1
|
Li Y, Li G, Feng J, Li S, Liu N. Advances in Research on Marine Natural Products for Modulating the Inflammatory Microenvironment. Phytother Res 2025; 39:1238-1258. [PMID: 39844461 DOI: 10.1002/ptr.8418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
In recent years, marine natural products (MNPs) have emerged as crucial sources of lead compounds for the advancement of anti-inflammatory drugs due to their abundant diversity, complexity, and distinctiveness. Inflammatory microenvironments (IMEs) are pervasive pathological features in the etiology of various chronic diseases, referring to the localized milieu or ecosystem where inflammatory responses occur, and they play a pivotal role in the onset and progression of inflammatory diseases. Uncontrolled IMEs can lead to dysregulation of inflammatory mediators within signaling pathways, thereby exerting detrimental effects on human health and even contributing to the development of inflammatory diseases such as cancer. Currently, inflammation treatment predominantly relies on chemical drugs. Nevertheless, these existing therapies are constrained by their numerous side effects and slow remission of symptoms. Consequently, there is an urgent need for the discovery and development of new drugs that exhibit minimal side effects while exerting potent anti-inflammatory effects. This article extensively explored the activities and mechanisms of MNPs (covering studies from 2010 to 2024) regulating key signaling pathways and inflammatory mediators in the IME, which establishes a theoretical basis for the further development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yuru Li
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangjie Li
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingwen Feng
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Ning Liu
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| |
Collapse
|
2
|
Bioactive compounds from mushrooms: Emerging bioresources of food and nutraceuticals. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Stanković M, Mitić V, Stankov Jovanović V, Dimitrijević M, Nikolić J, Stojanović G. Selected fungi of the genus Lactarius - screening of antioxidant capacity, antimicrobial activity, and genotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:699-714. [PMID: 35591784 DOI: 10.1080/15287394.2022.2075502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is well-known that mushrooms of the genus Lactarius constitute a natural food resource providing health benefits as a nutritient. This genus contains 4 mushrooms identified as L. deliciosus, L. volemus, L. sanguifluus, L. semisanguifluus and L. piperatus which were collected in Serbia. The aim of this study aimed was to identify and characterize the content of phenolic compounds and examine the antioxidant potential of 5 wild edible mushrooms. L. sanguifluus contained the highest content of total phenol compounds (75.25 mg gallic acid equivalents (GAE) per g dry extract weight (GAE/g DE) and exhibited the greatest antioxidant activity through the ability to remove radicals as evidenced by ABTS assay (8.99 mg of trolox equivalents (TE) per g dry extract weight (mg TE/g DE); total reducing power (TRP) assay mg ascorbic acid equivalents per mg of dry extract weight (0.42 mg AAE/g DE) and CUPRAC (14.23 mg TE /g DE). L. deliciosus methanolic extract produced greatest scavenging of the DPPH radical (46%). The methanol mushroom extracts were screened for in vitro antimicrobial activity against a panel of pathogenic bacterial strains using the microdilution method. Of all the extracts tested, L. sanguifluus extract showed the best antibacterial properties. The cytokinesis block micronucleus assay results for the examined mushrooms demonstrated that extracts at a concentration of 3 μg/ml decreased the number of micronuclei (MN) in the range of 19-49% which is significant bearing in mind that radioprotectant amifostine reduced the frequency of MN by only 16.3%. Data thus demonstrate that the 5 wild edible mushrooms of genus Lactarius contain constituents that are beneficial not only as nutrients but also have the potential as antioxidants, antibacterial and antigenotoxic properties.
Collapse
Affiliation(s)
| | - Violeta Mitić
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | | | | | - Jelena Nikolić
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Gordana Stojanović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| |
Collapse
|
4
|
Arunachalam K, Sreeja PS, Yang X. The Antioxidant Properties of Mushroom Polysaccharides can Potentially Mitigate Oxidative Stress, Beta-Cell Dysfunction and Insulin Resistance. Front Pharmacol 2022; 13:874474. [PMID: 35600869 PMCID: PMC9117613 DOI: 10.3389/fphar.2022.874474] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Diabetes mellitus is a prevalent metabolic and endocrine illness affecting people all over the world and is of serious health and financial concern. Antidiabetic medicine delivered through pharmacotherapy, including synthetic antidiabetic drugs, are known to have several negative effects. Fortunately, several natural polysaccharides have antidiabetic properties, and the use of these polysaccharides as adjuncts to conventional therapy is becoming more common, particularly in underdeveloped nations. Oxidative stress has a critical role in the development of diabetes mellitus (DM). The review of current literature presented here focusses, therefore, on the antioxidant properties of mushroom polysaccharides used in the management of diabetic complications, and discusses whether these antioxidant properties contribute to the deactivation of the oxidative stress-related signalling pathways, and to the amelioration of β-cell dysfunction and insulin resistance. In this study, we conducted a systematic review of the relevant information concerning the antioxidant and antidiabetic effects of mushrooms from electronic databases, such as PubMed, Scopus or Google Scholar, for the period 1994 to 2021. In total, 104 different polysaccharides from mushrooms have been found to have antidiabetic effects. Most of the literature on mushroom polysaccharides has demonstrated the beneficial effects of these polysaccharides on reactive oxygen and nitrogen species (RONS) levels. This review discuss the effects of these polysaccharides on hyperglycemia and other alternative antioxidant therapies for diabetic complications through their applications and limits, in order to gain a better understanding of how they can be used to treat DM. Preclinical and phytochemical investigations have found that most of the active polysaccharides extracted from mushrooms have antioxidant activity, reducing oxidative stress and preventing the development of DM. Further research is necessary to confirm whether mushroom polysaccharides can effectively alleviate hyperglycemia, and the mechanisms by which they do this, and to investigate whether these polysaccharides might be utilized as a complementary therapy for the prevention and management of DM in the future.
Collapse
Affiliation(s)
- Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Ansari P, Flatt PR, Harriott P, Abdel-Wahab YHA. Insulin secretory and antidiabetic actions of Heritiera fomes bark together with isolation of active phytomolecules. PLoS One 2022; 17:e0264632. [PMID: 35239729 PMCID: PMC8893667 DOI: 10.1371/journal.pone.0264632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
In folklore, Heritiera fomes (H. fomes) has been extensively used in treatment of various ailments such as diabetes, cardiac and hepatic disorders. The present study aimed to elucidate the antidiabetic actions of hot water extract of H. fomes (HWHF), including effects on insulin release from BRIN BD11 cells and isolated mouse islets as well as glucose homeostasis in high-fat-fed rats. Molecular mechanisms underlying anti-diabetic activity along with isolation of active compounds were also evaluated. Non-toxic concentrations of HWHF stimulated concentration-dependent insulin release from isolated mouse islets and clonal pancreatic β-cells. The stimulatory effect was potentiated by glucose and isobutyl methylxanthine (IBMX), persisted in presence of tolbutamide or a depolarizing concentration of KCl but was attenuated by established inhibitors of insulin release such as diazoxide, verapamil, and Ca2+ chelation. HWHF caused depolarization of the β-cell membrane and increased intracellular Ca2+. The extract also enhanced glucose uptake and insulin action in 3T3-L1 differentiated adipocytes cells and significantly inhibited in a dose-dependent manner starch digestion, protein glycation, DPP-IV enzyme activity, and glucose diffusion in vitro. Oral administration of HWHF (250 mg/5ml/kg b.w.) to high-fat fed rats significantly improved glucose tolerance and plasma insulin responses and it inhibited plasma DPP-IV activity. HWHF also decreased in vivo glucose absorption and intestinal disaccharidase activity while increasing gastrointestinal motility and unabsorbed sucrose transit. Compounds were isolated from HWHF with similar molecular weights to quercitrin (C21 H20 O11) ranging from 447.9 to 449.9 Da which stimulated the insulin release in vitro and improved both glucose tolerance and plasma insulin responses in mice. In conclusion, H. fomes and its water-soluble phytochemicals such as quercitrin may exert antidiabetic actions mediated through a variety of mechanisms which might be useful as dietary adjunct in the management of type 2 diabetes.
Collapse
Affiliation(s)
- Prawej Ansari
- School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Dhaka, Bangladesh
| | - Peter R. Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Patrick Harriott
- School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Yasser H. A. Abdel-Wahab
- School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| |
Collapse
|
6
|
Ansari P, Azam S, Seidel V, Abdel-Wahab YHA. In vitro and in vivo antihyperglycemic activity of the ethanol extract of Heritiera fomes bark and characterization of pharmacologically active phytomolecules. J Pharm Pharmacol 2022; 74:rgac010. [PMID: 35230449 DOI: 10.1093/jpp/rgac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/06/2022] [Indexed: 02/21/2024]
Abstract
OBJECTIVE This study aimed to demonstrate the mechanistic basis of Heritiera fomes, which has traditionally been used to treat diabetes. METHODS Clonal pancreatic β-cells and primary islets were used to measure insulin release. 3T3-L1 cells were used to analyse insulin action, and in vitro systems were used to measure further glucose-lowering activity. In vivo assessment was performed on streptozotocin (STZ)-induced type-2 diabetic rats and reversed-phase-HPLC followed by liquid chromatography mass spectrometry (LC-MS) to detect bioactive molecules. KEY FINDINGS Ethanol extract of Heritiera fomes (EEHF) significantly increased insulin release with stimulatory effects comparable to 1 µM glucagon-like peptide 1, which were somewhat reduced by diazoxide, verapamil and calcium-free conditions. Insulin release was stimulated by tolbutamide, isobutyl methylxanthine and KCl. EEHF induced membrane depolarization and increased intracellular Ca2+ levels. EEHF enhanced glucose uptake in 3T3L1 cells and decreased protein glycation. EEHF significantly inhibited postprandial hyperglycaemia following sucrose loading and inversely elevated unabsorbed sucrose concentration in the gut. It suppressed glucose absorption during in situ gut perfusion. Furthermore, EEHF improved glucose tolerance, plasma insulin and gut motility, and decreased plasma dipeptidyl peptidase IV activity. Procyanidins, epicatechin and proanthocyanidins were some of the identified bioactive constituents that may involve in β-cell actions. CONCLUSIONS This study provides some evidence to support the use of H. fomes as an antidiabetic traditional remedy.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, Independent University, Dhaka, Bangladesh
- School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Shofiul Azam
- Department of Biotechnology, Graduate School, Konkuk University, Chungju, Korea
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | |
Collapse
|
7
|
Ansari P, Flatt PR, Harriott P, Hannan JMA, Abdel-Wahab YHA. Identification of Multiple Pancreatic and Extra-Pancreatic Pathways Underlying the Glucose-Lowering Actions of Acacia arabica Bark in Type-2 Diabetes and Isolation of Active Phytoconstituents. PLANTS (BASEL, SWITZERLAND) 2021; 10:1190. [PMID: 34208010 PMCID: PMC8230611 DOI: 10.3390/plants10061190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022]
Abstract
Acacia arabica is used traditionally to treat a variety of ailments, including diabetes. This study elucidated the antidiabetic actions of A. arabica bark together with the isolation of bioactive molecules. Insulin secretion and signal transduction were measured using clonal β cells and mouse islets. Glucose uptake was assessed using 3T3-L1 adipocytes, and in vitro systems assessed additional glucose-lowering actions. High-fat-fed (HFF) obese rats were used for in vivo evaluation, and phytoconstituents were isolated and characterised by RP-HPLC followed by LC-MS and NMR. Hot-water extract of A. arabica (HWAA) increased insulin release from clonal β cells and mouse islets by 1.3-6.8-fold and 1.6-3.2-fold, respectively. Diazoxide, verapamil and calcium-free conditions decreased insulin-secretory activity by 30-42%. In contrast, isobutylmethylxanthine (IBMX), tolbutamide and 30 mM KCl potentiated the insulin-secretory effects. The mechanism of actions of HWAA involved membrane depolarisation and elevation of intracellular Ca2+ together with an increase in glucose uptake by 3T3-L1 adipocytes, inhibition of starch digestion, glucose diffusion, dipeptidyl peptidase-IV (DPP-IV) enzyme activity and protein glycation. Acute HWAA administration (250 mg/5 mL/kg) enhanced glucose tolerance and plasma insulin in HFF obese rats. Administration of HWAA (250 mg/5 mL/kg) for 9 days improved glucose homeostasis and β-cell functions, thereby improving glycaemic control, and circulating insulin. Isolated phytoconstituents, including quercetin and kaempferol, increased insulin secretion in vitro and improved glucose tolerance. The results indicate that HWAA has the potential to treat type 2 diabetes as a dietary supplement or as a source of antidiabetic agents, including quercetin and kaempferol.
Collapse
Affiliation(s)
- Prawej Ansari
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (P.H.); (Y.H.A.A.-W.)
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh;
| | - Peter R. Flatt
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (P.H.); (Y.H.A.A.-W.)
| | - Patrick Harriott
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (P.H.); (Y.H.A.A.-W.)
| | - J. M. A. Hannan
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh;
| | - Yasser H. A. Abdel-Wahab
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (P.H.); (Y.H.A.A.-W.)
| |
Collapse
|
8
|
Chibuogwu CC, Asomadu RO, Okagu IU, Nkwocha CC, Amadi BC. Attenuation of glycation and biochemical aberrations in fructose‐loaded rats by polyphenol‐rich ethyl acetate fraction of Parkia biglobosa (jacq.) Benth. (Mimosaceae) leaves. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00277-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
Different parts of the Parkia biglobosa plant are employed in traditional medicine in different African communities. However, information ratifying its use and biochemical influence on health is still scanty in literature. Thus, the present study assessed the influence of the ethyl acetate fraction of Parkia biglobosa leaves (EAFPB) on some biochemical parameters of sub-chronic fructose-loaded rats.
Methodology
Twenty-five Wistar rats were randomized into five groups (n = 5). The normal control group was maintained on normal diet only while the high fructose solution (HFS) control (placebo), reference and treatment groups received high fructose solution (3 g/kg/d b.w of fructose) for 30 days before treatment. Based on pilot study, two doses (100 and 200 mg/kg/d b.w) of EAFPB were selected and were administered to two groups of test animals while the reference group received 300 mg/kg/d b.w. of metformin for 14 days. Thereafter, blood was collected from fasted animals for biochemical analyses for the examination of level of glycated hemoglobin (HbA1c), liver status (alanine and aspartate aminotransferases (ALT and AST) and alkaline phosphatase (ALP) activities, and bilirubin level), lipid profile (total cholesterol, triglyceride, and low- and high-density lipoproteins levels) and lipid peroxidation (malondialdehyde – MDA level).
Results
EAFPB was shown to have a good DPPH radical scavenging activity (EC50 = 0.395 mg/ml). Chromatographic analysis of EAFPB revealed 28 known flavonoids (mainly kaempferol (21.31 mg/100 g), quercetin (12.84 mg/100 g), and luteolin (6.75 mg/100 g)), four hydrocinnamic acids derivatives (mainly P-coumaric acid (6.73 mg/100 g)), and 11 phenolic acids derivatives (mainly chlorogenic acid (48.18 mg/100 g) and protocatechuic acid (21.58 mg/100 g)). Relative to normal control, it was observed that fructose overload significantly increased serum activities of ALP, ALT, and AST, and levels of MDA, total cholesterol, low density lipoprotein and triglyceride in placebo. However, EAFPB significantly tapered the elevated serum activities of ALP, ALT, and AST. In addition, relative to placebo, the increased levels of HbA1c, MDA, and lipid health markers were also rebated by EAFPB.
Conclusions
Ethyl acetate fraction of Parkia biglobosa leaves attenuates biochemical aberrations in fructose-loaded rats, an effect attributable to the rich store of polyphenolic compounds in the fraction.
Graphical abstract
Collapse
|
9
|
Pinto G, De Pascale S, Aponte M, Scaloni A, Addeo F, Caira S. Polyphenol Profiling of Chestnut Pericarp, Integument and Curing Water Extracts to Qualify These Food By-Products as a Source of Antioxidants. Molecules 2021; 26:molecules26082335. [PMID: 33920529 PMCID: PMC8073822 DOI: 10.3390/molecules26082335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/19/2023] Open
Abstract
Plant polyphenols have beneficial antioxidant effects on human health; practices aimed at preserving their content in foods and/or reusing food by-products are encouraged. The impact of the traditional practice of the water curing procedure of chestnuts, which prevents insect/mould damage during storage, was studied to assess the release of polyphenols from the fruit. Metabolites extracted from pericarp and integument tissues or released in the medium from the water curing process were analyzed by matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and electrospray-quadrupole-time of flight-mass spectrometry (ESI-qTOF-MS). This identified: (i) condensed and hydrolyzable tannins made of (epi)catechin (procyanidins) and acid ellagic units in pericarp tissues; (ii) polyphenols made of gallocatechin and catechin units condensed with gallate (prodelphinidins) in integument counterparts; (iii) metabolites resembling those reported above in the wastewater from the chestnut curing process. Comparative experiments were also performed on aqueous media recovered from fruits treated with processes involving: (i) tap water; (ii) tap water containing an antifungal Lb. pentosus strain; (iii) wastewater from a previous curing treatment. These analyses indicated that the former treatment determines a 6–7-fold higher release of polyphenols in the curing water with respect to the other ones. This event has a negative impact on the luster of treated fruits but qualifies the corresponding wastes as a source of antioxidants. Such a phenomenon does not occur in wastewater from the other curing processes, where the release of polyphenols was reduced, thus preserving the chestnut’s appearance. Polyphenol profiling measurements demonstrated that bacterial presence in water hampered the release of pericarp metabolites. This study provides a rationale to traditional processing practices on fruit appearance and qualifies the corresponding wastes as a source of bioactive compounds for other nutraceutical applications.
Collapse
Affiliation(s)
- Gabriella Pinto
- Department of Chemical Sciences, University of Naples “Federico II”, via Cintia, 80126 Naples, Italy;
| | - Sabrina De Pascale
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, via Argine 1085, 80147 Naples, Italy; (S.D.P.); (A.S.)
| | - Maria Aponte
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, via Università 100, Parco Gussone, 80055 Portici, Italy; (M.A.); (F.A.)
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, via Argine 1085, 80147 Naples, Italy; (S.D.P.); (A.S.)
| | - Francesco Addeo
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, via Università 100, Parco Gussone, 80055 Portici, Italy; (M.A.); (F.A.)
| | - Simonetta Caira
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, via Argine 1085, 80147 Naples, Italy; (S.D.P.); (A.S.)
- Correspondence:
| |
Collapse
|
10
|
The Influence of Plant Extracts and Phytoconstituents on Antioxidant Enzymes Activity and Gene Expression in the Prevention and Treatment of Impaired Glucose Homeostasis and Diabetes Complications. Antioxidants (Basel) 2021; 10:antiox10030480. [PMID: 33803588 PMCID: PMC8003070 DOI: 10.3390/antiox10030480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022] Open
Abstract
Diabetes is a complex metabolic disorder resulting either from insulin resistance or an impaired insulin secretion. Prolonged elevated blood glucose concentration, the key clinical sign of diabetes, initiates an enhancement of reactive oxygen species derived from glucose autoxidation and glycosylation of proteins. Consequently, chronic oxidative stress overwhelms cellular endogenous antioxidant defenses and leads to the acute and long-standing structural and functional changes of macromolecules resulting in impaired cellular functioning, cell death and organ dysfunction. The oxidative stress provoked chain of pathological events over time cause diabetic complications such as nephropathy, peripheral neuropathy, cardiomyopathy, retinopathy, hypertension, and liver disease. Under diabetic conditions, accompanying genome/epigenome and metabolite markers alterations may also affect glucose homeostasis, pancreatic β-cells, muscle, liver, and adipose tissue. By providing deeper genetic/epigenetic insight of direct or indirect dietary effects, nutrigenomics offers a promising opportunity to improve the quality of life of diabetic patients. Natural plant extracts, or their naturally occurring compounds, were shown to be very proficient in the prevention and treatment of different pathologies associated with oxidative stress including diabetes and its complications. Considering that food intake is one of the crucial components in diabetes’ prevalence, progression and complications, this review summarizes the effect of the major plant secondary metabolite and phytoconstituents on the antioxidant enzymes activity and gene expression under diabetic conditions.
Collapse
|
11
|
Aramabašić Jovanović J, Mihailović M, Uskoković A, Grdović N, Dinić S, Vidaković M. The Effects of Major Mushroom Bioactive Compounds on Mechanisms That Control Blood Glucose Level. J Fungi (Basel) 2021; 7:58. [PMID: 33467194 PMCID: PMC7830770 DOI: 10.3390/jof7010058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is a life-threatening multifactorial metabolic disorder characterized by high level of glucose in the blood. Diabetes and its chronic complications have a significant impact on human life, health systems, and countries' economies. Currently, there are many commercial hypoglycemic drugs that are effective in controlling hyperglycemia but with several serious side-effects and without a sufficient capacity to significantly alter the course of diabetic complications. Over many centuries mushrooms and their bioactive compounds have been used in the treatment of diabetes mellitus, especially polysaccharides and terpenoids derived from various mushroom species. This review summarizes the effects of these main mushroom secondary metabolites on diabetes and underlying molecular mechanisms responsible for lowering blood glucose. In vivo and in vitro data revealed that treatment with mushroom polysaccharides displayed an anti-hyperglycemic effect by inhibiting glucose absorption efficacy, enhancing pancreatic β-cell mass, and increasing insulin-signaling pathways. Mushroom terpenoids act as inhibitors of α-glucosidase and as insulin sensitizers through activation of PPARγ in order to reduce hyperglycemia in animal models of diabetes. In conclusion, mushroom polysaccharides and terpenoids can effectively ameliorate hyperglycemia by various mechanisms and can be used as supportive candidates for prevention and control of diabetes in the future.
Collapse
Affiliation(s)
- Jelena Aramabašić Jovanović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (M.M.); (A.U.); (N.G.); (S.D.); (M.V.)
| | | | | | | | | | | |
Collapse
|
12
|
Rodrigues P, Ferreira T, Nascimento-Gonçalves E, Seixas F, Gil da Costa RM, Martins T, Neuparth MJ, Pires MJ, Lanzarin G, Félix L, Venâncio C, C.F.R. Ferreira I, M.S.M. Bastos M, Medeiros R, Gaivão I, Rosa E, Oliveira PA. Dietary Supplementation with Chestnut (Castanea sativa) Reduces Abdominal Adiposity in FVB/n Mice: A Preliminary Study. Biomedicines 2020; 8:biomedicines8040075. [PMID: 32260459 PMCID: PMC7235886 DOI: 10.3390/biomedicines8040075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
The production of chestnut (Castanea sativa Miller) is mostly concentrated in Europe. Chestnut is recognized by its high content of antioxidants and phytosterols. This work aimed to evaluate the effects of dietary chestnut consumption over physiological variables of FVB/n mice. Eighteen FVB/n male 7-month-old mice were randomly divided into three experimental groups (n = 6): 1 (control group) fed a standard diet; 2 fed a diet supplemented with 0.55% (w/w) chestnut; and 3 supplemented with 1.1% (w/w) chestnut. Body weight, water, and food intake were recorded weekly. Following 35 days of supplementation, the mice were sacrificed for the collection of biological samples. Chestnut supplementation at 1.1% reduced abdominal adipose tissue. Lower serum cholesterol was also observed in animals supplemented with chestnut. There were no significant differences concerning the incidence of histological lesions nor in biochemical markers of hepatic damage and oxidative stress. These results suggest that chestnut supplementation may contribute to regulate adipose tissue deposition.
Collapse
Affiliation(s)
- Pedro Rodrigues
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5000-801 Vila Real, Portugal; (P.R.); (T.F.); (E.N.-G.); (R.M.G.d.C.); (T.M.); (M.J.P.); (G.L.); (L.F.); (C.V.); (E.R.)
| | - Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5000-801 Vila Real, Portugal; (P.R.); (T.F.); (E.N.-G.); (R.M.G.d.C.); (T.M.); (M.J.P.); (G.L.); (L.F.); (C.V.); (E.R.)
| | - Elisabete Nascimento-Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5000-801 Vila Real, Portugal; (P.R.); (T.F.); (E.N.-G.); (R.M.G.d.C.); (T.M.); (M.J.P.); (G.L.); (L.F.); (C.V.); (E.R.)
| | - Fernanda Seixas
- Department of Veterinary Sciences and Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rui Miguel Gil da Costa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5000-801 Vila Real, Portugal; (P.R.); (T.F.); (E.N.-G.); (R.M.G.d.C.); (T.M.); (M.J.P.); (G.L.); (L.F.); (C.V.); (E.R.)
- Laboratory for Process Engineering Environment Biotechnology and Energy (LEPABE) Chemical Engineering Dept, University of Porto Faculty of Engineering, (FEUP), 4200-465 Porto, Portugal;
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072 Porto, Portugal
- Postgraduate Programme in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís, 65080-805 Maranhão, Brazil
| | - Tânia Martins
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5000-801 Vila Real, Portugal; (P.R.); (T.F.); (E.N.-G.); (R.M.G.d.C.); (T.M.); (M.J.P.); (G.L.); (L.F.); (C.V.); (E.R.)
| | - Maria João Neuparth
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal;
- CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Porto, Portugal
| | - Maria João Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5000-801 Vila Real, Portugal; (P.R.); (T.F.); (E.N.-G.); (R.M.G.d.C.); (T.M.); (M.J.P.); (G.L.); (L.F.); (C.V.); (E.R.)
| | - Germano Lanzarin
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5000-801 Vila Real, Portugal; (P.R.); (T.F.); (E.N.-G.); (R.M.G.d.C.); (T.M.); (M.J.P.); (G.L.); (L.F.); (C.V.); (E.R.)
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5000-801 Vila Real, Portugal; (P.R.); (T.F.); (E.N.-G.); (R.M.G.d.C.); (T.M.); (M.J.P.); (G.L.); (L.F.); (C.V.); (E.R.)
- Instituto de Investigação e Inovação em Saúde (i3s), Laboratory Animal Science (LAS), Universidade do Porto (UP), 4200-135 Porto, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5000-801 Vila Real, Portugal; (P.R.); (T.F.); (E.N.-G.); (R.M.G.d.C.); (T.M.); (M.J.P.); (G.L.); (L.F.); (C.V.); (E.R.)
- Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isabel C.F.R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Margarida M.S.M. Bastos
- Laboratory for Process Engineering Environment Biotechnology and Energy (LEPABE) Chemical Engineering Dept, University of Porto Faculty of Engineering, (FEUP), 4200-465 Porto, Portugal;
| | - Rui Medeiros
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal;
- LPCC Research Department, Portuguese League against Cancer (NRNorte), 4200-172 Porto, Portugal
| | - Isabel Gaivão
- Department of Genetics and Biotechnology and Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5000-801 Vila Real, Portugal; (P.R.); (T.F.); (E.N.-G.); (R.M.G.d.C.); (T.M.); (M.J.P.); (G.L.); (L.F.); (C.V.); (E.R.)
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5000-801 Vila Real, Portugal; (P.R.); (T.F.); (E.N.-G.); (R.M.G.d.C.); (T.M.); (M.J.P.); (G.L.); (L.F.); (C.V.); (E.R.)
- Correspondence: ; Tel.: +351-259350000; Fax: +351-259325058
| |
Collapse
|
13
|
González I, Morales MA, Rojas A. Polyphenols and AGEs/RAGE axis. Trends and challenges. Food Res Int 2020; 129:108843. [PMID: 32036875 DOI: 10.1016/j.foodres.2019.108843] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
The formation of advanced glycation end-products (AGEs) is a key pathophysiological event linked not only to the onset and progression of diabetic complications, but also to neurodegeneration, cardiovascular diseases, cancer, and others important human diseases. AGEs contributions to pathophysiology are mainly through the formation of cross-links and by engaging the receptor for advanced glycation end-products (RAGE). Polyphenols are secondary metabolites found largely in fruits, vegetables, cereals, and beverages, and during many years, important efforts have been made to elucidate their beneficial effects on human health, mainly ascribed to their antioxidant activities. In the present review, we highlighted the beneficial actions of polyphenols aimed to diminish the harmful consequences of advanced glycation, mainly by the inhibition of ROS formation during glycation, the inhibition of Schiff base, Amadori products, and subsequent dicarbonyls group formation, the activation of the glyoxalase system, as well as by blocking either AGEs-RAGE interaction or cell signaling.
Collapse
Affiliation(s)
- Ileana González
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Miguel A Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chil
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| |
Collapse
|
14
|
Li Q, Wang Q, Jin X, Chen Z, Xiong C, Li P, Liu Q, Huang W. Characterization and comparative analysis of six complete mitochondrial genomes from ectomycorrhizal fungi of the Lactarius genus and phylogenetic analysis of the Agaricomycetes. Int J Biol Macromol 2019; 121:249-260. [DOI: 10.1016/j.ijbiomac.2018.10.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023]
|
15
|
Schink A, Neumann J, Leifke AL, Ziegler K, Fröhlich-Nowoisky J, Cremer C, Thines E, Weber B, Pöschl U, Schuppan D, Lucas K. Screening of herbal extracts for TLR2- and TLR4-dependent anti-inflammatory effects. PLoS One 2018; 13:e0203907. [PMID: 30307962 PMCID: PMC6181297 DOI: 10.1371/journal.pone.0203907] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022] Open
Abstract
Herbal extracts represent an ample source of natural compounds, with potential to be used in improving human health. There is a growing interest in using natural extracts as possible new treatment strategies for inflammatory diseases. We therefore aimed at identifying herbal extracts that affect inflammatory signaling pathways through toll-like receptors (TLRs), TLR2 and TLR4. Ninety-nine ethanolic extracts were screened in THP-1 monocytes and HeLa-TLR4 transfected reporter cells for their effects on stimulated TLR2 and TLR4 signaling pathways. The 28 identified anti-inflammatory extracts were tested in comparative assays of stimulated HEK-TLR2 and HEK-TLR4 transfected reporter cells to differentiate between direct TLR4 antagonistic effects and interference with downstream signaling cascades. Furthermore, the ten most effective anti-inflammatory extracts were tested on their ability to inhibit nuclear factor-κB (NF-κB) translocation in HeLa-TLR4 transfected reporter cell lines and for their ability to repolarize M1-type macrophages. Ethanolic extracts which showed the highest anti-inflammatory potential, up to a complete inhibition of pro-inflammatory cytokine production were Castanea sativa leaves, Cinchona pubescens bark, Cinnamomum verum bark, Salix alba bark, Rheum palmatum root, Alchemilla vulgaris plant, Humulus lupulus cones, Vaccinium myrtillus berries, Curcuma longa root and Arctostaphylos uva-ursi leaves. Moreover, all tested extracts mitigated not only TLR4, but also TLR2 signaling pathways. Seven of them additionally inhibited translocation of NF-κB into the nucleus. Two of the extracts showed impact on repolarization of pro-inflammatory M1-type to anti-inflammatory M2-type macrophages. Several promising anti-inflammatory herbal extracts were identified in this study, including extracts with previously unknown influence on key TLR signaling pathways and macrophage repolarization, serving as a basis for novel lead compound identification.
Collapse
Affiliation(s)
- Anne Schink
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Jan Neumann
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Anna Lena Leifke
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Kira Ziegler
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Christoph Cremer
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Kaiserslautern, Germany
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bettina Weber
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University of Mainz Medical Center, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- * E-mail:
| |
Collapse
|