Finland.
- Department of Physiology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki 00100, Finland.
| |
Collapse
|
23
|
Doña I, Barrionuevo E, Salas M, Cornejo-García JA, Perkins JR, Bogas G, Prieto A, Torres MJ. Natural evolution in patients with nonsteroidal anti-inflammatory drug-induced urticaria/angioedema. Allergy 2017; 72:1346-1355. [PMID: 28226401 DOI: 10.1111/all.13147] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most frequent triggers of drug hypersensitivity with NSAIDs-induced urticaria/angioedema (NIUA) the most common phenotype. Loss of hypersensitivity has been reported for IgE-mediated reactions; however, it has not been assessed in nonimmunological reactions such as NIUA. We evaluated NSAID-hypersensitivity over time in NIUA patients. METHODS Patients confirmed as NIUA by positive drug provocation test (DPT) with acetylsalicylic acid (ASA) during 2005-2012 (V1) were included (n=38). Subjects were prospectively re-evaluated by DPT with ASA/other NSAIDs at two time points between 2013 and 2015 (V2 and V3). Atopy was assessed by skin prick test (SPT) using inhalant and food allergens. RESULTS Patients were evaluated at V1 and re-evaluated after 60 months (V2; IR:48-81) and a further 18 months (V3; IR:14-24). At V2, the majority (24; 63.15%) tolerated ASA and other NSAIDs (Group A) while 14 (36.84%) still reacted (Group B). At V3, all Group A patients remained tolerant; all Group B patients remained hypersensitive. The number of previous episodes reported at V1 and the percentage of reactions induced by ASA/ibuprofen were significantly lower in Group A (P=.005 and P=.006, respectively). Group A patients developed tolerance 72 months (IR:45-87) after their last evaluated reaction (V1); this interval was shorter in nonatopics (P=.003), patients who experienced reactions over 1 hour after NSAIDs administration (P=.001), and those who experienced isolated urticaria after NSAID intake (P=.024). CONCLUSIONS NIUA patients may develop tolerance to NSAIDs over time, a process that seems to be influenced by atopy and type of clinical reaction.
Collapse
Affiliation(s)
- I. Doña
- Allergy Unit; Regional University Hospital of Malaga-IBIMA; Malaga Spain
| | - E. Barrionuevo
- Allergy Unit; Regional University Hospital of Malaga-IBIMA; Malaga Spain
| | - M. Salas
- Allergy Unit; Regional University Hospital of Malaga-IBIMA; Malaga Spain
| | - J. A. Cornejo-García
- Research Laboratory; IBIMA-Regional University Hospital of Malaga-UMA; Malaga Spain
| | - J. R. Perkins
- Research Laboratory; IBIMA-Regional University Hospital of Malaga-UMA; Malaga Spain
| | - G. Bogas
- Allergy Unit; Regional University Hospital of Malaga-IBIMA; Malaga Spain
| | - A. Prieto
- Allergy Unit; Regional University Hospital of Malaga-IBIMA; Malaga Spain
| | - M. J. Torres
- Allergy Unit; Regional University Hospital of Malaga-IBIMA; Malaga Spain
| |
Collapse
|