1
|
Hu C, Nong S, Ke Q, Wu Z, Jiang Y, Wang Y, Chen Y, Wu Z, Zhang Q, Liao C, Wu M. Simultaneous co-delivery of Ginsenoside Rg3 and imiquimod from PLGA nanoparticles for effective breast cancer immunotherapy. iScience 2025; 28:112274. [PMID: 40256328 PMCID: PMC12008673 DOI: 10.1016/j.isci.2025.112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/11/2024] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Breast cancer is a fatal malignancy facing human health, with most patients experiencing recurrence and resistance to chemotherapy. The immunosuppressive tumor microenvironment (TME) greatly limits the actual outcome of immunotherapy. This study aimed to develop a modality of theranostics nanoparticles for breast cancer based on a near-infrared light-triggered nanoparticle for the targeted delivery of ginsenoside Rg3 and immune adjuvants imiquimod (R837) for effective breast cancer immunotherapy. Folate-receptor (FA) targeting IR780-R837/ginsenoside Rg3-perfluorohexane (PFH) @ polyethylene glycol (PEG)-poly (lactide-co-glycolic acid) (PLGA) nanoparticles (FA-NPs) can be activated by near-infrared laser irradiation in tumors, which leads to rapid release of ginsenoside Rg3 and R837 in the regions with high expression of folate receptors and glucose transporter 1 (GLUT1). Meanwhile, the nanoparticles can be used as dual-mode contrast agents for photoacoustic and ultrasound imaging. This strategy provides a strong immune memory effect, which can prevent tumor recurrence after eliminating the initial tumor.
Collapse
Affiliation(s)
- Cong Hu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Shuxiong Nong
- Department of Cardiology, Baise People’s Hospital. Affiliated Southwest Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Qianqian Ke
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ziming Wu
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuancheng Jiang
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ying Wang
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Yixin Chen
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Ziling Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Qi Zhang
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Chilin Liao
- Department of Cardiology, Baise People’s Hospital. Affiliated Southwest Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Meng Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
2
|
Tran KN, Kwon JH, Kim MK, Nguyen NPK, Yang IJ. Intranasal delivery of herbal medicine for disease treatment: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155484. [PMID: 38442431 DOI: 10.1016/j.phymed.2024.155484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Intranasal administration has been adopted in traditional medicine to facilitate access to the bloodstream and central nervous system (CNS). In modern medicine, nasal drug delivery systems are valuable for disease treatment because of their noninvasiveness, good absorption, and fast-acting effects. OBJECTIVE This study aimed to systematically organize preclinical and clinical studies on intranasal herbal medicines to highlight their potential in drug development. METHODS A comprehensive search for literature until February 2023 was conducted on PubMed and the Web of Science. From the selected publications, we extracted key information, including the types of herbal materials, target diseases, intranasal conditions, methods of toxicity evaluation, main outcomes, and mechanisms of action, and performed quality assessments for each study. RESULTS Of the 45 studies, 13 were clinical and 32 were preclinical; 28 studies used herbal extracts, 9 used prescriptions, and 8 used natural compounds. The target diseases were rhinosinusitis, influenza, fever, stroke, migraine, insomnia, depression, memory disorders, and lung cancer. The common intranasal volumes were 8-50 µl in mice, 20-100 µl in rats, and 100-500 µl in rabbits. Peppermint oil, Ribes nigrum folium, Melia azedarach L., Elaeocarpus sylvestris, Radix Bupleuri, Da Chuan Xiong Fang, Xingnaojing microemulsion, and Ginsenoside Rb1 emerged as potential candidates for rapid intranasal therapy. The in vivo toxicity assessments were based on mortality, body weight, behavioral changes, mucociliary activity, histopathology, and blood tests. Most intranasal treatments were safe, except for Cyclamen europaeum, Jasminum sambac, Punica granatum L., and violet oil, which caused mild adverse effects. At lower doses, intranasal herbal treatments often show greater effects than oral administration. The actions of intranasal herbal medicine mainly involve regulating inflammation and neurotransmission, with the olfactory bulb and anterior cingulate cortex to be relevant brain regions. CONCLUSION Intranasal delivery of herbal materials holds promise for enhancing drug delivery efficacy and reducing treatment duration, offering a potential future perspective for developing intranasal therapies for various diseases.
Collapse
Affiliation(s)
- Khoa Nguyen Tran
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Ji-Hye Kwon
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Min-Kyung Kim
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
3
|
Shin MS, Lee Y, Cho IH, Yang HJ. Brain plasticity and ginseng. J Ginseng Res 2024; 48:286-297. [PMID: 38707640 PMCID: PMC11069001 DOI: 10.1016/j.jgr.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 05/07/2024] Open
Abstract
Brain plasticity refers to the brain's ability to modify its structure, accompanied by its functional changes. It is influenced by learning, experiences, and dietary factors, even in later life. Accumulated researches have indicated that ginseng may protect the brain and enhance its function in pathological conditions. There is a compelling need for a more comprehensive understanding of ginseng's role in the physiological condition because many individuals without specific diseases seek to improve their health by incorporating ginseng into their routines. This review aims to deepen our understanding of how ginseng affects brain plasticity of people undergoing normal aging process. We provided a summary of studies that reported the impact of ginseng on brain plasticity and related factors in human clinical studies. Furthermore, we explored researches focused on the molecular mechanisms underpinning the influence of ginseng on brain plasticity and factors contributing to brain plasticity. Evidences indicate that ginseng has the potential to enhance brain plasticity in the context of normal aging by mediating both central and peripheral systems, thereby expecting to improve age-related declines in brain function. Moreover, given modern western diet can damage neuroplasticity in the long term, ginseng can be a beneficial supplement for better brain health.
Collapse
Affiliation(s)
- Myoung-Sook Shin
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Jeong Yang
- Department of Integrative Bioscience, University of Brain Education, Cheonan, Republic of Korea
- Department of Integrative Healthcare, University of Brain Education, Cheonan, Republic of Korea
- Korea Institute of Brain Science, Seoul, Republic of Korea
| |
Collapse
|
4
|
Xia W, Zhu Z, Xiang S, Yang Y. Ginsenoside Rg5 promotes wound healing in diabetes by reducing the negative regulation of SLC7A11 on the efferocytosis of dendritic cells. J Ginseng Res 2023; 47:784-794. [PMID: 38107390 PMCID: PMC10721477 DOI: 10.1016/j.jgr.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 12/19/2023] Open
Abstract
Background: ginsenoside Rg5 is a rare ginsenoside with known hypoglycemic effects in diabetic mice. This study aimed to explore the effects of ginsenoside Rg5 on skin wound-healing in the Leprdb/db mutant (db/db) mice (C57BL/KsJ background) model and the underlying mechanisms. Methods Seven-week-old male C57BL/6J, SLC7A11-knockout (KO), the littermate wild-type (WT), and db/db mice were used for in vivo and ex vivo studies. Results Ginsenoside Rg5 provided through oral gavage in db/db mice significantly alleviated the abundance of apoptotic cells in the wound areas and facilitated skin wound healing. 50 μM ginsenoside Rg5 treatment nearly doubled the efferocytotic capability of bone marrow-derived dendritic cells (BMDCs) from db/db mice. It also reduced NF-κB p65 and SLC7A11 expression in the wounded areas of db/db mice dose-dependently. Ginsenoside Rg5 physically interacted with SLC7A11 and suppressed the cystine uptake and glutamate secretion of BMDCs from db/db and SLC7A11-WT mice but not in BMDCs from SLC7A11-KO mice. In BMDCs and conventional type 1 dendritic cells (cDC1s), ginsenoside Rg5 reduced their glycose storage and enhanced anaerobic glycolysis. Glycogen phosphorylase inhibitor CP-91149 almost abolished the effect of ginsenoside Rg5 on promoting efferocytosis. Conclusion: ginsenoside Rg5 can suppress the expression of SLC7A11 and inhibit its activity via physical binding. These effects collectively alleviate the negative regulations of SLC7A11 on anaerobic glycolysis, which fuels the efferocytosis of dendritic cells. Therefore, ginsenoside Rg5 has a potential adjuvant therapeutic reagent to support patients with wound-healing problems, such as diabetic foot ulcers.
Collapse
Affiliation(s)
- Wei Xia
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zongdong Zhu
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Song Xiang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Liu Y, Jiang L, Song W, Wang C, Yu S, Qiao J, Wang X, Jin C, Zhao D, Bai X, Zhang P, Wang S, Liu M. Ginsenosides on stem cells fate specification-a novel perspective. Front Cell Dev Biol 2023; 11:1190266. [PMID: 37476154 PMCID: PMC10354371 DOI: 10.3389/fcell.2023.1190266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Recent studies have demonstrated that stem cells have attracted much attention due to their special abilities of proliferation, differentiation and self-renewal, and are of great significance in regenerative medicine and anti-aging research. Hence, finding natural medicines that intervene the fate specification of stem cells has become a priority. Ginsenosides, the key components of natural botanical ginseng, have been extensively studied for versatile effects, such as regulating stem cells function and resisting aging. This review aims to summarize recent progression regarding the impact of ginsenosides on the behavior of adult stem cells, particularly from the perspective of proliferation, differentiation and self-renewal.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Changchun, Jilin, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Nguyen Thi Thu H, Nguyen Huu Huong D, Nguyen Thi Dieu T, Tran Thi Ngoc H, Pham Van H, Hoang Thi Ngoc A, Nguyen Xuan H, Pham NK, Nguyen Manh C, Nguyen Huu Toan P. In vitro and in silico cytotoxic activities of triterpenoids from the leaves of Aralia dasyphylla Miq. and the assessment of their ADMET properties. J Biomol Struct Dyn 2023; 41:5863-5871. [PMID: 35838156 DOI: 10.1080/07391102.2022.2098822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
From the methanol extract of the leaves of Aralia dasyphylla Miq. (Araliaceae), ten triterpenoids including five ursane-type triterpenoids, ursolic acid (1), 3-O-α-l-arabinopyranosyl ursolic acid (2), ursolic acid 28-O-β-D-glucopyranosyl ester (3), 3-O-[β-D-glucopyranosyl (l→3)]-α-L-arabinopyranosyl ursolic acid (4), and matesaponin 1 (5), and five oleanane-type triterpenoids, elatoside E (6), elatoside F (7), 3-O-[β-D-glucopyranosyl (l→3)]-α-L-arabinopyranosyl oleanolic acid (8), 3-O-α-L-arabinopyranosyl oleanolic acid (9) and oleanolic acid 28-O-β-D-glucopyranosyl ester (10) were isolated. Their structures were elucidated based on 1D-, 2D-NMR and ESI-MS spectra as well as by comparison with those reported in the literature. All isolated compounds were evaluated in vitro for their cytotoxic activities against three human cancer cell lines (HepG2, LU-1 and RD) and in silico by molecular docking studies on human glucose transporter 1 (hGLUT1) protein. The triterpenoids 2, 4, 6, 8 and 9 exhibited good growth inhibition of HepG2 and LU-1 cancer cell lines with IC50 values in the range 1.76 - 7.21 (μM). The oleanane type triterpenoid 8 was the highest cytotoxic compound to inhibit all the tested cancer cell lines with IC50 values of 2.73 ± 0.12, 1.76 ± 0.11, 2.63 ± 0.10 μM, respectively. The in silico molecular docking study results showed that compounds 4 and 6 had the highest binding affinity. Compounds 1-10 were evaluated for their in silico ADMET of absorption, distribution, metabolism, excretion and oral toxicity parameters. Compounds 6, 8, 9 and 10 from A. dasyphylla are potential hGLUT1 inhibitors and worth of further investigation for the prevention or treatment of diabetes and cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hien Nguyen Thi Thu
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology (VAST), Dalat, Vietnam
- Graduate University of Science and Technology (VAST), Hanoi, Vietnam
| | - Duyen Nguyen Huu Huong
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology (VAST), Dalat, Vietnam
| | - Thuan Nguyen Thi Dieu
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology (VAST), Dalat, Vietnam
| | - Hanh Tran Thi Ngoc
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology (VAST), Dalat, Vietnam
| | - Huyen Pham Van
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology (VAST), Dalat, Vietnam
| | | | - Ha Nguyen Xuan
- Institute of Natural Products Chemistry (VAST), Hanoi, Vietnam
| | - Ngoc Khanh Pham
- Graduate University of Science and Technology (VAST), Hanoi, Vietnam
- Institute of Natural Products Chemistry (VAST), Hanoi, Vietnam
| | - Cuong Nguyen Manh
- Graduate University of Science and Technology (VAST), Hanoi, Vietnam
- Institute of Natural Products Chemistry (VAST), Hanoi, Vietnam
| | - Phan Nguyen Huu Toan
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology (VAST), Dalat, Vietnam
- Graduate University of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
7
|
Jiang N, Zhang Y, Yao C, Liu Y, Chen Y, Chen F, Wang Y, Choudhary MI, Liu X. Tenuifolin ameliorates the sleep deprivation-induced cognitive deficits. Phytother Res 2023; 37:464-476. [PMID: 36608695 DOI: 10.1002/ptr.7627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 09/02/2022] [Indexed: 01/09/2023]
Abstract
Tenuifolin (TEN), a natural neuroprotective compound obtained from the Polygala tenuifolia Willd plant, has improved cognitive symptoms. However, the impact of TEN on memory impairments caused by sleep deprivation (SD) is unclear. Accordingly, the objective of this study was to investigate the mechanisms behind the preventative benefits of TEN on cognitive impairment caused by SD. TEN (10 and 20 mg/kg) and Huperzine A (0.1 mg/kg) were given to mice through oral gavage for 28 days during the SD process. The results indicate that TEN administrations improve short- and long-term memory impairments caused by SD in the Y-maze, object identification, and step-through tests. Moreover, TEN stimulated the generation of anti-inflammatory cytokines (interleukin-10), lowered the production of pro-inflammatory cytokines (interleukin-1β, interleukin-6, and interleukin-18), and activated microglia, improving antioxidant status in the hippocampus. TEN treatments significantly boosted the expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 while considerably decreasing the expression of NOD-like receptor thermal protein domain associated protein 3 and caspase-1 p20. Additionally, TEN restored the downregulation of the brain-derived neurotrophic factor signaling cascade and the impaired hippocampal neurogenesis induced by SD. When considered collectively, our data suggest that TEN is a potentially effective neuroprotective agent for cognition dysfunction.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Liu
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuzhen Chen
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Chen
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
8
|
Ginsenosides Rg1 and CK Control Temozolomide Resistance in Glioblastoma Cells by Modulating Cholesterol Efflux and Lipid Raft Distribution. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1897508. [PMID: 36276866 PMCID: PMC9583863 DOI: 10.1155/2022/1897508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 11/07/2022]
Abstract
Background Cholesterol efflux and lipid raft redistribution contribute to attenuating temozolomide resistance of glioblastoma. Ginsenosides are demonstrated to modify cholesterol metabolism and lipid raft distribution, and the brain distribution and central nervous effects of whose isoforms Rb1, Rg1, Rg3, and CK have been identified. This study aimed to reveal the role of Rb1, Rg1, Rg3, and CK in the drug resistance of glioblastoma. Methods The effects of ginsenosides on cholesterol metabolism in temozolomide-resistant U251 glioblastoma cells were evaluated by cholesterol content and efflux assay, confocal laser, qRT-PCR, and Western blot. The roles of cholesterol and ginsenosides in temozolomide resistance were studied by CCK-8, flow cytometry, and Western blot, and the mechanism of ginsenosides attenuating resistance was confirmed by inhibitors. Results Cholesterol protected the survival of resistant U251 cells from temozolomide stress and upregulated multidrug resistance protein (MDR)1, which localizes in lipid rafts. Resistant cells tended to store cholesterol intracellularly, with limited cholesterol efflux and LXRα expression to maintain the distribution of lipid rafts. Ginsenosides Rb1, Rg1, Rg3, and CK reduced intracellular cholesterol and promoted cholesterol efflux in resistant cells, causing lipid rafts to accumulate in specific regions of the membrane. Rg1 and CK also upregulated LXRα expression and increased the cytotoxicity of temozolomide in the presence of cholesterol. We further found that cholesterol efflux induction, lipid raft redistribution, and temozolomide sensitization by Rg1 and CK were induced by stimulating LXRα. Conclusions Ginsenosides Rg1 and CK controlled temozolomide resistance in glioblastoma cells by regulating cholesterol metabolism, which are potential synergists for temozolomide therapy.
Collapse
|
9
|
Liu L, Xie H, Zhao S, Huang X. The GLUT1-mTORC1 axis affects odontogenic differentiation of human dental pulp stem cells. Tissue Cell 2022; 76:101766. [PMID: 35286973 DOI: 10.1016/j.tice.2022.101766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
Abstract
Human dental pulp stem cells (hDPSCs) are considered valuable for regenerative therapy. Although glucose transporter 1 (GLUT1) is known to play a critical role in cell differentiation, its mechanism of the odontogenic differentiation of hDPSCs remains unclear. This study was conducted to investigate the effect and underlying mechanisms of GLUT1 on odontogenic differentiation of hDPSCs. hDPSCs was treated with phloretin (Phl), a GLUT1 inhibitor. The impact of GLUT1 on the odontogenic differentiation of hDPSCs was analysed using quantitative real-time polymerase chain reaction, alizarin-red staining, and western blotting. Glucose uptake by hDPSCs was significantly inhibited by Phl treatment. Overall, inhibition of GLUT1 upregulated the expression of DSPP, DMP1, RUNX2, and OCN and increased the formation of mineralised nodules on odontogenic induction of hDPSCs. The levels of phosphorylated mTOR and ribosomal protein S6 kinase 1 (p70S6K) were increased after GLUT1 inhibition and decreased by an mTOR inhibitor (rapamycin, Rapa) during the odontogenic induction of hDPSCs. Moreover, mTOR suppression decreased the expression of the genes described above and formation of mineralised nodules. These results suggest that inhibition of GLUT1 promoted the odontogenic differentiation of hDPSCs via the mTORC1-p70S6K axis, providing a foundation for further application of hDPSCs in regenerative therapy.
Collapse
Affiliation(s)
- Li Liu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Han Xie
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| | - Xiaofeng Huang
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
10
|
Ugwu PI, Ben-Azu B, Ugwu SU, Uruaka CI, Nworgu CC, Okorie PO, Okafor KO, Anachuna KK, Elendu MU, Ugwu AO, Anyaehie UB, Nwankwo AA, Osim EE. Putative mechanisms involved in the psychopathologies of mice passively coping with psychosocial defeat stress by quercetin. Brain Res Bull 2022; 183:127-141. [DOI: 10.1016/j.brainresbull.2022.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
|
11
|
Nguyen YTK, Ha HTT, Nguyen TH, Nguyen LN. The role of SLC transporters for brain health and disease. Cell Mol Life Sci 2021; 79:20. [PMID: 34971415 PMCID: PMC11071821 DOI: 10.1007/s00018-021-04074-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
The brain exchanges nutrients and small molecules with blood via the blood-brain barrier (BBB). Approximately 20% energy intake for the body is consumed by the brain. Glucose is known for its critical roles for energy production and provides substrates for biogenesis in neurons. The brain takes up glucose via glucose transporters GLUT1 and 3, which are expressed in several neural cell types. The brain is also equipped with various transport systems for acquiring amino acids, lactate, ketone bodies, lipids, and cofactors for neuronal functions. Unraveling the mechanisms by which the brain takes up and metabolizes these nutrients will be key in understanding the nutritional requirements in the brain. This could also offer opportunities for therapeutic interventions in several neurological disorders. For instance, emerging evidence suggests a critical role of lactate as an alternative energy source for neurons. Neuronal cells express monocarboxylic transporters to acquire lactate. As such, treatment of GLUT1-deficient patients with ketogenic diets to provide the brain with alternative sources of energy has been shown to improve the health of the patients. Many transporters are present in the brain, but only a small number has been characterized. In this review, we will discuss about the roles of solute carrier (SLC) transporters at the blood brain barrier (BBB) and neural cells, in transport of nutrients and metabolites in the brain.
Collapse
Affiliation(s)
- Yen T K Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Hoa T T Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Tra H Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
- SLING/Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- Immunology Translational and Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
12
|
Jiang N, Huang H, Zhang Y, Lv J, Wang Q, He Q, Liu X. Ginsenoside Rb1 Produces Antidepressant-Like Effects in a Chronic Social Defeat Stress Model of Depression Through the BDNF-Trkb Signaling Pathway. Front Pharmacol 2021; 12:680903. [PMID: 34658847 PMCID: PMC8511306 DOI: 10.3389/fphar.2021.680903] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
Ginsenoside Rb1 (Rb1), an important bioactive ingredient of Panax ginseng, has potent neuroprotective effects. The objective of the study is to elucidate the impact of Rb1 treatment on chronic social defeat stress (CSDS)–induced depressive-like behaviors and its related mechanism. According to the obtained results, the daily oral administration of Rb1 (35 and 70 mg/kg) and imipramine (15 mg/kg) for 28 days significantly reversed the social avoidance behavior, anhedonia, and behavioral despair via CSDS exposure, as demonstrated by the considerable elevation in the time in the zone in the social interaction test, consumption of sucrose solution in the sucrose preference test, and decrease in immobility time in the forced swim test. Moreover, Rb1 obviously restored the CSDS-induced decrease in the BDNF signaling pathway and hippocampal neurogenesis. Rb1 significantly increased the hippocampal levels of ERK, AKT, and CREB phosphorylation and increased the number of DCX+ cells in DG. Importantly, the antidepressant effects of Rb1 were completely blocked in mice by using K252a (the nonselective tyrosine kinase B inhibitor). In conclusion, our results indicated that Rb1 exerts promising antidepressant-like effects in mice with CSDS-induced depression, and its effects were facilitated by enhancing the BDNF signaling cascade and upregulation of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Huang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Lv
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Wang
- Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China.,Affiliated TCM Hospital/School of Pharmacy/Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Qinghu He
- Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
13
|
Zhu Y, Liang J, Gao C, Wang A, Xia J, Hong C, Zhong Z, Zuo Z, Kim J, Ren H, Li S, Wang Q, Zhang F, Wang J. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J Control Release 2021; 330:641-657. [DOI: 10.1016/j.jconrel.2020.12.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 12/12/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
|
14
|
Hong C, Liang J, Xia J, Zhu Y, Guo Y, Wang A, Lu C, Ren H, Chen C, Li S, Wang D, Zhan H, Wang J. One Stone Four Birds: A Novel Liposomal Delivery System Multi-functionalized with Ginsenoside Rh2 for Tumor Targeting Therapy. NANO-MICRO LETTERS 2020; 12:129. [PMID: 34138128 PMCID: PMC7770862 DOI: 10.1007/s40820-020-00472-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/19/2020] [Indexed: 05/08/2023]
Abstract
Liposomes hold great potential in anti-cancer drug delivery and the targeting treatment of tumors. However, the clinical therapeutic efficacy of liposomes is still limited by the complexity of tumor microenvironment (TME) and the insufficient accumulation in tumor sites. Meanwhile, the application of cholesterol and polyethylene glycol (PEG), which are usually used to prolong the blood circulation and stabilize the structure of liposomes respectively, has been questioned due to various disadvantages. Herein, we developed a ginsenoside Rh2-based multifunctional liposome system (Rh2-lipo) to effectively address these challenges once for all. Different with the conventional 'wooden' liposomes, Rh2-lipo is a much more brilliant carrier with multiple functions. In Rh2-lipo, both cholesterol and PEG were substituted by Rh2, which works as membrane stabilizer, long-circulating stealther, active targeting ligand, and chemotherapy adjuvant at the same time. Firstly, Rh2 could keep the stability of liposomes and avoid the shortcomings caused by cholesterol. Secondly, Rh2-lipo showed a specifically prolonged circulation behavior in the blood. Thirdly, the accumulation of the liposomes in the tumor was significantly enhanced by the interaction of glucose transporter of tumor cells with Rh2. Fourth, Rh2-lipo could remodel the structure and reverse the immunosuppressive environment in TME. When tested in a 4T1 breast carcinoma xenograft model, the paclitaxel-loaded Rh2-lipo realized high efficient tumor growth suppression. Therefore, Rh2-lipo not only innovatively challenges the position of cholesterol as a liposome component, but also provides another innovative potential system with multiple functions for anti-cancer drug delivery.
Collapse
Affiliation(s)
- Chao Hong
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Jianming Liang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Ying Zhu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yizhen Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Anni Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Chunyi Lu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hongwei Ren
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Chen Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Shiyi Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
| | - Dan Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China
- Shanghai Ginposome Pharmatech Co., Ltd, Shanghai, 201600, People's Republic of China
| | - Huaxing Zhan
- Shanghai Ginposome Pharmatech Co., Ltd, Shanghai, 201600, People's Republic of China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People's Republic of China.
- Institute of Integrated Chinese and Western Medicine, Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
15
|
Li YN, Gao ZW, Li R, Zhang YF, Zhu QS, Huang F. Aquaporin 4 regulation by ginsenoside Rb1 intervenes with oxygen-glucose deprivation/reoxygenation-induced astrocyte injury. Medicine (Baltimore) 2019; 98:e17591. [PMID: 31626131 PMCID: PMC6824638 DOI: 10.1097/md.0000000000017591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Spinal cord ischemia-reperfusion injury (SCII) is a common complication of spinal surgery as well as thoracic and abdominal surgery. Acute cytotoxic edema is the key pathogenic alteration. Therefore, avoiding or decreasing cellular edema has become the major target for SCII treatment. METHODS The antiedema activity of ginsenoside Rb1 on aquaporin (AQP) 4, nerve growth factor (NGF), and brain-derived neurotrophic factor expression was detected by western blot and real-time polymerase chain reaction under conditions of oxygen-glucose deprivation/reoxygenation (OGD/R) in a rat astrocyte model in vitro. In addition, the cellular membrane permeability of AQP4 overexpressing cells or AQP4 small interfering RNA-transfected cells was detected. RESULTS Ginsenoside Rb1 significantly prevented OGD/R-induced AQP4 downregulation in rat astrocytes. In addition, ginsenoside Rb1 treatment or AQP4 overexpression in rat astrocytes significantly attenuated the OGD/R-induced increase of cellular membrane permeability. Moreover, ginsenoside Rb1 obviously prevented the OGD/R-induced decrease of NGF and BDNT expression in rat astrocytes. CONCLUSION These findings demonstrate that ginsenoside Rb1 can relieve spinal cord edema and improve neurological function by increasing AQP4 expression.
Collapse
Affiliation(s)
- Ya-Nan Li
- Department of Pediatrics, The First Hospital of Jilin University
- Department of Molecular Biology, Basic Medical College of Jilin University
| | - Zhong-Wen Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Ran Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Yun-Feng Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Qing-San Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Fei Huang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
16
|
Hong C, Wang D, Liang J, Guo Y, Zhu Y, Xia J, Qin J, Zhan H, Wang J. Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer. Theranostics 2019; 9:4437-4449. [PMID: 31285771 PMCID: PMC6599661 DOI: 10.7150/thno.34953] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
The clinical treatment of gastric cancer (GC) is hampered by the development of anticancer drug resistance and the unfavorable pharmacokinetics, off-target toxicity, and inadequate intratumoral accumulation of the current chemotherapy treatments. Ginsenosides combined with paclitaxel (PTX) have been shown to exert synergistic inhibition of human GC cell proliferation. In the present study, we developed a novel multifunctional liposome system, in which ginsenosides functioned as the chemotherapy adjuvant and membrane stabilizer. These had long blood circulation times and active targeting abilities, thus creating multifunctionality of the liposomes and facilitating drug administration to the GC cells. Methods: Three ginsenosides with different structures were used to formulate the unique nanocarrier, which was prepared using the thin-film hydration method. The stability of the ginsenoside liposomes was determined by particle size analysis using dynamic light scattering. The long circulation time of ginsenoside liposomes was compared with that of conventional liposome and polyethylene glycosylated liposomes in vivo. The active targeting effect of ginsenoside liposomes was examined with a GC xenograft model using an in vivo imaging system. To examine the antitumor activity of ginsenoside liposomes against GC, MTT, cell cycle, and apoptosis assays were performed on BGC-823 cells in vitro and PTX-loaded ginsenoside liposomes were prepared to evaluate the therapeutic efficacy on GC in vivo. Results: The ginsenosides stabilized the liposomes in a manner similar to cholesterol. We confirmed the successful delivery of the bioactive combination drugs and internalization into GC cells via analysis of the glucose-related transporter recognition and longer blood circulation time. PTX was encapsulated in different liposomal formulations for use as a combination therapy, in which ginsenosides were found to exert their inherent anticancer activity, as well as act synergistically with PTX. The combination therapy using these targeted liposomes significantly suppressed GC tumor growth and outperformed most reported PTX formulations, including Lipusu® and Abraxane®. Conclusion: We established novel ginsenoside-based liposomes as a tumor-targeting therapy, in which ginsenoside functioned not only as a chemotherapy adjuvant, but also as a functional membrane material. Ginsenoside-based liposomes offer a novel platform for anticancer drug delivery and may lead to a new era of nanocarrier treatments for cancer.
Collapse
Affiliation(s)
- Chao Hong
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Dan Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Shanghai Ginposome Pharmatech Co., Ltd, Shanghai 201600, China
| | - Jianming Liang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yizhen Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Ying Zhu
- Institute of Clinical Pharmacology, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Huaxing Zhan
- Shanghai Ginposome Pharmatech Co., Ltd, Shanghai 201600, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Institute of Integrated Chinese and Western Medicine, Fudan University, Shanghai 200040, China
| |
Collapse
|