1
|
Pandey P, Verma M, Sanghvi G, R R, Joshi KK, V K, Ray S, Ramniwas S, Singh A, Lakhanpal S, Khan F. Plant-derived terpenoids modulating cancer cell metabolism and cross-linked signaling pathways: an updated reviews. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03937-y. [PMID: 40019530 DOI: 10.1007/s00210-025-03937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
Cancer is a critical health issue that remains a predominant cause of mortality globally. It is a complex disease that may effectively regulate many signaling pathways and modify the metabolism of the body to evade the immune system. Understanding neoplastic metabolic reprogramming as a hallmark of cancer has facilitated the creation of innovative metabolism-targeted treatment strategies. Various signaling cascades, such as the PI3K/Akt/mTOR, ERK, JAK/STAT, MAPK/p38, NF-κB/Nrf2, and apoptotic pathways, are commonly involved in this process. It is now widely recognized that an inadequate response and the subsequent development of resistance are frequently caused by the highly selective blockage of these pathways in tumor cells. Consequently, to enhance the overall efficacy of anticancer agents, it is crucial to employ multi-target compounds that can concurrently inhibit multiple vital processes within tumor cells. The utilization of plant-derived bioactive compounds for this purpose is particularly promising, owing to their varied structures and numerous targets. Among these bioactive compounds, terpenoids have exhibited significant anticancer efficacy by targeting various altered signaling pathways. Thus, this review examines the terpenoid class of plant-derived compounds exhibiting potential anticancer activity, including their impact on metabolism and interconnected deregulated signaling pathways in human tumor cells. Accordingly, current research will help in the rational design and critical evaluation of innovative anticancer therapeutics utilizing plant-derived terpenoids for the modulation of cross-linked signaling pathways of cancer metabolism.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
- Chitkara Centre for Research and Development, Chitkara University, Himachal, Pradesh, 174103, India
| | - Meenakshi Verma
- University Centre of Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Kavitha V
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Seema Ramniwas
- University Centre of Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Ajay Singh
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India.
| |
Collapse
|
2
|
Chen C, Feng Y, Zhou C, Liu Z, Tang Z, Zhang Y, Li T, Gu C, Chen J. Development of natural product-based targeted protein degraders as anticancer agents. Bioorg Chem 2024; 153:107772. [PMID: 39243739 DOI: 10.1016/j.bioorg.2024.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a powerful approach for eliminating cancer-causing proteins through an "event-driven" pharmacological mode. Proteolysis-targeting chimeras (PROTACs), molecular glues (MGs), and hydrophobic tagging (HyTing) have evolved into three major classes of TPD technologies. Natural products (NPs) are a primary source of anticancer drugs and have played important roles in the development of TPD technology. NPs potentially expand the toolbox of TPD by providing a variety of E3 ligase ligands, protein of interest (POI) warheads, and hydrophobic tags (HyTs). As a promising direction in the TPD field, NP-based degraders have shown great potential for anticancer therapy. In this review, we summarize recent advances in the development of NP-based degraders (PROTACs, MGs and HyTing) with anticancer applications. Moreover, we put forward the challenges while presenting potential opportunities for the advancement of future targeted protein degraders derived from NPs.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanyan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Zhouyan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziwei Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Tong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenglei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Deng H, Xu Q, Li XT, Huang X, Liu JY, Yan R, Quan ZS, Shen QK, Guo HY. Design, synthesis, and evaluation of antitumor activity in Pseudolaric acid B Azole derivatives: Novel and potent angiogenesis inhibitor via regulation of the PI3K/AKT and MAPK mediated HIF-1/VEGF signaling pathway. Eur J Med Chem 2024; 278:116813. [PMID: 39226705 DOI: 10.1016/j.ejmech.2024.116813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Tumor proliferation and metastasis are intricately linked to blood vessel formation, with vascular endothelial growth factor (VEGF) playing a pivotal role in orchestrating angiogenesis throughout tumor progression. Pseudolaric acid B (PAB) has emerged as a potent inhibitor of tumor cell proliferation, migration, and angiogenesis. In efforts to enhance its efficacy, 37 derivatives of PAB were synthesized and assessed for their capacity to suppress VEGF secretion in SiHa cells under hypoxic conditions. Notably, majority of these derivatives exhibited significant inhibition of VEGF protein secretion without inducing cytotoxicity. Among them, compound M2 displayed the most potent inhibitory activity, with an IC50 value of 0.68 μM, outperforming the lead compound PAB (IC50 = 5.44 μM). Compound M2 not only curbed the migration and angiogenesis of HUVECs under hypoxic conditions but also hindered the invasion of SiHa cells. Mechanistic investigations unveiled that compound M2 may impede the accumulation and nuclear translocation of hypoxia-inducible factor 1α (HIF-1α) in SiHa cells, thereby downregulating VEGF expression. This inhibitory effect on HIF-1α was corroborated by experiments utilizing the protease inhibitor MG-132 and protein synthesis inhibitor CHX, indicating that compound M2 diminishes HIF-1α levels by reducing its synthesis. Furthermore, compound M2 was observed to modulate the PI3K/AKT/mTOR and MAPK signaling pathways in tumor cells, thereby regulating HIF-1α translation and synthesis. In vivo studies demonstrated that compound M2 exhibited low toxicity and effectively curbed tumor growth. Immunohistochemistry analyses validated that compound M2 effectively suppressed the expression of HIF-1α and VEGF in tumor tissues, underscoring its potential as a promising therapeutic agent for targeting tumor angiogenesis.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xiao-Ting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jin-Ying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Rui Yan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
4
|
Yeon Kim S, Tang M, Lu T, Chih SY, Li W. Ferroptosis in glioma therapy: advancements in sensitizing strategies and the complex tumor-promoting roles. Brain Res 2024; 1840:149045. [PMID: 38821335 PMCID: PMC11323215 DOI: 10.1016/j.brainres.2024.149045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Ferroptosis, an iron-dependent form of non-apoptotic regulated cell death, is induced by the accumulation of lipid peroxides on cellular membranes. Over the past decade, ferroptosis has emerged as a crucial process implicated in various physiological and pathological systems. Positioned as an alternative modality of cell death, ferroptosis holds promise for eliminating cancer cells that have developed resistance to apoptosis induced by conventional therapeutics. This has led to a growing interest in leveraging ferroptosis for cancer therapy across diverse malignancies. Gliomas are tumors arising from glial or precursor cells, with glioblastoma (GBM) being the most common malignant primary brain tumor that is associated with a dismal prognosis. This review provides a summary of recent advancements in the exploration of ferroptosis-sensitizing methods, with a specific focus on their potential application in enhancing the treatment of gliomas. In addition to summarizing the therapeutic potential, this review also discusses the intricate interplay of ferroptosis and its potential tumor-promoting roles within gliomas. Recognizing these dual roles is essential, as they could potentially complicate the therapeutic benefits of ferroptosis. Exploring strategies aimed at circumventing these tumor-promoting roles could enhance the overall therapeutic efficacy of ferroptosis in the context of glioma treatment.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Miaolu Tang
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Tong Lu
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Stephen Y Chih
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
5
|
Zou S, Parfenova E, Vrdoljak N, Minden MD, Spagnuolo PA. Pseudolaric Acid B Targets CD147 to Selectively Kill Acute Myeloid Leukemia Cells. Int J Mol Sci 2024; 25:6517. [PMID: 38928225 PMCID: PMC11203802 DOI: 10.3390/ijms25126517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer. With low survival rates, new drug targets are needed to improve treatment regimens and patient outcomes. Pseudolaric acid B (PAB) is a plant-derived bioactive compound predicted to interact with cluster of differentiation 147 (CD147/BSG). CD147 is a transmembrane glycoprotein overexpressed in various malignancies with suggested roles in regulating cancer cell survival, proliferation, invasion, and apoptosis. However, the detailed function of PAB in AML remains unknown. In this study, AML cell lines and patient-derived cells were used to show that PAB selectively targeted AML (IC50: 1.59 ± 0.47 µM). Moreover, proliferation assays, flow cytometry, and immunoblotting confirmed that PAB targeting of CD147 resulted in AML cell apoptosis. Indeed, the genetic silencing of CD147 significantly suppressed AML cell growth and attenuated PAB activity. Overall, PAB imparts anti-AML activity through transmembrane glycoprotein CD147.
Collapse
Affiliation(s)
- Sheng Zou
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.Z.); (E.P.)
| | - Ekaterina Parfenova
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.Z.); (E.P.)
| | - Nikolina Vrdoljak
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.Z.); (E.P.)
| | - Mark D. Minden
- Princess Margaret Cancer Center, Ontario Cancer Institute, Toronto, ON M5G 2M9, Canada;
| | - Paul A. Spagnuolo
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.Z.); (E.P.)
| |
Collapse
|
6
|
Khan F, Pandey P, Verma M, Ramniwas S, Lee D, Moon S, Park MN, Upadhyay TK, Kim B. Emerging trends of phytochemicals as ferroptosis modulators in cancer therapy. Biomed Pharmacother 2024; 173:116363. [PMID: 38479184 DOI: 10.1016/j.biopha.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Ferroptosis, a novel form of regulated cell death characterized by dependence on iron and lipid peroxidation, has been implicated in a wide range of clinical conditions including neurological diseases, cardiovascular disorders, acute kidney failure, and various types of cancer. Therefore, it is critical to suppress cancer progression and proliferation. Ferroptosis can be triggered in cancer cells and some normal cells by synthetic substances, such as erastin, Ras-selective lethal small molecule-3, or clinical pharmaceuticals. Natural bioactive compounds are traditional drug discovery tools, and some have been therapeutically used as dietary additives or pharmaceutical agents against various malignancies. The fact that natural products have multiple targets and minimal side effects has led to notable advances in anticancer research. Research has indicated that ferroptosis can also be induced by natural compounds during cancer treatment. In this review, we focused on the most recent developments in emerging molecular processes and the significance of ferroptosis in cancer. To provide new perspectives on the future development of ferroptosis-related anticancer medications, we also provide a summary of the implications of natural phytochemicals in triggering ferroptosis through ROS production and ferritinophagy induction in a variety of malignancies.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pratibha Pandey
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413, India; Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Dain Lee
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Chansol Hospital of Korean Medicine, 290, Buheung-ro, Bupyeong-gu, Incheon 21390, the Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara 391760, India
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea.
| |
Collapse
|
7
|
Liu F, Xu J, Yang R, Liu S, Hu S, Yan M, Han F. New light on treatment of cervical cancer: Chinese medicine monomers can be effective for cervical cancer by inhibiting the PI3K/Akt signaling pathway. Biomed Pharmacother 2023; 157:114084. [PMID: 36481407 DOI: 10.1016/j.biopha.2022.114084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC), as the most common malignant tumor of the female reproductive system, is infamous for its high morbidity and mortality rates. Its development and metastasis are intricate because numerous signaling pathways are involved. Since the cancer and the PI3K/Akt signaling pathway are closely intertwined, direct inhibition of either the PI3K/Akt pathway or its target genes and molecules may be remarkably constructive for treatment. Albeit remarkable advances in the treatment of CC, existing common anti-cancer medications are not without problems. These problems include myelotoxicity, cardiotoxicity, genotoxicity, and vasospasm, which are the most common and well-recognized toxicities associated with these medications. Therefore, it is necessary and urgent to develop novel, potent, secure, and more reasonably priced anticancer medications that are void of the above problems. Against this backdrop, Chinese medicine monomers have received more attention in recent years owing to their safety, low toxicity, few side effects, and anti-tumor properties. By regulating the PI3K/Akt signaling pathway, Chinese medicine monomers are effective not only in inhibiting CC growth, proliferation, apoptosis, invasion, migration, and reversing drug resistance but also in a variety of targets. Most previous earlier studies focused on the use of a single traditional Chinese medicine monomer to treat CC by regulating the PI3K/Akt signaling pathway rather than a combination of several such monomers. More importantly, to our knowledge, there has hardly been any study providing an exhaustive and comprehensive review of all the Chinese medicine monomers at CC. In response to this scarcity, we attempt in this paper to provide a comprehensive review of all the literature to date on traditional Chinese medicine monomers at cervical cancer, highlight the mechanisms and future prospects for their use in the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Fangyuan Liu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jiayue Xu
- Xi'an Hospital of Chinese Medicine, Xi'an 710021, China
| | - Rui Yang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shaoxuan Liu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Siya Hu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Mengyu Yan
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Fengjuan Han
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
8
|
Gao H, Huo L, Mo X, Jiang B, Luo Y, Xu B, Li J, Ma X, Jing T, Feng Z, Zhang T, Hu W. Suppressive effect of pseudolaric acid B on Echinococcus multilocularis involving regulation of TGF-β1 signaling in vitro and in vivo. Front Microbiol 2022; 13:1008274. [PMID: 36439797 PMCID: PMC9691991 DOI: 10.3389/fmicb.2022.1008274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Echinococcus multilocularis, the causative agent of alveolar echinococcosis (AE), severely threats human health and livestock farming. The first line of chemotherapeutic drug for AE is albendazole, which limits rapid extension of E. multilocularis metacestodes, but is rarely curative for AE, with severe side effects in long-term use, thus development of new anti-echinococcal drugs is mandated. Pseudolaric acid B (PAB) has long been used to treat fungal-infected dermatosis, and exerted anti-tumor, -fertility, -angiogenesis, -tubulin and antiparasitic activity. However, the effect of PAB against Echinococcus spp. remains unclear. The present study is to understand the effect of PAB against E. multilocularis in vitro and in vivo, and identify potential anti-echinococcal mechanism, as well as its toxicity. After exposure to PAB at 20 μg/ml, significant reduction of the survival rate and substantial ultrastructural destructions in E. multilocularis protoscoleces were observed in vitro. Furthermore, the wet weight of E. multilocularis cysts in the infected mice was significantly decreased after treatment with PAB (40, 20 or 10 mg/kg) for 12 weeks. Meanwhile, significant increase of both protein and mRNA expression of transforming growth factor beta 1 (TGF-β1) was detected in the serum and liver of the infected mice, whereas PAB administration lowered its expression significantly. The toxicity tests demonstrated that PAB displayed lower cytotoxicity to human liver and kidney cells (HL-7702 and HK-2 cell) with IC50 = 25.29 and 42.94 μg/ml than albendazole with IC50 = 3.71 and 21.22 μg/ml in vitro, and caused lower hepatoxicity and nephrotoxicity in mice than ABZ. Our findings indicated that PAB possesses potent anti-echinococcal effect, with lower toxicity than albendazole, implying a potential chemotherapeutic agent for AE. Additionally, the present study demonstrated that the suppressive effect of PAB on the parasite may involve down-regulation of TGF-β1 signaling.
Collapse
Affiliation(s)
- Haijun Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
- Ganzr Tibetan Autonomous Prefecture Center for Disease Control and Prevention, Kangding, Sichuan, China
| | - Lele Huo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Bin Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Yanping Luo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Jingzhong Li
- National Health Commission Key Laboratory of Echinococcosis Prevention and Control, Tibet Autonomous Region Center for Disease Control and Prevention, Lhasa, Tibet, China
| | - Xingming Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Tao Jing
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- National Health Commission Key Laboratory of Echinococcosis Prevention and Control, Tibet Autonomous Region Center for Disease Control and Prevention, Lhasa, Tibet, China
- *Correspondence: Ting Zhang, ; Wei Hu,
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Ting Zhang, ; Wei Hu,
| |
Collapse
|
9
|
Antitumor Effect of Pseudolaric Acid B Involving Regulation of Notch1/Akt Signaling Response in Human Hepatoma Cell In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5353686. [PMID: 35747382 PMCID: PMC9213129 DOI: 10.1155/2022/5353686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022]
Abstract
Background Liver cancer, particularly hepatocellular carcinoma (HCC), is the fourth leading cause of cancer-related death worldwide. Sorafenib is a crucial drug for the treatment of advanced HCC, but it is difficult to meet the challenge of increasing clinical demands due to its severe side effects and drug resistance. Hence, development of novel antitumor drugs is urged. Previous studies showed that pseudolaric acid B (PAB) could reduce the expression of protein kinase B (PKB/Akt), a downstream effector of Notch signaling, facilitating cell apoptosis in HCC. The disruption of Notch signaling was verified to exacerbate malignant progression and drug resistance, however, the antitumor effect of PAB on Notch signaling in HCC remains unclear. Thus, this study aims to investigate the anti-HCC effect of PAB in association with the regulation of Notch1/Akt signaling. Methods CCK-8 assay and transwell assay were used to examine the cell proliferation and invasion in Huh7 cells after treatment with PAB and a Notch inhibitor DAPT. Moreover, the cell cycle of Huh7 cells after treatment with PAB was analyzed using flow cytometry. Finally, the changes of Notch1, Jagged1, Hes1, and Akt expression at the protein and mRNA level in Notch1/Akt signaling in Huh7 cells after treatment with PAB and DAPT were analyzed using immunofluorescence assay and real-time qPCR. Results The proliferation rate of Huh7 cells exposed to PAB of 0.5, 1, 2, 4, 8, 10, 20, 40, 80, 100, and 200 μmol/L revealed a time-and dose-dependent decrease in vitro, showing cell cycle arrest at G2/M phase (P < 0.05). Furthermore, compared with the untreated group, at the concentration of 40 μmol/L, the proliferation rate and invasion rate of Huh7 cells in PAB, DAPT, and PAB-DAPT combination (PAB + DAPT) group were significantly decreased (P < 0.05), but the PAB + DAPT showed no synergistic antiproliferation and anti-invasion effect in comparison with PAB treatment alone (P > 0.05). In addition, compared with the untreated group, PAB and DAPT alone significantly downregulated the expression of Notch1, Jagged1, Hes1, Akt mRNA, or/and protein in Huh7 cells (P < 0.05), but there was no significant difference in synergistic downregulated effect between the PAB + DAPT group and the PAB group (P > 0.05). Conclusion PAB can suppress proliferation and invasion of HCC cells through downregulating the expression of Notch1/Akt signaling protein and mRNA, and may be a potential novel antitumor drug candidate for the clinical treatment of HCC in the future.
Collapse
|
10
|
Nabizadeh F, Momtaz S, Ghanbari-Movahed M, Qalekhani F, Mohsenpour H, Aneva IY, Bishayee A, Farzaei MH, Bishayee A. Pediatric acute lymphoblastic leukemia management using multitargeting bioactive natural compounds: A systematic and critical review. Pharmacol Res 2022; 177:106116. [PMID: 35122954 DOI: 10.1016/j.phrs.2022.106116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
Pediatric acute lymphoblastic leukemia (pALL), a malignancy of the lymphoid line of blood cells, accounts for a large percentage of all childhood leukemia cases. Although the 5-year survival rate for children with ALL has greatly improved over years, using chemotherapeutics as its first-line treatment still causes short- and long-term side effects. Furthermore, induction of toxicity and resistance, as well as the high cost, limit their application. Phytochemicals, with remarkable cancer preventive and chemotherapeutic characteristics, may serve as old solutions to new challenges. Bioactive plant secondary metabolites have exhibited promising antileukemic and adjunctive effects by targeting various molecular processes, including autophagy, cell cycle, angiogenesis, and extrinsic/intrinsic apoptotic pathways. Although numerous reports have shown that numerous plant secondary metabolites can interfere with the progression of malignancies, including leukemia, there was no comprehensive review article on the effect of phytochemicals on pALL. This systematic review aims to provide critical and cohesive analysis of the potential of various naturally-occurring metabolites in the management of pALL with the understanding of underlying molecular and cellular mechanisms of action.
Collapse
Affiliation(s)
- Fatemeh Nabizadeh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, Karaj 141554364, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Maryam Ghanbari-Movahed
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Farshad Qalekhani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Hadi Mohsenpour
- Department of Pediatrics, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 6742775333, Iran
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
11
|
Yu FF, Yang GH, Chen SB, Niu XL, Cai W, Tao YY, Wang XJ, Li M, Li YM, Zhao JH. Pseudolaric Acid B Attenuates High Salt Intake-Induced Hypertensive Left Ventricular Remodeling by Modulating Monocyte/Macrophage Phenotypes. Med Sci Monit 2021; 27:e932404. [PMID: 34493698 PMCID: PMC8434772 DOI: 10.12659/msm.932404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Studies in ApoE knockout mice have shown that pseudolaric acid B (PB) can act as an immunomodulatory drug and attenuate atherosclerosis progression by modulating monocyte/macrophage phenotypes. Our previous study demonstrated that high salt intake could shift the phenotype of monocytes/macrophages to an inflammatory phenotype, and that this shift was related to hypertension and hypertensive left ventricular (LV) remodeling. However, no comprehensive assessment of the effects of PB on hypertensive LV remodeling has been conducted. Material/Methods In this study, RAW264.7 macrophages cultured with different concentrations of NaCl were used to investigate the modulating effects of PB on macrophage phenotype. Furthermore, N-nitro-l-arginine methyl ester hypertensive mice were used to investigate the modulating effects of PB on monocyte phenotype. LV remodeling was investigated by echocardiography. LV morphologic staining (for cardiomyocyte hypertrophy and collagen deposition) was performed at the time of sacrifice. Results The results showed that PB significantly improved the viability of RAW264.7 cells, suppressed their phagocytic and migration abilities, and inhibited their phenotypic shift to M1 macrophages. In addition, the blood pressure of PB-treated mice was significantly decreased relative to that of control mice. Furthermore, after PB treatment, the percentage of Ly6Chi monocytes was significantly decreased while that of Ly6Clo monocytes was apparently increased. Moreover, PB preserved LV function and alleviated myocardial fibrosis and cardiomyocyte hypertrophy as measured at the end of the experimental period. The transfer of monocytes from PB-treated mice to hypertensive mice achieved the same effects. Conclusions Together, these findings indicate that PB exerts its protective effects on hypertensive LV remodeling by modulating monocyte/macrophage phenotypes and warrants further investigation.
Collapse
Affiliation(s)
- Fang-Fang Yu
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Guo-Hong Yang
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Shao-Bo Chen
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Xiu-Long Niu
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Wei Cai
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Yan-Yan Tao
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Xiu-Juan Wang
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Ming Li
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| | - Yu-Ming Li
- Department of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin, China (mainland)
| | - Ji-Hong Zhao
- Military General Medical Department, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China (mainland)
| |
Collapse
|
12
|
Li Z, Yin H, Chen W, Jiang C, Hu J, Xue Y, Yao D, Peng Y, Hu X. Synergistic Effect of Pseudolaric Acid B with Fluconazole Against Resistant Isolates and Biofilm of Candida tropicalis. Infect Drug Resist 2020; 13:2733-2743. [PMID: 32801807 PMCID: PMC7415455 DOI: 10.2147/idr.s261299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Candida tropicalis (C. tropicalis) has emerged as an important fungal pathogen due to its increasing resistance to conventional antifungal agents, especially fluconazole (FLC). Pseudolaric acid B (PAB), a herbal-originated diterpene acid from Pseudolarix kaempferi Gordon, has been reported to possess inhibitory activity against fungus. The present study aims to investigate the antifungal effect of PAB alone and in combination with FLC on planktonic and biofilm cells of C. tropicalis. Methods The antifungal activity of PAB against planktonic isolates was evaluated alone and in combination with FLC using the chequerboard microdilution method and growth curve assay. The anti-biofilm effects were quantified by tetrazolium (XTT) reduction assay, which were further confirmed by scanning electron microscopy (SEM) and fluorescent microscope to observe morphological changes of biofilm treated with PAB and FLC. Results It was revealed that PAB alone exhibited similar inhibitory activity against FLC-resistant and FLC-susceptible strains with median MIC ranging from 8 to 16 µg/mL. When administered in combination, synergism was observed in all (13/13) FLC-resistant and (2/9) FLC-susceptible strains with FICI ranging from 0.070 to 0.375. Moreover, the concomitant use of PAB and FLC exhibited a strong dose-dependent synergistic inhibitory effect on the early and mature biofilm, eliminating more than 80% biofilm formation. SEM found that PAB, different from azoles, could significantly inhibit spore germination and destroy the cell integrity causing cell deformation, swelling, collapse and outer membrane perforation. Conclusion PAB was highly active against FLC-resistant isolates and biofilm of C. tropicalis, particularly when combined with FLC. These findings suggest that PAB may have potential as a novel antifungal agent with different targets from azole drugs.
Collapse
Affiliation(s)
- Zhen Li
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hongmei Yin
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Weiqin Chen
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jun Hu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yingjun Xue
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Dongting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaobo Hu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Jiang L, Wen C, He Q, Sun Y, Wang J, Lan X, Rohondia S, Dou QP, Shi X, Liu J. Pseudolaric acid B induces mitotic arrest and apoptosis in both imatinib-sensitive and -resistant chronic myeloid leukaemia cells. Eur J Pharmacol 2020; 876:173064. [PMID: 32179085 DOI: 10.1016/j.ejphar.2020.173064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
The selective BCR-ABL tyrosine kinase inhibitor imatinib is one of the first-line therapies in the management of chronic myeloid leukaemia (CML). However, acquired resistance to this inhibitor, which is especially conferred by the T315I point mutation in BCR-ABL, impedes the efficacy of imatinib therapy. Therefore, the discovery and development of novel agents to overcome imatinib resistance is urgently needed. Pseudolaric acid B (PAB), a small molecule isolated from the traditional Chinese medicine Cortex pseudolaricis, has been reported to be a potential candidate for immune disorders and cancer treatment. However, its effects on CML and the involved molecular mechanism have not been reported. In the current study, by performing both in vitro and in vivo experiments in CML cells, we showed that PAB blocked the cell cycle at G2/M phase and subsequently activated the caspase pathway, cleaved the BCR-ABL protein and inhibited the BCR-ABL downstream pathways, ultimately leading to cell proliferation inhibition, cytotoxicity and apoptosis. These events were observed in both imatinib-sensitive and imatinib-insensitive CML cell lines. Moreover, PAB decreased the viability of primary blood mononuclear cells from CML patients and induced apoptosis in these cells. Our findings suggest that PAB could be used as a novel agent to sensitize imatinib-resistant CML.
Collapse
Affiliation(s)
- Liling Jiang
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuangyu Wen
- Department of Obstetrics and Gynaecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, China
| | - Qingyan He
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuening Sun
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinxiang Wang
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoying Lan
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sagar Rohondia
- The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Q Ping Dou
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Xianping Shi
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jinbao Liu
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Chen J, Du R, Wang W, An F, Ye L, Chen H, Jiang T, Li T, Zhao J. The anti-inflammatory effects of Pseudorlaric acid D on atherosclerosis. Biomed Pharmacother 2020; 125:109993. [PMID: 32058223 DOI: 10.1016/j.biopha.2020.109993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022] Open
Abstract
Atherosclerosis is regarded as a chronic inflammatory disease which immune response is regulated by multiple factors. Pseudorlaric acid D (PLAD) is the main bioactive component of Pseudolarix kaempferi Gorden, but little of its property has been found in the literature. We aimed to investigate the anti-inflammatory activity and the underlying mechanisms of PLAD on atherosclerosis. In this study, atherosclerosis model was established by feeding with a high-fat diet in ApoE-/- mice. PLAD was administered intragastrically at a dose of 5 mg/kg for four weeks. We found that PLAD could significantly improve the lipid metabolism and decrease atherosclerotic lesion areas as well as mitigate atherosclerotic changes on vessel walls. Besides, PLAD could markedly inhibit the inflammatory response by down-regulating the levels of Ly6Chi monocytes and NETs, and restraining NETs formation. The expression of pro-inflammatory cytokines IL-1β and IL-18 was also evidently reduced by PLAD. These results indicated that modulating the activation and recruitment of Ly6Chi monocytes and NETs could be the potential anti-inflammatory mechanisms of PLAD on atherosclerosis. PLAD might be a promising therapeutic strategy for the treatment of atherosclerosis and inflammation-related diseases.
Collapse
Affiliation(s)
- Jiayi Chen
- Faculty of Health Services, Logistics University of the Chinese People's Armed Police Force, Tianjin, China
| | - Rongxue Du
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin, China
| | - Wei Wang
- Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Fang An
- Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Lu Ye
- Faculty of Health Services, Logistics University of the Chinese People's Armed Police Force, Tianjin, China
| | - Hong Chen
- Faculty of Health Services, Logistics University of the Chinese People's Armed Police Force, Tianjin, China
| | - Tao Jiang
- Faculty of Health Services, Logistics University of the Chinese People's Armed Police Force, Tianjin, China.
| | - Tan Li
- Faculty of Health Services, Logistics University of the Chinese People's Armed Police Force, Tianjin, China.
| | - Jihong Zhao
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin, China; Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China.
| |
Collapse
|
15
|
Pseudolaric Acid B Induces Growth Inhibition and Caspase-Dependent Apoptosis on Head and Neck Cancer Cell lines through Death Receptor 5. Molecules 2019; 24:molecules24203715. [PMID: 31623058 PMCID: PMC6832876 DOI: 10.3390/molecules24203715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Pseudolaric Acid B (PAB), diterpenoid isolated from the root bark of Pseudolarix kaempferi Gordon tree (Pinaceae), exhibits an anti-proliferative and apoptotic activity in various cancer cell lines but to date, the effects of PAB on head and neck cancer (HNC) cell lines remain to be elucidated. In this study, we showed that PAB significantly inhibited the viability and caspase-dependent apoptosis in HN22 cell line. PAB-induced apoptosis is through inducing death receptor 5 (DR5) together with the increase in the expression of cleaved caspase-8. It also inhibited the proliferations and induced apoptosis through DR5 in other three HNC cell lines (HSC3, Ca9.22, and HSC4). Extending our in vitro findings, we found that ethanol extract of Pseudolarix kaempferi (2.5 mg/kg/day) reduced tumor growth in a xenograft model bearing HN22 cell line without any change in body weight. DR5 were also found to be increased in tumors tissue of PAB-treated mice without any apparent histopathological changes in liver or kidney tissues. Taken together, PAB may be a potential lead compound for chemotherapeutic agents against head and neck cancer.
Collapse
|
16
|
Guan D, Li C, Lv X, Yang Y. Pseudolaric acid B inhibits PAX2 expression through Wnt signaling and induces BAX expression, therefore promoting apoptosis in HeLa cervical cancer cells. J Gynecol Oncol 2019; 30:e77. [PMID: 31328459 PMCID: PMC6658601 DOI: 10.3802/jgo.2019.30.e77] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 01/05/2023] Open
Abstract
Objectives Pseudolaric acid B (PAB) has been shown to inhibit the growth of various tumor cells, but the molecular details of its function are still unknown. This study investigated the molecular mechanisms by which PAB induces apoptosis in HeLa cells. Methods The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to investigate the effect of PAB treatment in various cervical cancer cell lines. Annexin V/propidium iodide staining combined with flow cytometry and Hoechst 33258 staining were used to assess PAB-induced apoptosis. Additionally, we performed bioinformatics analyses and identified a paired box 2 (PAX2) binding site on the BAX promoter. We then validated the binding using luciferase and chromatin immunoprecipitation assays. Finally, western blotting assays were used to investigate PAB effect on the Wnt signaling and the involved signaling molecules. Results PAB promotes apoptosis and downregulates PAX2 expression in HeLa cells in a time- and concentration-dependent manner. PAX2 binds to the promoter of BAX and inhibits its expression; therefore, PAX2 inhibition is associated with increased levels of BAX, which induces apoptosis of HeLa cells via the mitochondrial pathway. Additionally, PAB inhibits classical Wnt signaling. Conclusion PAB effectively inhibits Wnt signaling and PAX2 expression, and increases BAX levels, which induce apoptosis in HeLa cells. Therefore, PAB is a promising natural molecule for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Defeng Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Chenyang Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yongxiu Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China.,Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
17
|
Pseudolaric acid B exhibits anti-cancer activity on human hepatocellular carcinoma through inhibition of multiple carcinogenic signaling pathways. PHYTOMEDICINE 2018; 59:152759. [PMID: 31004883 DOI: 10.1016/j.phymed.2018.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pseudolaric acid B (PAB), a diterpene acid isolated from the root bark of Pseudolarix kaempferi, exhibits a potent anti-cancer activity in a variety of tumor cells. PURPOSE The present study was designed to evaluate the anti-cancer effects of PAB on hepatocellular carcinoma (HCC) cell lines in vitro, and to explore the underlying mechanism. METHODS The anti-proliferative activity of PAB on HCC cells were assessed via sulforhodamine B staining, colony formation, cell cycle analysis, respectively. Apoptosis was detected using Annexin V/propidium iodide double staining and diamidino-phenyl-indole staining, respectively. Protein expression regulated by PAB treatment was tested by western blotting. RESULTS The present results showed that PAB significantly inhibited the proliferation of HepG2, SK-Hep-1, and Huh-7 HCC cell lines in vitro with IC50 values of 1.58, 1.90, and 2.06 μM, respectively. Furthermore, PAB treatment repressed the colony formation in HepG2, SK-Hep-1, and Huh-7 HCC cell lines. Flow cytometry analysis revealed that PAB caused an obvious cell cycle arrest in G2/M phase and induced apoptosis with the induction of p21, Bax, cleaved-caspase-3, and cleaved-PARP in human HepG2 and SK-Hep-1 cells. Mechanistically, PAB treatment down-regulated the phosphorylation of STAT3, ERK1/2, and Akt. Moreover, abnormal GSK-3β/β-catenin signaling in HepG2 cells was remarkably suppressed by PAB treatment. Finally, proliferation markers including cyclin D1 and c-Myc, and anti-apoptosis proteins such as Bcl-2 and survivin were also down-regulated by PAB treatment in HepG2 cells. CONCLUSION Taken together, our results suggest that PAB exerts anti-cancer activity in HCC cells through inhibition of STAT3, ERK1/2, Akt, and GSK-3β/β-catenin carcinogenic signaling pathways, and may be used as a phytomedicine in the treatment of HCC.
Collapse
|
18
|
Wang Z, Ding Y, Wang X, Lu S, Wang C, He C, Wang L, Piao M, Chi G, Luo Y, Ge P. Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT. Cancer Lett 2018; 428:21-33. [DOI: 10.1016/j.canlet.2018.04.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
|
19
|
Pseudolaric acid B attenuates atherosclerosis progression and inflammation by suppressing PPARγ-mediated NF-κB activation. Int Immunopharmacol 2018; 59:76-85. [DOI: 10.1016/j.intimp.2018.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 12/12/2022]
|