1
|
Maria Frare J, Rodrigues P, Andrighetto Ruviaro N, Trevisan G. Chronic post-ischemic pain (CPIP) a model of complex regional pain syndrome (CRPS-I): Role of oxidative stress and inflammation. Biochem Pharmacol 2024; 229:116506. [PMID: 39182734 DOI: 10.1016/j.bcp.2024.116506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Complex regional pain syndrome (CRPS) presents as a persistent and distressing pain condition often stemming from limb trauma or ischemia, manifesting as either CRPS-I (without initial nerve injury) or CRPS-II (accompanied by nerve injury). Despite its prevalence and significant impact on functionality and emotional well-being, standard treatments for CRPS remain elusive. The multifaceted nature of CRPS complicates the identification of its underlying mechanisms. In efforts to elucidate these mechanisms, researchers have turned to animal models such as chronic post-ischemic pain (CPIP), which mirrors the symptoms of CRPS-I. Various mechanisms have been proposed to underlie the acute and chronic pain experienced in CRPS-I, including oxidative stress and inflammation. Traditional treatment approaches often involve antidepressants, non-steroidal anti-inflammatory drugs (NSAIDs), and opioids. However, these methods frequently fall short of providing adequate relief. Accordingly, there is a growing interest in exploring alternative treatments, such as antioxidant supplementation, anti-inflammatory agents, and non-pharmacological interventions. Future research directions should focus on optimizing treatment strategies and addressing remaining gaps in knowledge to improve patient outcomes. This review aims to delve into the pathophysiological mechanisms implicated in the CPIP model, specifically focusing on oxidative stress and inflammation, with the ultimate goal of proposing innovative therapeutic strategies for alleviating the symptoms of CRPS-I.
Collapse
Affiliation(s)
- Julia Maria Frare
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Patrícia Rodrigues
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Náthaly Andrighetto Ruviaro
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Gabriela Trevisan
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil; Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
2
|
Einhorn LM, Hudon J, Ingelmo P. The Pharmacological Treatment of Neuropathic Pain in Children. Curr Neuropharmacol 2024; 22:38-52. [PMID: 37539933 PMCID: PMC10716891 DOI: 10.2174/1570159x21666230804110858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 08/05/2023] Open
Abstract
The International Association for the Study of Pain (IASP) defines neuropathic pain as pain caused by a lesion or disease of the somatosensory nervous system. It is characterized as a clinical condition in which diagnostic studies reveal an underlying cause of an abnormality in the peripheral or central nervous system. Many common causes of neuropathic pain in adults are rare in children. The purpose of this focused narrative review is, to 1) provide an overview of neuropathic pain in children, 2) highlight unique considerations related to the diagnosis and mechanisms of neuropathic pain in children, and 3) perform a comprehensive analysis of the pharmacological treatments available. We emphasize that data for routine use of pharmacological agents in children with neuropathic pain are largely inferred from adult literature with little research performed on pediatric populations, yet have clear evidence of harms to pediatric patients. Based on these findings, we propose risk mitigation strategies such as utilizing topical treatments whenever possible, assessing pain phenotyping to guide drug class choice, and considering pharmaceuticals in the broader context of the multidisciplinary treatment of pediatric pain. Furthermore, we highlight important directions for future research on pediatric neuropathic pain treatment.
Collapse
Affiliation(s)
- Lisa M. Einhorn
- Department of Anesthesiology, Pediatric Division, Duke University School of Medicine, Durham, North Carolina, United States
| | - Jonathan Hudon
- Division of Secondary Care, Department of Family Medicine, McGill University Health Centre, Montreal, Qc, Canada
- Palliative Care Division, Jewish General Hospital, Montreal, Qc, Canada
- Alan Edwards Pain Management Unit, Montreal General Hospital, McGill University Health Center, Montreal, Qc, Canada
- Alan Edwards Centre for Pain Research, McGill University, Montreal, Canada
- Edwards Family Interdisciplinary Centre for Complex Pain, Montreal Children’s Hospital, McGill University Health Center, Montreal, Canada
| | - Pablo Ingelmo
- Alan Edwards Centre for Pain Research, McGill University, Montreal, Canada
- Edwards Family Interdisciplinary Centre for Complex Pain, Montreal Children’s Hospital, McGill University Health Center, Montreal, Canada
- Research Institute of the McGill University Health Center, Montreal, Canada
- Department of Pediatric Anesthesia, Montreal Children’s Hospital, McGill University Health Center, Montréal, QC, Canada
| |
Collapse
|
3
|
Systemic, Intrathecal, and Intracerebroventricular Antihyperalgesic Effects of the Calcium Channel Blocker CTK 01512–2 Toxin in Persistent Pain Models. Mol Neurobiol 2022; 59:4436-4452. [DOI: 10.1007/s12035-022-02864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
|
4
|
Okumo T, Takayama Y, Maruyama K, Kato M, Sunagawa M. Senso-Immunologic Prospects for Complex Regional Pain Syndrome Treatment. Front Immunol 2022; 12:786511. [PMID: 35069559 PMCID: PMC8767061 DOI: 10.3389/fimmu.2021.786511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Complex regional pain syndrome (CRPS) is a chronic pain syndrome that occurs in tissue injuries as the result of surgery, trauma, or ischemia. The clinical features of this severely painful condition include redness and swelling of the affected skin. Intriguingly, it was recently suggested that transient receptor potential ankyrin 1 (TRPA1) is involved in chronic post-ischemia pain, a CRPS model. TRPA1 is a non-selective cation channel expressed in calcitonin gene-related peptide (CGRP)-positive primary nociceptors that becomes highly activated in ischemic conditions, leading to the generation of pain. In this review, we summarize the history of TRPA1 and its involvement in pain sensation, inflammation, and CRPS. Furthermore, bone atrophy is also thought to be a characteristic clinical sign of CRPS. The altered bone microstructure of CRPS patients is thought to be caused by aggravated bone resorption via enhanced osteoclast differentiation and activation. Although TRPA1 could be a target for pain treatment in CRPS patients, we also discuss the paradoxical situation in this review. Nociceptor activation decreases the risk of bone destruction via CGRP secretion from free nerve endings. Thus, TRPA1 inhibition could cause severe bone atrophy. However, the suitable therapeutic strategy is controversial because the pathologic mechanisms of bone atrophy in CRPS are unclear. Therefore, we propose focusing on the remission of abnormal bone turnover observed in CRPS using a recently developed concept: senso-immunology.
Collapse
Affiliation(s)
- Takayuki Okumo
- Department of Physiology, Showa University School of Medicine, Shinagawa, Japan
| | - Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, Shinagawa, Japan
| | - Kenta Maruyama
- Department of Physiology, Showa University School of Medicine, Shinagawa, Japan.,Division of Cell Signaling, National Institute for Physiological Sciences, Natural Institutes for Natural Sciences, Okazaki, Japan
| | - Mami Kato
- Department of Physiology, Showa University School of Medicine, Shinagawa, Japan.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Sunagawa
- Department of Physiology, Showa University School of Medicine, Shinagawa, Japan
| |
Collapse
|
5
|
Wang C, Xu B, Wang P, Yu W, Zeng X, Xiong N, Yin P, Liu Q, Lin H. Association of dyslipidemia with chronic non-malignant pain in elderly patients with femoral neck fractures treated by primary total hip arthroplasty: a retrospective study. J Int Med Res 2021; 49:3000605211045224. [PMID: 34590917 PMCID: PMC8489765 DOI: 10.1177/03000605211045224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The association of chronic non-malignant pain (CNP) with dyslipidemia is unclear. This retrospective study was performed to evaluate the association between CNP and dyslipidemia in elderly patients with femoral neck fractures (FNFs) treated by primary unilateral total hip arthroplasty (THA). METHODS We retrospectively identified 521 consecutive patients with FNFs (AO/OTA type 31B) who underwent primary unilateral THA from 2009 to 2021. The study population was divided into patients with and without CNP. Serum lipids were measured for each patient. The association between CNP and dyslipidemia was assessed using a multivariate binary logistic regression model. RESULTS In total, 436 patients (220 with CNP, 216 without CNP) were eligible for analysis. In the quantile regression, the adverse effect of CNP was significantly attenuated by resilience in patients with a high high-density lipoprotein (HDL) concentration and low low-density lipoprotein (LDL) concentration. The multivariate binary logistic regression model showed that the HDL and LDL concentrations were the only variables significantly associated with the development of CNP. CONCLUSION Both a low HDL and high LDL concentration may result in the occurrence of CNP in elderly patients with FNFs treated by primary unilateral THA.
Collapse
Affiliation(s)
- Chen Wang
- Department of Anaesthesiology, Wuhan Fourth Hospital; Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, China
| | - Bo Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Pengfei Wang
- Department of Emergency Medicine, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Haizhu District, Guangzhou, China
| | - Weiguang Yu
- Department of Orthopaedics, The First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Xianshang Zeng
- Department of Orthopaedics, The First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Nana Xiong
- Department of Orthopaedics, The First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Pingping Yin
- Department of Anaesthesiology, Wuhan Fourth Hospital; Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, Wuhan, China
| | - Qilong Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| | - Huanyi Lin
- Department of Urinary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Yuexiu District, Guangzhou, China
| |
Collapse
|
6
|
Pousinis P, Gowler PRW, Burston JJ, Ortori CA, Chapman V, Barrett DA. Lipidomic identification of plasma lipids associated with pain behaviour and pathology in a mouse model of osteoarthritis. Metabolomics 2020; 16:32. [PMID: 32108917 PMCID: PMC7046574 DOI: 10.1007/s11306-020-01652-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/19/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Osteoarthritis (OA) is the most common form of joint disease, causing pain and disability. Previous studies have demonstrated the role of lipid mediators in OA pathogenesis. OBJECTIVES To explore potential alterations in the plasma lipidomic profile in an established mouse model of OA, with a view to identification of potential biomarkers of pain and/or pathology. METHODS Pain behaviour was assessed following destabilisation of the medial meniscus (DMM) model of OA (n = 8 mice) and compared to sham controls (n = 7). Plasma and knee joints were collected at 16 weeks post-surgery. Plasma samples were analysed using ultra-high performance liquid chromatography accurate mass high resolution mass spectrometry (UHPLC-HR-MS) to identify potential differences in the lipidome, using multivariate and univariate statistical analyses. Correlations between pain behaviour, joint pathology and levels of lipids were investigated. RESULTS 24 lipids, predominantly from the lipid classes of cholesterol esters (CE), fatty acids (FA), phosphatidylcholines (PC), N-acylethanolamines (NAE) and sphingomyelins (SM), were differentially expressed in DMM plasma compared to sham plasma. Six of these lipids which were increased in the DMM model were identified as CE(18:2), CE(20:4), CE(22:6), PC(18:0/18:2), PC(38:7) and SM(d34:1). CEs were positively correlated with pain behaviour and all six lipid species were positively correlated with cartilage damage. Pathways shown to be involved in altered lipid homeostasis in OA were steroid biosynthesis and sphingolipid metabolism. CONCLUSION We identify plasma lipid species associated with pain and/or pathology in a DMM model of OA.
Collapse
Affiliation(s)
- P Pousinis
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - P R W Gowler
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - J J Burston
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - C A Ortori
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - V Chapman
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK.
- School of Life Sciences, University of Nottingham, Nottingham, UK.
| | - D A Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Cavalli E, Mammana S, Nicoletti F, Bramanti P, Mazzon E. The neuropathic pain: An overview of the current treatment and future therapeutic approaches. Int J Immunopathol Pharmacol 2019; 33:2058738419838383. [PMID: 30900486 PMCID: PMC6431761 DOI: 10.1177/2058738419838383] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neuropathic pain is characterized by abnormal hypersensitivity to stimuli (hyperalgesia) and nociceptive responses to non-noxious stimuli (allodynia). The conditions and the pathophysiological states that determine the onset of neuropathic pain are heterogeneous, such as metabolic disorders, neuropathy caused by viral infections, and autoimmune diseases affecting the central nervous system (CNS). Neuropathic pain in the general population is estimated to have a prevalence ranging between 3% and 17%. Most of the available treatments for neuropathic pain have moderate efficacy and present side effects that limit their use; therefore, other therapeutic approaches are needed for patients. In this article, the current standard of care treatment, the emerging pharmacological approaches from the completed phase III clinical trials, and the preclinical studies on novel promising therapeutic options will be reviewed.
Collapse
Affiliation(s)
| | - Santa Mammana
- 1 I.R.C.C.S. Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Ferdinando Nicoletti
- 2 Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | | |
Collapse
|
8
|
Hu Q, Wang Q, Wang C, Tai Y, Liu B, Shao X, Fang J, Liu B. TRPV1 Channel Contributes to the Behavioral Hypersensitivity in a Rat Model of Complex Regional Pain Syndrome Type 1. Front Pharmacol 2019; 10:453. [PMID: 31105572 PMCID: PMC6498414 DOI: 10.3389/fphar.2019.00453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Complex regional pain syndrome type 1 (CRPS-I) is a debilitating pain condition that significantly affects life quality of patients. It remains a clinically challenging condition and the mechanisms of CRPS-I have not been fully elucidated. Here, we investigated the involvement of TRPV1, a non-selective cation channel important for integrating various painful stimuli, in an animal model of CRPS-I. A rat model of chronic post-ischemia pain (CPIP) was established to mimic CRPS-I. TRPV1 expression was significantly increased in hind paw tissue and small to medium-sized dorsal root ganglion (DRG) neurons of CPIP rats. CPIP rats showed increased TRPV1 current density and capsaicin responding rate in small-sized nociceptive DRG neurons. Local pharmacological blockage of TRPV1 with the specific antagonist AMG9810, at a dosage that does not produce hyperthermia or affect thermal perception or locomotor activity, effectively attenuated thermal and mechanical hypersensitivity in bilateral hind paws of CPIP rats and reduced the hyperexcitability of DRG neurons induced by CPIP. CPIP rats showed bilateral spinal astrocyte and microglia activations, which were significantly attenuated by AMG9810 treatment. These findings identified an important role of TRPV1 in mediating thermal and mechanical hypersensitivity in a CRPS-I animal model and further suggest local pharmacological blocking TRPV1 may represent an effective approach to ameliorate CRPS-I.
Collapse
Affiliation(s)
- Qimiao Hu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Qiong Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Nahm FS, Nahm SS, Han WK, Gil HY, Choi E, Lee PB. Increased cerebral nuclear factor kappa B in a complex regional pain syndrome rat model: possible relationship between peripheral injury and the brain. J Pain Res 2019; 12:909-914. [PMID: 30881100 PMCID: PMC6408925 DOI: 10.2147/jpr.s166270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Complex regional pain syndrome (CRPS) is a rare but refractory pain disorder. Recent advanced information retrieval studies using text-mining and network analysis have suggested nuclear factor kappa B (NFκB) as a possible central mediator of CRPS. The brain is also known to play important roles in CRPS. The aim of this study was to evaluate changes in cerebral NFκB in rats with CRPS. Materials and methods The chronic post-ischemia perfusion (CPIP) model was used as the CRPS animal model. O-rings were applied to the left hind paws of the rats. The rats were categorized into three groups according to the results of behavioral tests: the CPIP-positive (A) group, the CPIP-negative (B) group, and the control (C) group. Three weeks after the CPIP procedure, the right cerebrums of the animals were harvested to measure NFκB levels using an ELISA. Results Animals in group A had significantly decreased mechanical pain thresholds (P<0.01) and significantly increased cerebral NFκB when compared to those in groups B and C (P=0.024). Conclusion This finding indicates that peripheral injury increases cerebral NFκB levels and implies that minor peripheral injury can lead to the activation of pain-related cerebral processes in CRPS.
Collapse
Affiliation(s)
- Francis Sahngun Nahm
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea, .,College of Medicine, Seoul National University, Seoul, South Korea,
| | - Sang-Soep Nahm
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Woong Ki Han
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea,
| | - Ho Young Gil
- Department of Anesthesiology and Pain Medicine, Ajou University Hospital, Suwon, South Korea
| | - Eunjoo Choi
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea,
| | - Pyung Bok Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea, .,College of Medicine, Seoul National University, Seoul, South Korea,
| |
Collapse
|