1
|
Knutson OS, Choi S, Williams S, Calder VL. Comparative models of uveitis. Eye (Lond) 2025:10.1038/s41433-025-03693-6. [PMID: 39966598 DOI: 10.1038/s41433-025-03693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Several clinical subtypes of uveitis exist yet specific immunopathogenic mechanisms involved remain unclear. Ex vivo studies are limited by lack of fresh retinal biopsies and studies have relied on aqueous humour or peripheral blood, which may not directly reflect disease. The aim of this review is to compare the various in vivo models and review their contributions to our understanding of disease processes. These models, although unable to reflect all clinical signs, have provided insight into the contribution of genes and molecules, characterisation of effector T-cells, cell trafficking into retinal tissues, the contribution of tissue-resident myeloid cells and the mechanism(s) of action of several anti-inflammatory compounds. In vivo uveitis models have provided an excellent resource with which to study the molecular and cellular processes involved. Recent refinements in models, improved imaging, and the application of omics have greatly increased the number of readouts and translational opportunities. Future approaches with in vitro models will also be discussed.
Collapse
Affiliation(s)
- Olivia S Knutson
- Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | | | | | | |
Collapse
|
2
|
Romanzi A, Milosa F, Marcelli G, Critelli RM, Lasagni S, Gigante I, Dituri F, Schepis F, Cadamuro M, Giannelli G, Fabris L, Villa E. Angiopoietin-2 and the Vascular Endothelial Growth Factor Promote Migration and Invasion in Hepatocellular Carcinoma- and Intrahepatic Cholangiocarcinoma-Derived Spheroids. Biomedicines 2023; 12:87. [PMID: 38255193 PMCID: PMC10813100 DOI: 10.3390/biomedicines12010087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Aggressive hepatocellular carcinoma (HCC) overexpressing Angiopoietin-2 (ANG-2) (a protein linked with angiogenesis, proliferation, and epithelial-mesenchymal transition (EMT)), shares 95% of up-regulated genes and a similar poor prognosis with the proliferative subgroup of intrahepatic cholangiocarcinoma (iCCA). We analyzed the pro-invasive effect of ANG-2 and its regulator vascular endothelial growth factor (VEGF) on HCC and CCA spheroids to uncover posUsible common ways of response. Four cell lines were used: Hep3B and HepG2 (HCC), HuCC-T1 (iCCA), and EGI-1 (extrahepatic CCA). We treated the spheroids with recombinant human (rh) ANG-2 and/or VEGF and then observed the changes at the baseline, after 24 h, and again after 48 h. Proangiogenic stimuli increased migration and invasion capability in HCC- and iCCA-derived spheroids and were associated with a modification in EMT phenotypic markers (a decrease in E-cadherin and an increase in N-cadherin and Vimentin), especially at the migration front. Inhibitors targeting ANG-2 (Trebananib) and the VEGF (Bevacizumab) effectively blocked the migration ability of spheroids that had been stimulated with rh-ANG-2 and rh-VEGF. Overall, our findings highlight the critical role played by ANG-2 and the VEGF in enhancing the ability of HCC- and iCCA-derived spheroids to migrate and invade, which are key processes in cancer progression.
Collapse
Affiliation(s)
- Adriana Romanzi
- Department of Biomedical, Metabolic and Neural Sciences, Clinical and Experimental Medicine Program, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.R.); (S.L.)
- Chimomo Department, Gastroenterology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.M.); (G.M.); (R.M.C.); (F.S.)
| | - Fabiola Milosa
- Chimomo Department, Gastroenterology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.M.); (G.M.); (R.M.C.); (F.S.)
| | - Gemma Marcelli
- Chimomo Department, Gastroenterology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.M.); (G.M.); (R.M.C.); (F.S.)
| | - Rosina Maria Critelli
- Chimomo Department, Gastroenterology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.M.); (G.M.); (R.M.C.); (F.S.)
| | - Simone Lasagni
- Department of Biomedical, Metabolic and Neural Sciences, Clinical and Experimental Medicine Program, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.R.); (S.L.)
- Chimomo Department, Gastroenterology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.M.); (G.M.); (R.M.C.); (F.S.)
| | - Isabella Gigante
- National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (I.G.); (F.D.); (G.G.)
| | - Francesco Dituri
- National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (I.G.); (F.D.); (G.G.)
| | - Filippo Schepis
- Chimomo Department, Gastroenterology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.M.); (G.M.); (R.M.C.); (F.S.)
| | - Massimiliano Cadamuro
- Department of Molecular Medicine, School of Medicine, University of Padua, 35121 Padua, Italy; (M.C.); (L.F.)
| | - Gianluigi Giannelli
- National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (I.G.); (F.D.); (G.G.)
| | - Luca Fabris
- Department of Molecular Medicine, School of Medicine, University of Padua, 35121 Padua, Italy; (M.C.); (L.F.)
| | - Erica Villa
- Chimomo Department, Gastroenterology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.M.); (G.M.); (R.M.C.); (F.S.)
| |
Collapse
|
3
|
Gershoni A, Barayev E, Daood RH, Yogev M, Gal-Or O, Reitblat O, Tsessler M, Schaap Fogler M, Tuuminen R, Ehrlich R. Anatomical and Functional Outcomes with Prompt versus Delayed Initiation of Anti-VEGF in Exudative Age-Related Macular Degeneration. J Clin Med 2023; 13:111. [PMID: 38202118 PMCID: PMC10779608 DOI: 10.3390/jcm13010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
PURPOSE To investigate the correlation between time from diagnosis of treatment-naïve exudative age-related macular degeneration (AMD) to the introduction of anti-VEGF treatment and anatomical and functional outcomes. DESIGN Retrospective cohort study. METHODS Included were treatment-naïve exudative AMD patients who presented to a single tertiary medical center between 2012 and 2018. All patients were treated within the first 30 days of their diagnosis with three monthly intravitreal injections of bevacizumab. Patients were divided into three groups: group 1 (prompt anti-VEGF) were injected with bevacizumab within ten days, group 2 (intermediate anti-VEGF) within 11-20 days, and group 3 (delayed anti-VEGF) within 21-30 days from diagnosis. Baseline characteristics and clinical outcomes were compared up to two years from treatment. RESULTS 146 eyes of 146 patients were included. Sixty-eight patients were in the prompt anti-VEGF group, 31 in the intermediate anti-VEGF group, and 47 in the delayed anti-VEGF group. Following the induction phase of three intravitreal bevacizumab injections, the mean central subfield macular thickness (328.0 ± 115.4 µm vs. 364.6 ± 127.2 µm vs. 337.7 ± 150.1 µm, p = 0.432) and the best-corrected visual acuity (0.47 ± 0.38 vs. 0.59 ± 0.48 vs. 0.47 ± 0.44 logMAR units, p = 0.458) were comparable between the prompt, intermediate and delayed anti-VEGF groups. Anatomical and functional outcomes, treatment burden, number of relapses and eyes with second-line anti-VEGF therapy were comparable between the groups at both 1-year and 2-year timepoints. CONCLUSIONS Our real-world evidence data emphasize that even if anti-VEGF induction cannot be initiated promptly within ten days from diagnosis of naïve exudative AMD, the visual and anatomical prognosis of the patients may not worsen if the treatment is started within one month of diagnosis.
Collapse
Affiliation(s)
- Assaf Gershoni
- Ophthalmology Division, Rabin Medical Center, Petach Tikva 49414, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Edward Barayev
- Ophthalmology Division, Rabin Medical Center, Petach Tikva 49414, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rabeea H. Daood
- Ophthalmology Division, Rabin Medical Center, Petach Tikva 49414, Israel
| | - Maureen Yogev
- Ophthalmology Division, Rabin Medical Center, Petach Tikva 49414, Israel
| | - Orly Gal-Or
- Ophthalmology Division, Rabin Medical Center, Petach Tikva 49414, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Olga Reitblat
- Ophthalmology Division, Rabin Medical Center, Petach Tikva 49414, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maria Tsessler
- Ophthalmology Division, Rabin Medical Center, Petach Tikva 49414, Israel
| | - Michal Schaap Fogler
- Ophthalmology Division, Rabin Medical Center, Petach Tikva 49414, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raimo Tuuminen
- Helsinki Retina Research Group, University of Helsinki, 00170 Helsinki, Finland
- Department of Ophthalmology, Kymenlaakso Central Hospital, Kotkantie 41, 48210 Kotka, Finland
| | - Rita Ehrlich
- Ophthalmology Division, Rabin Medical Center, Petach Tikva 49414, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
4
|
Ünal Ç, Sağlam S. Metronomic Temozolomide (mTMZ) and Bevacizumab-The Safe and Effective Frontier for Treating Metastatic Neuroendocrine Tumors (NETs): A Single-Center Experience. Cancers (Basel) 2023; 15:5688. [PMID: 38067391 PMCID: PMC10705735 DOI: 10.3390/cancers15235688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 10/16/2024] Open
Abstract
Addressing the persistent challenges in treating metastatic neuroendocrine tumors (NETs) demands ongoing refinement and innovation in therapeutic strategies. This study investigates the potential advantages of combining metronomic temozolomide (mTMZ) with bevacizumab for patients diagnosed with metastatic NETs, particularly focusing on those with a Ki-67 index under 55%. Data from 30 patients were analyzed, using key performance indicators such as progression-free survival (PFS), overall survival (OS), and response rates to therapy, to gauge the treatment's efficacy. The results were encouraging: the median PFS recorded was 16.3 months, and the OS was 25.9 months. The disease control rate (DCR) reached an impressive 86.7%, and the objective response rate (ORR) stood at 63.3%. The treatment regimen was well-tolerated, with no reported instances of grade 4 toxicities. Such a safety profile indicates that this regimen may be particularly advantageous for older, fragile patients who might struggle with conventional dosage levels. These initial findings suggest that the mTMZ and bevacizumab combination could potentially rival the conventional temozolomide-capecitabine therapy in managing metastatic NETs. We aimed to meticulously assess the efficacy of the mTMZ and bevacizumab combination in treating metastatic NETs. Given the initial promising results, a more conclusive understanding of its efficacy will require further research through larger, multicenter prospective clinical trials.
Collapse
Affiliation(s)
- Çağlar Ünal
- Division of Medical Oncology, Department of Internal Medicine, Kartal Dr. Lütfi Kırdar City Hospital, İstanbul 34870, Turkey
| | - Sezer Sağlam
- Division of Medical Oncology, Department of Internal Medicine, Demiroglu Bilim University, İstanbul 34870, Turkey;
| |
Collapse
|
5
|
Cehofski LJ, Kruse A, Mæng MO, Kjaergaard B, Grauslund J, Honoré B, Vorum H. Proteome Analysis of Bevacizumab Intervention in Experimental Central Retinal Vein Occlusion. J Pers Med 2023; 13:1580. [PMID: 38003895 PMCID: PMC10672637 DOI: 10.3390/jpm13111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Bevacizumab is a frequently used inhibitor of vascular endothelial growth factor (VEGF) in the management of macular edema in central retinal vein occlusion (CRVO). Studying retinal protein changes in bevacizumab intervention may provide insights into mechanisms of action. In nine Danish Landrace pigs, experimental CRVO was induced in both eyes with argon laser. The right eyes received an intravitreal injection of 0.05 mL bevacizumab (n = 9), while the left control eyes received 0.05 mL saline water (NaCl). Retinal samples were collected 15 days after induced CRVO. Label-free quantification nano-liquid chromatography-tandem mass spectrometry identified 59 proteins that were regulated following bevacizumab treatment. Following bevacizumab intervention, altered levels of bevacizumab components, including the Ig gamma-1 chain C region and the Ig kappa chain C region, were observed. Changes in other significantly regulated proteins ranged between 0.58-1.73, including for the NADH-ubiquinone oxidoreductase chain (fold change = 1.73), protein-transport protein Sec24B (fold change = 1.71), glycerol kinase (fold change = 1.61), guanine-nucleotide-binding protein G(T) subunit-gamma-T1 (fold change = 0.67), and prefoldin subunit 6 (fold change = 0.58). A high retinal concentration of bevacizumab was achieved within 15 days. Changes in the additional proteins were limited, suggesting a narrow mechanism of action.
Collapse
Affiliation(s)
- Lasse Jørgensen Cehofski
- Department of Ophthalmology, Odense University Hospital, 5000 Odense, Denmark;
- Biomedical Research Laboratory, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Anders Kruse
- Department of Ophthalmology, Aalborg University Hospital, 9000 Aalborg, Denmark; (A.K.); (M.O.M.)
| | - Mads Odgaard Mæng
- Department of Ophthalmology, Aalborg University Hospital, 9000 Aalborg, Denmark; (A.K.); (M.O.M.)
| | - Benedict Kjaergaard
- Biomedical Research Laboratory, Aalborg University Hospital, 9000 Aalborg, Denmark;
| | - Jakob Grauslund
- Department of Ophthalmology, Odense University Hospital, 5000 Odense, Denmark;
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Henrik Vorum
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
6
|
Vofo BN, Chowers I. Suppressing Inflammation for the Treatment of Diabetic Retinopathy and Age-Related Macular Degeneration: Dazdotuftide as a Potential New Multitarget Therapeutic Candidate. Biomedicines 2023; 11:1562. [PMID: 37371657 PMCID: PMC10295757 DOI: 10.3390/biomedicines11061562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are major causes of blindness globally. The primary treatment option for DME and neovascular AMD (nAMD) is anti-vascular endothelial growth factor (VEGF) compounds, but this treatment modality often yields insufficient results, and monthly injections can place a burden on the health system and patients. Although various inflammatory pathways and mediators have been recognized as key players in the development of DR and AMD, there are limited treatment options targeting these pathways. Molecular pathways that are interlinked, or triggers of multiple inflammatory pathways, could be promising targets for drug development. This review focuses on the role of inflammation in the pathogenesis of DME and AMD and presents current anti-inflammatory compounds, as well as a potential multitarget anti-inflammatory compound (dazdotuftide) that could be a candidate treatment option for the management of DME and AMD.
Collapse
Affiliation(s)
| | - Itay Chowers
- Department of Ophthalmology, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel;
| |
Collapse
|
7
|
Du W, Yang M, Kim T, Kim S, Williams DW, Esmaeili M, Hong C, Shin KH, Kang MK, Park NH, Kim RH. Indigenous microbiota protects development of medication-related osteonecrosis induced by periapical disease in mice. Int J Oral Sci 2022; 14:16. [PMID: 35307731 PMCID: PMC8934872 DOI: 10.1038/s41368-022-00166-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/21/2022] [Indexed: 12/30/2022] Open
Abstract
Bacterial infection is a common finding in patients, who develop medication-related osteonecrosis of the jaw (MRONJ) by the long-term and/or high-dose use of anti-resorptive agents such as bisphosphonate (BPs). However, pathological role of bacteria in MRONJ development at the early stage remains controversial. Here, we demonstrated that commensal microbiota protects against MRONJ development in the pulp-exposed periapical periodontitis mouse model. C57/BL6 female mice were treated with intragastric broad-spectrum antibiotics for 1 week. Zoledronic acid (ZOL) through intravenous injection and antibiotics in drinking water were administered for throughout the experiment. Pulp was exposed on the left maxillary first molar, then the mice were left for 5 weeks after which bilateral maxillary first molar was extracted and mice were left for additional 3 weeks to heal. All mice were harvested, and cecum, maxilla, and femurs were collected. ONJ development was assessed using μCT and histologic analyses. When antibiotic was treated in mice, these mice had no weight changes, but developed significantly enlarged ceca compared to the control group (CTL mice). Periapical bone resorption prior to the tooth extraction was similarly prevented when treated with antibiotics, which was confirmed by decreased osteoclasts and inflammation. ZOL treatment with pulp exposure significantly increased bone necrosis as determined by empty lacunae and necrotic bone amount. Furthermore, antibiotics treatment could further exacerbate bone necrosis, with increased osteoclast number. Our findings suggest that the commensal microbiome may play protective role, rather than pathological role, in the early stages of MRONJ development.
Collapse
|
8
|
Lai C, Zhang SJ, Chen XC, Sheng LY, Qi TW, Yan LP. Development of a cellulose-based prosthetic mesh for pelvic organ prolapse treatment: In vivo long-term evaluation in an ewe vagina model. Mater Today Bio 2021; 12:100172. [PMID: 34901822 PMCID: PMC8640518 DOI: 10.1016/j.mtbio.2021.100172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022] Open
Abstract
The use of vaginal surgical mesh to treat pelvic organ prolapse (POP) has been associated with high rates of mesh-related complications. In the present study, we prepared new kinds of meshes based on bacterial cellulose (BC) and collagen-coated BC (BCCOL) using a laser cutting method and perforation technique. The mechanical properties of pre-implanted BC meshes, including breaking strength, suture strength and rigidity, were equal to or exceeded those of available clinically used polypropylene meshes. An in vitro cellular assay revealed that BCCOL meshes exhibited enhanced biocompatibility by increasing collagen secretion and cell adhesion. Both BC and BCCOL meshes only caused weak inflammation and were surrounded by newly formed connective tissue composed of type I collagen after implantation in a rabbit subcutaneous model for one week, demonstrating that the novel mesh is fully biocompatible and can integrate into surrounding tissues. Furthermore, a long-term (ninety days) ewe vaginal implantation model was used to evaluate foreign body reactions and suitability of BC and BCCOL meshes as vaginal meshes. The results showed that the tissue surrounding the BC meshes returned to its original physiology as muscle tissue, indicating the excellent integration of BC meshes into the surrounding tissues without triggering severe local inflammatory response post-implantation. The collagen coating appeared to induce a chronic inflammatory response due to glutaraldehyde remnants. The present exploratory research demonstrated that the developed BC mesh might be a suitable candidate for treating POP.
Collapse
Affiliation(s)
- Chen Lai
- Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute Peking University, Shenzhen, 518057, PR China
| | - Shu-Jiang Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Xuan-Chen Chen
- Faculty of Engineering Science, Technical University of Dresden, Dresden, 01069, Germany
| | - Li-Yuan Sheng
- Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute Peking University, Shenzhen, 518057, PR China
| | - Tian-Wei Qi
- The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, PR China
| | - Le-Ping Yan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, PR China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, PR China
| |
Collapse
|
9
|
Shi X, Zhu S, Jin H, Fang J, Xing X, Wang Y, Wang H, Wang C, Niu T, Liu K. The Anti-Inflammatory Effect of KS23, A Novel Peptide Derived From Globular Adiponectin, on Endotoxin-Induced Uveitis in Rats. Front Pharmacol 2021; 11:585446. [PMID: 33510636 PMCID: PMC7835799 DOI: 10.3389/fphar.2020.585446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose: Adiponectin has been shown to exert potent anti-inflammatory activities in a range of systemic inflammatory diseases. This study aimed to investigate the potential therapeutic effects of KS23, a globular adiponectin-derived peptide, on endotoxin-induced uveitis (EIU) in rats and lipopolysaccharide (LPS)-stimulated mouse macrophage-like RAW 264.7 cells. Methods: EIU was induced in Lewis rats by subcutaneous injection of LPS into a single footpad. KS23 or phosphate-buffered saline (PBS) was administered immediately after LPS induction via intravitreal injection. Twenty-four hours later, clinical and histopathological scores were evaluated, and the aqueous humor (AqH) was collected to determine the infiltrating cells, protein concentration, and levels of inflammatory cytokines. In vitro, cultured RAW 264.7 cells were stimulated with LPS in the presence or absence of KS23, inflammatory cytokine levels in the supernatant, nuclear translocation of nuclear factor kappa B (NF-κB) subunit p65, and the expression of NF-kB signaling pathway components were analyzed. Results: KS23 treatment significantly ameliorated the clinical and histopathological scores of EIU rats and reduced the levels of infiltration cells, protein, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the aqueous humor. Consistently, KS23 decreased the expression of TNF-α and IL-6 in the supernatant of LPS-stimulated RAW 264.7 cells and inhibited the LPS-induced nuclear translocation of NF-κB p65 and the phosphorylation of IKKα/β/IκBα/NF-κB. Conclusion: The in vivo and in vitro results demonstrated the anti-inflammatory effects of the peptide KS23 and suggested that KS23 is a compelling, novel therapeutic candidate for the treatment of ocular inflammation.
Collapse
Affiliation(s)
- Xin Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shaopin Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Huiyi Jin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xindan Xing
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yihan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Hanying Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chingyi Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Tian Niu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
10
|
The Anti-Inflammatory Effects of Angiogenin in an Endotoxin Induced Uveitis in Rats. Int J Mol Sci 2020; 21:ijms21020413. [PMID: 31936482 PMCID: PMC7014170 DOI: 10.3390/ijms21020413] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
Angiogenin (ANG) is involved in the innate immune system and inflammatory disease. The aim of this study is to evaluate the anti-inflammatory effects of ANG in an endotoxin induced uveitis (EIU) rat model and the pathways involved. EIU rats were treated with balanced salt solution (BSS), a non-functional mutant ANG (mANG), or wild-type ANG (ANG). The integrity of the blood-aqueous barrier was evaluated by the infiltrating cell and protein concentrations in aqueous humor. Histopathology, Western blot, and real-time qRT-PCR of aqueous humor and ocular tissue were performed to analyze inflammatory cytokines and transcription factors. EIU treated with ANG had decreased inflammatory cells and protein concentrations in the anterior chamber. Compared to BSS and mANG, ANG treatment showed reduced expression of IL-1β, IL-8, TNF-α, and Myd88, while the expression of IL-4 and IL-10 was increased. Western blot of ANG treatment showed decreased expression of IL-6, inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, and phosphorylated NF-κB and increased expression of IL-10. In conclusion, ANG seems to reduce effectively immune mediated inflammation in the EIU rat model by reducing the expression of proinflammatory cytokines, while increasing the expression of anti-inflammatory cytokines through pathways related to NF-κB. Therefore, ANG shows potential for effectively suppressing immune-inflammatory responses in vivo.
Collapse
|
11
|
Ramirez R, Herrera AM, Ramirez J, Qian C, Melton DW, Shireman PK, Jin YF. Deriving a Boolean dynamics to reveal macrophage activation with in vitro temporal cytokine expression profiles. BMC Bioinformatics 2019; 20:725. [PMID: 31852428 PMCID: PMC6921543 DOI: 10.1186/s12859-019-3304-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Macrophages show versatile functions in innate immunity, infectious diseases, and progression of cancers and cardiovascular diseases. These versatile functions of macrophages are conducted by different macrophage phenotypes classified as classically activated macrophages and alternatively activated macrophages due to different stimuli in the complex in vivo cytokine environment. Dissecting the regulation of macrophage activations will have a significant impact on disease progression and therapeutic strategy. Mathematical modeling of macrophage activation can improve the understanding of this biological process through quantitative analysis and provide guidance to facilitate future experimental design. However, few results have been reported for a complete model of macrophage activation patterns. RESULTS We globally searched and reviewed literature for macrophage activation from PubMed databases and screened the published experimental results. Temporal in vitro macrophage cytokine expression profiles from published results were selected to establish Boolean network models for macrophage activation patterns in response to three different stimuli. A combination of modeling methods including clustering, binarization, linear programming (LP), Boolean function determination, and semi-tensor product was applied to establish Boolean networks to quantify three macrophage activation patterns. The structure of the networks was confirmed based on protein-protein-interaction databases, pathway databases, and published experimental results. Computational predictions of the network evolution were compared against real experimental results to validate the effectiveness of the Boolean network models. CONCLUSION Three macrophage activation core evolution maps were established based on the Boolean networks using Matlab. Cytokine signatures of macrophage activation patterns were identified, providing a possible determination of macrophage activations using extracellular cytokine measurements.
Collapse
Affiliation(s)
- Ricardo Ramirez
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Allen Michael Herrera
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Joshua Ramirez
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Chunjiang Qian
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - David W Melton
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Paula K Shireman
- Department of Surgery, Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX, 78229, USA
| | - Yu-Fang Jin
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
12
|
Yuan Z, Chen X, Yang W, Lou B, Ye N, Liu Y. The anti-inflammatory effect of minocycline on endotoxin-induced uveitis and retinal inflammation in rats. Mol Vis 2019; 25:359-372. [PMID: 31354229 PMCID: PMC6620367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/03/2019] [Indexed: 11/20/2022] Open
Abstract
Purpose Uveitis is a serious inflammatory disease of the uvea, frequently leading to visual impairment and irreversible blindness. Here, we investigated the anti-inflammatory effect of minocycline on rat endotoxin-induced uveitis (EIU) and retinal inflammation. Methods For in vivo studies, the rat EIU model was induced with intravitreal injection of lipopolysaccharide (LPS). Minocycline was administered intraperitoneally 2 h before and after the LPS injection. The severity of the ocular inflammation was evaluated with slit-lamp photography, aqueous humor cell counting, protein quantitative determination, and histological analysis. Retinal microglia were labeled with a fluorescent dye 4Di-10ASP. Microglial activity and inflammatory cytokine production were analyzed with immunofluorescence and real-time PCR. For the in vitro studies, BV-2 microglia cells were stimulated with LPS or cotreated with minocycline for 6 h. Toll-like receptor (TLR) 2/4 levels were determined with real-time PCR and western blotting. Results The LPS-challenged eyes displayed severe inflammation in all ocular structures, including a large number of anterior chamber cells, fibrin exudation, hypopyon, and infiltrated inflammatory cells in the vitreous and retina. Immunostaining of the retinal whole-mounts also revealed numerous retinal microglia were activated promptly, and then more and more peripheral leukocytes were recruited and infiltrated in the LPS-injected retinas. Additionally, the production of tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL-2), interleukin-1 beta (IL-1β), and IL-6 was dramatically increased. However, minocycline treatment strongly inhibited microglia activation, decreased inflammatory cytokine production, prevented peripheral inflammatory cell recruitment, and significantly attenuated ocular inflammation. Finally, we demonstrated the mechanism of the microglia inactivation effect of minocycline is via suppression of TLR4 signaling. Conclusions This study indicates minocycline is far beyond an antibiotic. It not only attenuates rat EIU but also inhibits retinal inflammation through inactivating microglia, inhibiting inflammatory cell recruitment and inflammatory cytokine production.
Collapse
|