1
|
Bagó-Mas A, Korimová A, Bretová K, Deulofeu M, Verdú E, Fiol N, Dubový P, Boadas-Vaello P. Repeated Administrations of Polyphenolic Extracts Prevent Chronic Reflexive and Non-Reflexive Neuropathic Pain Responses by Modulating Gliosis and CCL2-CCR2/CX3CL1-CX3CR1 Signaling in Spinal Cord-Injured Female Mice. Int J Mol Sci 2025; 26:3325. [PMID: 40244217 PMCID: PMC11989601 DOI: 10.3390/ijms26073325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Neuropathic pain after spinal cord injury lacks any effective treatments, often leading to chronic pain. This study tested whether the daily administration of fully characterized polyphenolic extracts from grape stalks and coffee could prevent both reflexive and non-reflexive chronic neuropathic pain in spinal cord-injured mice by modulating the neuroimmune axis. Female CD1 mice underwent mild spinal cord contusion and received intraperitoneal extracts in weeks one, three, and six post-surgery. Reflexive pain responses were assessed weekly for up to 10 weeks, and non-reflexive pain was evaluated at the study's end. Neuroimmune crosstalk was investigated, focusing on glial activation and the expression of CCL2/CCR2 and CX3CL1/CX3CR1 in supraspinal pain-related areas, including the periaqueductal gray, rostral ventromedial medulla, anterior cingulate cortex, and amygdala. Repeated treatments prevented mechanical allodynia and thermal hyperalgesia, and also modulated non-reflexive pain. Moreover, they reduced supraspinal gliosis and regulated CCL2/CCR2 and CX3CL1/CX3CR1 signaling. Overall, the combination of polyphenols in these extracts may offer a promising pharmacological strategy to prevent chronic reflexive and non-reflexive pain responses by modifying central sensitization markers, not only at the contusion site but also in key supraspinal regions implicated in neuropathic pain. Overall, these data highlight the potential of polyphenolic extracts for spinal cord injury-induced chronic neuropathic pain.
Collapse
Affiliation(s)
- Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Andrea Korimová
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Karolína Bretová
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic School, University of Girona, 17003 Girona, Catalonia, Spain;
| | - Petr Dubový
- Division of Neuroanatomy, Department of Anatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.K.); (K.B.)
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17071 Girona, Catalonia, Spain; (A.B.-M.); (M.D.); (E.V.)
| |
Collapse
|
2
|
Cosentino G, Dichiara M, Ambrosio FA, Leotta CG, Costa G, Procopio F, Costanzo G, Raffa A, Artacho-Cordón A, Ruiz-Cantero MC, Pasquinucci L, Marrazzo A, Pitari GM, Cobos EJ, Alcaro S, Amata E. Development of selective sigma-1 receptor ligands with antiallodynic activity: A focus on piperidine and piperazine scaffolds. Eur J Med Chem 2025; 281:117037. [PMID: 39547082 DOI: 10.1016/j.ejmech.2024.117037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
The design and synthesis of a series of piperidine and piperazine-based derivatives as selective sigma receptor (SR) ligands associated with analgesic activity, are the focus of this work. In this study, affinities at S1R and S2R were measured, and molecular modeling studies were performed to investigate the binding pose features. The most promising compounds were subjected to in vitro toxicity testing and subsequently screened for in vivo analgesic properties. Compounds 12a (AD353) and 12c (AD408) exhibited negligible in vitro cellular toxicity and high potency both in a model of capsaicin-induced allodynia and in PGE2-induced mechanical hyperalgesia. Functional activity experiments showed that S1R antagonism is needed for the effects of these compounds, since the effect was reversed by PRE-084 or absent in KO mice. In addition, 12a exhibited a favorable pharmacokinetic profile, confirming its therapeutic value in treating allodynic conditions. Moreover, a computational model was developed in order to help the understanding about the mechanism of action of most active compounds.
Collapse
Affiliation(s)
- Giuseppe Cosentino
- University of Catania, Dipartimento di Scienze del Farmaco e della Salute, Viale A. Doria 6, 95125, Catania, Italy
| | - Maria Dichiara
- University of Catania, Dipartimento di Scienze del Farmaco e della Salute, Viale A. Doria 6, 95125, Catania, Italy.
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | | | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Francesca Procopio
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Giuliana Costanzo
- University of Catania, Dipartimento di Scienze del Farmaco e della Salute, Viale A. Doria 6, 95125, Catania, Italy
| | - Alessandro Raffa
- University of Catania, Dipartimento di Scienze del Farmaco e della Salute, Viale A. Doria 6, 95125, Catania, Italy
| | - Antonia Artacho-Cordón
- Departamento de Farmacología e Instituto de Neurociencias, Facultad de Medicina, Universitad de Granada e Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Avenida de la Investigación, 18016, Granada, Spain
| | - M Carmen Ruiz-Cantero
- Departamento de Farmacología e Instituto de Neurociencias, Facultad de Medicina, Universitad de Granada e Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Avenida de la Investigación, 18016, Granada, Spain
| | - Lorella Pasquinucci
- University of Catania, Dipartimento di Scienze del Farmaco e della Salute, Viale A. Doria 6, 95125, Catania, Italy
| | - Agostino Marrazzo
- University of Catania, Dipartimento di Scienze del Farmaco e della Salute, Viale A. Doria 6, 95125, Catania, Italy
| | | | - Enrique J Cobos
- Departamento de Farmacología e Instituto de Neurociencias, Facultad de Medicina, Universitad de Granada e Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Avenida de la Investigación, 18016, Granada, Spain
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Emanuele Amata
- University of Catania, Dipartimento di Scienze del Farmaco e della Salute, Viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
3
|
Bai YW, Yang QH, Chen PJ, Wang XQ. Repetitive transcranial magnetic stimulation regulates neuroinflammation in neuropathic pain. Front Immunol 2023; 14:1172293. [PMID: 37180127 PMCID: PMC10167032 DOI: 10.3389/fimmu.2023.1172293] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Neuropathic pain (NP) is a frequent condition caused by a lesion in, or disease of, the central or peripheral somatosensory nervous system and is associated with excessive inflammation in the central and peripheral nervous systems. Repetitive transcranial magnetic stimulation (rTMS) is a supplementary treatment for NP. In clinical research, rTMS of 5-10 Hz is widely placed in the primary motor cortex (M1) area, mostly at 80%-90% RMT, and 5-10 treatment sessions could produce an optimal analgesic effect. The degree of pain relief increases greatly when stimulation duration is greater than 10 days. Analgesia induced by rTMS appears to be related to reestablishing the neuroinflammation system. This article discussed the influences of rTMS on the nervous system inflammatory responses, including the brain, spinal cord, dorsal root ganglia (DRG), and peripheral nerve involved in the maintenance and exacerbation of NP. rTMS has shown an anti-inflammation effect by decreasing pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and increasing anti-inflammatory cytokines, including IL-10 and BDNF, in cortical and subcortical tissues. In addition, rTMS reduces the expression of glutamate receptors (mGluR5 and NMDAR2B) and microglia and astrocyte markers (Iba1 and GFAP). Furthermore, rTMS decreases nNOS expression in ipsilateral DRGs and peripheral nerve metabolism and regulates neuroinflammation.
Collapse
Affiliation(s)
- Yi-Wen Bai
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
4
|
Castany S, Bagó-Mas A, Vela JM, Verdú E, Bretová K, Svobodová V, Dubový P, Boadas-Vaello P. Transient Reflexive Pain Responses and Chronic Affective Nonreflexive Pain Responses Associated with Neuroinflammation Processes in Both Spinal and Supraspinal Structures in Spinal Cord-Injured Female Mice. Int J Mol Sci 2023; 24:ijms24021761. [PMID: 36675275 PMCID: PMC9863935 DOI: 10.3390/ijms24021761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Central neuropathic pain is not only characterized by reflexive pain responses, but also emotional or affective nonreflexive pain responses, especially in women. Some pieces of evidence suggest that the activation of the neuroimmune system may be contributing to the manifestation of mood disorders in patients with chronic pain conditions, but the mechanisms that contribute to the development and chronicity of CNP and its associated disorders remain poorly understood. This study aimed to determine whether neuroinflammatory factor over-expression in the spinal cord and supraspinal structures may be associated with reflexive and nonreflexive pain response development from acute SCI phase to 12 weeks post-injury in female mice. The results show that transient reflexive responses were observed during the SCI acute phase associated with transient cytokine overexpression in the spinal cord. In contrast, increased nonreflexive pain responses were observed in the chronic phase associated with cytokine overexpression in supraspinal structures, especially in mPFC. In addition, results revealed that besides cytokines, the mPFC showed an increased glial activation as well as CX3CL1/CX3CR1 upregulation in the neurons, suggesting the contribution of neuron-glia crosstalk in the development of nonreflexive pain responses in the chronic spinal cord injury phase.
Collapse
Affiliation(s)
- Sílvia Castany
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Catalonia, Spain
| | - Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Catalonia, Spain
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - José Miguel Vela
- WeLab Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Catalonia, Spain
| | - Karolina Bretová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Viktorie Svobodová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Catalonia, Spain
- Correspondence:
| |
Collapse
|
5
|
Deulofeu M, Peña-Méndez EM, Vaňhara P, Havel J, Moráň L, Pečinka L, Bagó-Mas A, Verdú E, Salvadó V, Boadas-Vaello P. Artificial Neural Networks Coupled with MALDI-TOF MS Serum Fingerprinting To Classify and Diagnose Pathological Pain Subtypes in Preclinical Models. ACS Chem Neurosci 2022; 14:300-311. [PMID: 36584284 PMCID: PMC9853500 DOI: 10.1021/acschemneuro.2c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pathological pain subtypes can be classified as either neuropathic pain, caused by a somatosensory nervous system lesion or disease, or nociplastic pain, which develops without evidence of somatosensory system damage. Since there is no gold standard for the diagnosis of pathological pain subtypes, the proper classification of individual patients is currently an unmet challenge for clinicians. While the determination of specific biomarkers for each condition by current biochemical techniques is a complex task, the use of multimolecular techniques, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), combined with artificial intelligence allows specific fingerprints for pathological pain-subtypes to be obtained, which may be useful for diagnosis. We analyzed whether the information provided by the mass spectra of serum samples of four experimental models of neuropathic and nociplastic pain combined with their functional pain outcomes could enable pathological pain subtype classification by artificial neural networks. As a result, a simple and innovative clinical decision support method has been developed that combines MALDI-TOF MS serum spectra and pain evaluation with its subsequent data analysis by artificial neural networks and allows the identification and classification of pathological pain subtypes in experimental models with a high level of specificity.
Collapse
Affiliation(s)
- Meritxell Deulofeu
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain,Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5/A14, 625 00 Brno, Czech Republic,Department
of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Eladia M. Peña-Méndez
- Department
of Chemistry, Analytical Chemistry Division, Faculty of Sciences, University of La Laguna, 38204 San Cristóbal de
La Laguna, Tenerife, Spain
| | - Petr Vaňhara
- Department
of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic,International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Josef Havel
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5/A14, 625 00 Brno, Czech Republic,International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Lukáš Moráň
- Department
of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic,Research
Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic
| | - Lukáš Pečinka
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5/A14, 625 00 Brno, Czech Republic,International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Anna Bagó-Mas
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain
| | - Enrique Verdú
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain
| | - Victoria Salvadó
- Department
of Chemistry, Faculty of Science, University
of Girona, 17071 Girona, Catalonia, Spain,
| | - Pere Boadas-Vaello
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain,
| |
Collapse
|
6
|
Soler-Martínez R, Deulofeu M, Bagó-Mas A, Dubový P, Verdú E, Fiol N, Boadas-Vaello P. Central Neuropathic Pain Development Modulation Using Coffee Extract Major Polyphenolic Compounds in Spinal-Cord-Injured Female Mice. BIOLOGY 2022; 11:1617. [PMID: 36358318 PMCID: PMC9687351 DOI: 10.3390/biology11111617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 08/18/2024]
Abstract
It was recently shown that coffee polyphenolic extract exerts preventive effects on central neuropathic pain development, but it is unknown whether its beneficial effects are associated with only one of its major polyphenolic compounds or if the whole extract is needed to exert such effects. The main objective of this study was to determine whether the separate administration of major polyphenols from coffee extract exerts preventive effects on the development of central neuropathic pain in mice compared with the effects of the whole coffee extract. Thus, spinal-cord-injured female ICR-CD1 mice were daily treated with either coffee extract or its major polyphenolic compounds during the first week, and reflexive and nonreflexive pain responses were evaluated within the acute phase of spinal cord injury. In addition, the injury-induced gliosis and dorsal horn sprouting were evaluated with immunohistochemistry. The results showed that the coffee extract prevented spinal cord injury-induced neuropathic pain, whereas its major polyphenolic compounds resulted in reflexive pain response attenuation. Both preventive and attenuation effects were associated with gliosis and afferent fiber sprouting modulation. Overall, the results suggested that coffee extract effects may be associated with potential synergistic mechanisms exerted by its major polyphenolic compounds and not by the sole effect of only one of them.
Collapse
Affiliation(s)
- Roger Soler-Martínez
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic School, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| |
Collapse
|
7
|
Bagó-Mas A, Korimová A, Deulofeu M, Verdú E, Fiol N, Svobodová V, Dubový P, Boadas-Vaello P. Polyphenolic grape stalk and coffee extracts attenuate spinal cord injury-induced neuropathic pain development in ICR-CD1 female mice. Sci Rep 2022; 12:14980. [PMID: 36056079 PMCID: PMC9440260 DOI: 10.1038/s41598-022-19109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
More than half of spinal cord injury (SCI) patients develop central neuropathic pain (CNP), which is largely refractory to current treatments. Considering the preclinical evidence showing that polyphenolic compounds may exert antinociceptive effects, the present work aimed to study preventive effects on SCI-induced CNP development by repeated administration of two vegetal polyphenolic extracts: grape stalk extract (GSE) and coffee extract (CE). Thermal hyperalgesia and mechanical allodynia were evaluated at 7, 14 and 21 days postinjury. Then, gliosis, ERK phosphorylation and the expression of CCL2 and CX3CL1 chemokines and their receptors, CCR2 and CX3CR1, were analyzed in the spinal cord. Gliosis and CX3CL1/CX3CR1 expression were also analyzed in the anterior cingulate cortex (ACC) and periaqueductal gray matter (PAG) since they are supraspinal structures involved in pain perception and modulation. GSE and CE treatments modulated pain behaviors accompanied by reduced gliosis in the spinal cord and both treatments modulated neuron-glia crosstalk-related biomolecules expression. Moreover, both extracts attenuated astrogliosis in the ACC and PAG as well as microgliosis in the ACC with an increased M2 subpopulation of microglial cells in the PAG. Finally, GSE and CE prevented CX3CL1/CX3CR1 upregulation in the PAG, and modulated their expression in ACC. These findings suggest that repeated administrations of either GSE or CE after SCI may be suitable pharmacologic strategies to attenuate SCI-induced CNP development by means of spinal and supraspinal neuroinflammation modulation.
Collapse
Affiliation(s)
- Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Andrea Korimová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic School, University of Girona, Girona, Spain
| | - Viktorie Svobodová
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, Brno, Czechia.
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, Girona, Spain.
| |
Collapse
|
8
|
Hu Y, Zhu Y, Wen X, Zeng F, Feng Y, Xu Z, Xu F, Wang J. Repetitive transcranial magnetic stimulation regulates neuroinflammation, relieves hyperalgesia and reverses despair-like behaviour in chronic constriction injury rats. Eur J Neurosci 2022; 56:4930-4947. [PMID: 35895439 DOI: 10.1111/ejn.15779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/28/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) could effectively relieve the pain and depression in neuropathic pain (NP) patients. However, the specific treatment parameters and exact mechanism are still unclear. Our purpose is to observe the effects of rTMS on pain and despair-like behaviour in chronic constriction injury (CCI) rats and explore its possible mechanism. Thirty-two 8-week-old male Sprague-Dawley rats were randomly divided into four groups: sham operation group (S, n = 8), CCI group (n = 8), 1 Hz-rTMS group (n = 8) and 10 Hz-rTMS group (n = 8). The rTMS was applied to the left dorsal anterior agranular insular (AId) 1 week after the operation, once a day, 5 days/week for 4 consecutive weeks. Mechanical hyperalgesia, despair-like behaviours and sciatic nerve function were used to evaluate the effects of rTMS. Besides, glucose metabolism, the metabotropic glutamate receptors 5 (mGluR5), N-Methyl-D-Aspartic acid receptor type 2B (NMDAR2B), tumour necrosis factor-α (TNF-α), interleukin-6 (Ll-6) and interleukin-1β (Ll-1β) in AId were tested to explore the possible mechanism. Compared with 1 Hz-rTMS, the rats of 10 Hz-rTMS had higher the mechanical hyperalgesia, higher sugar preference and shorter swimming immobility time. Besides, the expressions of mGluR5, NMDAR2B, TNF-α, Ll-1β and Ll-6 both in 1 Hz-rTMS and 10 Hz-rTMS groups were reduced compared with the CCI group; the 10 Hz-rTMS group had a more decrease than that of 1 Hz-rTMS. Furthermore, the [18]F-FDG uptake was lower than that in the 1 Hz-rTMS group. Compared with 1 Hz-rTMS, 10 Hz-rTMS could more effectively relieve mechanical hyperalgesia and reverse despair-like behaviour in rats. The mechanism could be related to regulating mGluR5/NMDAR2B-related inflammatory signalling pathways in the AId.
Collapse
Affiliation(s)
- Yue Hu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuanliang Zhu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Wen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fanshuo Zeng
- Department of Rehabilitation Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Feng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Zhangyu Xu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fangyuan Xu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianxiong Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
9
|
Meng Y, Shen HL. Role of N-Methyl-D-Aspartate Receptor NR2B Subunit in Inflammatory Arthritis-Induced Chronic Pain and Peripheral Sensitized Neuropathic Pain: A Systematic Review. J Pain Res 2022; 15:2005-2013. [PMID: 35880050 PMCID: PMC9307865 DOI: 10.2147/jpr.s367982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Arthritis is a common clinical disease that affects millions of people in the world. The most common types of arthritis are osteoarthritis and rheumatoid arthritis. Inflammatory arthritis (IA), a chronic painful disease, is characterized by synovitis and cartilage destruction in the early stages. Pathologically, IA causes inflammatory changes in the joints and eventually leads to joint destruction. Pain is associated with inflammation and abnormal regulation of the nervous system pathways involved in pain promotion and inhibition. In addition, the occurrence of pain is associated with depression and anxiety. We found that there are many factors affecting pain, in addition to inflammatory factors, glutamate receptor may be the possible cause of long-term chronic pain caused by IA. N-methyl-d-aspartate receptor subunit 2B (NR2B) has been reported to involved in IA and nervous system diseases, especially peripheral neuropathic pain. In this review, we summarized the mechanisms of the NR2B subunit of the N-methyl-D-aspartate (NMDA) receptor in peripheral nerve sensitization during IA and chronic pain.
Collapse
Affiliation(s)
- Yu Meng
- Department of Pain, The Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Hai Li Shen
- Department of Rheumatology and Immunology, The Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| |
Collapse
|
10
|
Mukai M, Uchida K, Hirosawa N, Murakami K, Inoue G, Miyagi M, Shiga Y, Sekiguchi H, Inage K, Orita S, Suzuki T, Matsuura Y, Takaso M, Ohtori S. Frozen vein wrapping for chronic nerve constriction injury reduces sciatic nerve allodynia in a rat model. BMC Neurosci 2022; 23:37. [PMID: 35725384 PMCID: PMC9208102 DOI: 10.1186/s12868-022-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Autologous vein wrapping (VW) is used in the treatment of recurrent chronic constriction neuropathy and traumatic peripheral nerve injury. However, use of autologous veins is limited by the inability to obtain longer veins of sufficient length for larger sites. Frozen allograft tissue has several advantages, including its availability for large grafts, avoidance of donor-site morbidity, and shorter operation time. Here, we investigated the effect of frozen vein wrapping (FVW) in Wistar rats as a model of sciatic nerve injury. Results The rats were grouped by treatment as (i) untreated after chronic constriction injury surgery (CCI; control group), (ii) treated with vein wrapping using freshly isolated vein (VW), and (iii) treated with vein wrapping using frozen vein (FVW). Mechanical allodynia was assessed with von Frey filaments on postoperative days (PODs) 1, 3, 5, 7, and 14. Gene expression of HO-1 was evaluated by quantitative polymerase chain reaction (qPCR). The response of heme oxygenase-1 gene, Hmox-1, expression to VW and FVW was assessed by RT-PCR. Both VW and FVW significantly increased withdrawal threshold levels compared to the untreated control group on POD 1, 3, and 5. Both VW and FVW also showed increased HO-1 expression compared to the CCI group. Conclusions FVW increased the withdrawal threshold similar to VW in a rat CCI model for short periods. Frozen vein wrapping using vein allograft without donor site morbidity may be an alternative therapeutic option.
Collapse
Affiliation(s)
- Michiaki Mukai
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan. .,Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan.
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Naoya Hirosawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Kenichi Murakami
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kanagawa, 216-8511, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yasuhiro Shiga
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Hiroyuki Sekiguchi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara, Kanagawa, 252-0374, Japan.,Shonan University of Medical Sciences Research Institute, Nishikubo 500, Chigasaki , Kanagawa, 253-0083, Japan
| | - Kazuhide Inage
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Sumihisa Orita
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Takane Suzuki
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Yusuke Matsuura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku Kitasato, Sagamihara, Kanagawa, 252-0374, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677, Japan
| |
Collapse
|
11
|
Álvarez-Pérez B, Deulofeu M, Homs J, Merlos M, Vela JM, Verdú E, Boadas-Vaello P. Long-lasting reflexive and nonreflexive pain responses in two mouse models of fibromyalgia-like condition. Sci Rep 2022; 12:9719. [PMID: 35691979 PMCID: PMC9189106 DOI: 10.1038/s41598-022-13968-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Nociplastic pain arises from altered nociception despite no clear evidence of tissue or somatosensory system damage, and fibromyalgia syndrome can be highlighted as a prototype of this chronic pain subtype. Currently, there is a lack of effective treatments to alleviate both reflexive and nonreflexive pain responses associated with fibromyalgia condition, and suitable preclinical models are needed to assess new pharmacological strategies. In this context, although in recent years some remarkable animal models have been developed to mimic the main characteristics of human fibromyalgia, most of them show pain responses in the short term. Considering the chronicity of this condition, the present work aimed to develop two mouse models showing long-lasting reflexive and nonreflexive pain responses after several reserpine (RIM) or intramuscular acid saline solution (ASI) injections. To our knowledge, this is the first study showing that RIM6 and ASI mouse models show reflexive and nonreflexive responses up to 5-6 weeks, accompanied by either astro- or microgliosis in the spinal cord as pivotal physiopathology processes related to such condition development. In addition, acute treatment with pregabalin resulted in reflexive pain response alleviation in both the RIM6 and ASI models. Consequently, both may be considered suitable experimental models of fibromyalgia-like condition, especially RIM6.
Collapse
Affiliation(s)
- Beltrán Álvarez-Pérez
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Facultat de Medicina, Universitat de Girona (UdG), Emili Grahit 77, 17003, Girona, Catalonia, Spain
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Facultat de Medicina, Universitat de Girona (UdG), Emili Grahit 77, 17003, Girona, Catalonia, Spain
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Facultat de Medicina, Universitat de Girona (UdG), Emili Grahit 77, 17003, Girona, Catalonia, Spain.,University School of Health and Sport (EUSES), University of Girona, Girona, Catalonia, Spain
| | - Manuel Merlos
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - José Miguel Vela
- WeLab Barcelona, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Facultat de Medicina, Universitat de Girona (UdG), Emili Grahit 77, 17003, Girona, Catalonia, Spain.
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Facultat de Medicina, Universitat de Girona (UdG), Emili Grahit 77, 17003, Girona, Catalonia, Spain.
| |
Collapse
|
12
|
Shin SM, Wang F, Qiu C, Itson-Zoske B, Hogan QH, Yu H. Sigma-1 receptor activity in primary sensory neurons is a critical driver of neuropathic pain. Gene Ther 2022; 29:1-15. [PMID: 32424233 PMCID: PMC7671947 DOI: 10.1038/s41434-020-0157-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
The Sigma-1 receptor (σ1R) is highly expressed in the primary sensory neurons (PSNs) that are the critical site of initiation and maintenance of pain following peripheral nerve injury. By immunoblot and immunohistochemistry, we observed increased expression of both σ1R and σ1R-binding immunoglobulin protein (BiP) in the lumbar (L) dorsal root ganglia (DRG) ipsilateral to painful neuropathy induced by spared nerve injury (SNI). To evaluate the therapeutic potential of PSN-targeted σ1R inhibition at a selected segmental level, we designed a recombinant adeno-associated viral (AAV) vector expressing a small hairpin RNA (shRNA) against rat σ1R. Injection of this vector into the L4/L5 DRGs induced downregulation of σ1R in DRG neurons of all size groups, while expression of BiP was not affected. This was accompanied by attenuation of SNI-induced cutaneous mechanical and thermal hypersensitivity. Whole-cell current-clamp recordings of dissociated neurons showed that knockdown of σ1R suppressed neuronal excitability, suggesting that σ1R silencing attenuates pain by reversal of injury-induced neuronal hyperexcitability. These findings support a critical role of σ1R in modulating PSN nociceptive functions, and that the nerve injury-induced elevated σ1R activity in the PSNs can be a significant driver of neuropathic pain. Further understanding the role of PSN-σ1R in pain pathology may open routes to exploit this system for DRG-targeted pain therapy.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Fei Wang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, PR China
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, PR China
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA.
| |
Collapse
|
13
|
Zhuang T, Xiong J, Hao S, Du W, Liu Z, Liu B, Zhang G, Chen Y. Bifunctional μ opioid and σ 1 receptor ligands as novel analgesics with reduced side effects. Eur J Med Chem 2021; 223:113658. [PMID: 34175542 DOI: 10.1016/j.ejmech.2021.113658] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Opioid analgesics are highly effective painkillers for the treatment of moderate or severe pain, but they are associated with a number of undesirable adverse effects, including the development of tolerance, addiction, constipation and life-threatening respiratory depression. The development of new and safer analgesics with innovative mechanisms of action, which can enhance the efficacy in comparison to available treatments and reduce their side effects, is urgently needed. The sigma-1 receptor (σ1R), a unique Ca2+-sensing chaperone protein, is expressed throughout pain-modulating tissues and affects neurotransmission by interacting with different protein partners, including molecular targets that participate in nociceptive signalling, such as the μ-opioid receptor (MOR), N-methyl-d-aspartate receptor (NMDAR) and cannabinoid 1 receptor (CB1R). Overwhelming pharmacological and genetic evidence indicates that σ1R antagonists induce anti-hypersensitive effects in sensitising pain conditions (e.g. chemically induced, inflammatory and neuropathic pain) and enhance opioid analgesia but not opioid-mediated detrimental effects. It has been suggested that balanced modulation of MORs and σ1Rs may improve both the therapeutic efficacy and safety of opioids. This review summarises the functional profiles of ligands with mixed MOR agonist and σ1R antagonist activities and highlights their therapeutic potentials for pain management. Dual MOR agonism/σ1R antagonism represents a promising avenue for the development of potent and safer analgesics.
Collapse
MESH Headings
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/therapeutic use
- Benzopyrans/chemistry
- Benzopyrans/metabolism
- Humans
- Ligands
- Pain/drug therapy
- Piperazines/chemistry
- Piperazines/metabolism
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Receptors, sigma/antagonists & inhibitors
- Receptors, sigma/metabolism
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Tao Zhuang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiaying Xiong
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuaishuai Hao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wei Du
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Bifeng Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guisen Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yin Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
14
|
López-Estévez S, Gris G, de la Puente B, Carceller A, Martínez V. Intestinal inflammation-associated hypersensitivity is attenuated in a DSS model of colitis in Sigma-1 knockout C57BL/6 mice. Biomed Pharmacother 2021; 143:112126. [PMID: 34474349 DOI: 10.1016/j.biopha.2021.112126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Sigma-1 receptors (σ1R) have been implicated in several pain pathways. We assessed the implication of σ1Rs in the development of intestinal inflammation and inflammation-associated referred hypersensitivity in a model of colitis in σ1R knockout (KO) mice. Colitis was induced with dextran sulfate sodium (DSS) in wild type (WT) and σ1R KO mice. The development of referred mechanical hypersensitivity (von Frey test) was assessed. Colonic and spinal changes in expression of immune- and sensory-related markers were also investigated (RT-qPCR/Western blot). Absence of σ1Rs had little impact in colitis generation and progression, although during the chronic phase a reduction in edema and a down-regulation of iNOS gene expression was observed. In σ1R KO mice, inflammation-associated hypersensitivity was significantly attenuated (paw) or completely prevented (abdomen). During colitis, in WT mice, changes in the colonic expression of nociceptive markers were observed during the acute and chronic phases of inflammation. Although σ1R KO mice showed similar regulation in the acute phase, an attenuated response was observed during the chronic phase of colitis. These differences were especially relevant for CB2 and TRPV1 receptors, which could play an important role in σ1-mediated regulation of sensitivity. No changes were detected on ERK phosphorylation at the level of the lumbosacral spinal cord. In summary, intestinal inflammation-associated referred hyperalgesia was reduced (paw) or absent (abdomen) in σ1R KO mice, thus confirming an important role for σ1R in the development of colitis-associated hypersensitivity. These results identify σ1Rs as a possible therapeutic target for the treatment of hypersensitivity associated to intestinal inflammation.
Collapse
Affiliation(s)
- Sergio López-Estévez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Neuroscience Institute, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Georgia Gris
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, 08028 Barcelona, Spain
| | - Beatriz de la Puente
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, 08028 Barcelona, Spain
| | - Alicia Carceller
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, 08028 Barcelona, Spain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Neuroscience Institute, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
Wu NH, Ye Y, Wan BB, Yu YD, Liu C, Chen QJ. Emerging Benefits: Pathophysiological Functions and Target Drugs of the Sigma-1 Receptor in Neurodegenerative Diseases. Mol Neurobiol 2021; 58:5649-5666. [PMID: 34383254 DOI: 10.1007/s12035-021-02524-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023]
Abstract
The sigma-1 receptor (Sig-1R) is encoded by the SIGMAR1 gene and is a nonopioid transmembrane receptor located in the mitochondrial-associated endoplasmic reticulum membrane (MAM). It helps to locate endoplasmic reticulum calcium channels, regulates calcium homeostasis, and acts as a molecular chaperone to control cell fate and participate in signal transduction. It plays an important role in protecting neurons through a variety of signaling pathways and participates in the regulation of cognition and motor behavior closely related to neurodegenerative diseases. Based on its neuroprotective effects, Sig-1R has now become a breakthrough target for alleviating Alzheimer's disease and other neurodegenerative diseases. This article reviews the most cutting-edge research on the function of Sig-1R under normal or pathologic conditions and target drugs of the sigma-1 receptor in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ning-Hua Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
- Basic Medical College, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Yu Ye
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Bin-Bin Wan
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Yuan-Dong Yu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China.
| | - Qing-Jie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437000, Hubei, China.
| |
Collapse
|
16
|
Fakhri S, Abbaszadeh F, Jorjani M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed Pharmacother 2021; 139:111563. [PMID: 33873146 DOI: 10.1016/j.biopha.2021.111563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is globally considered as one of the most debilitating disorders, which interferes with daily activities and life of the affected patients. Despite many developments in related recognizing and treating procedures, post-SCI neuropathic pain (NP) is still a clinical challenge for clinicians with no distinct treatments. Accordingly, a comprehensive search was conducted in PubMed, Medline, Scopus, Web of Science, and national database (SID and Irandoc). The relevant articles regarding signaling pathways, therapeutic targets and pharmacotherapy of post-SCI pain were also reviewed. Data were collected with no time limitation until November 2020. The present study provides the findings on molecular mechanisms and therapeutic targets, as well as developing the critical signaling pathways to introduce novel neuroprotective treatments of post-SCI pain. From the pathophysiological mechanistic point of view, post-SCI inflammation activates the innate immune system, in which the immune cells elicit secondary injuries. So, targeting the critical signaling pathways for pain management in the SCI population has significant importance in providing new treatments. Indeed, several receptors, ion channels, excitatory neurotransmitters, enzymes, and key signaling pathways could be used as therapeutic targets, with a pivotal role of n-methyl-D-aspartate, gamma-aminobutyric acid, and inflammatory mediators. The current review focuses on conventional therapies, as well as crucial signaling pathways and promising therapeutic targets for post-SCI pain to provide new insights into the clinical treatment of post-SCI pain. The need to develop innovative delivery systems to treat SCI is also considered.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Lattard A, Poulen G, Bartolami S, Gerber YN, Perrin FE. Negative Impact of Sigma-1 Receptor Agonist Treatment on Tissue Integrity and Motor Function Following Spinal Cord Injury. Front Pharmacol 2021; 12:614949. [PMID: 33643047 PMCID: PMC7902910 DOI: 10.3389/fphar.2021.614949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
In traumatic spinal cord injury, the initial trauma is followed by a cascade of impairments, including excitotoxicity and calcium overload, which ultimately induces secondary damages. The sigma-1 receptor is widely expressed in the central nervous system and is acknowledged to play a key role in calcium homeostasis. Treatments with agonists of the sigma-1 receptor induce beneficial effects in several animal models of neurological diseases. In traumatic injury the use of an antagonist of the sigma-1 receptor reversed several symptoms of central neuropathic pain. Here, we investigated whether sigma-1 receptor activation with PRE-084 is beneficial or detrimental following SCI in mice. First, we report that PRE-084 treatment after injury does not improve motor function recovery. Second, using ex vivo diffusion weighted magnetic resonance imaging completed by histological analysis, we highlight that σ1R agonist treatment after SCI does not limit lesion size. Finally, PRE-084 treatment following SCI decreases NeuN expression and increases astrocytic reactivity. Our findings suggest that activation of sigma-1 receptor after traumatic spinal cord injury is detrimental on tissue preservation and motor function recovery in mice.
Collapse
Affiliation(s)
- Alise Lattard
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Gaëtan Poulen
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France.,Department of Neurosurgery, CHU, Montpellier, France
| | | | - Yannick N Gerber
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Florence E Perrin
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France.,Institut Universitaire de France (IUF), University of Montpellier, INSERM U1198, Montpellier, France
| |
Collapse
|
18
|
Abstract
![]()
Developing
drugs for the central nervous system (CNS) requires
fine chemical modifications, as a strict balance between size and
lipophilicity is necessary to improve the permeability through the
blood-brain barrier (BBB).
In this context, morpholine and its analogues represent valuable heterocycles,
due to their conformational and physicochemical properties. In fact,
the presence of a weak basic nitrogen atom and of an oxygen atom at
the opposite position provides a peculiar pKa value and a flexible conformation to the ring, thus allowing
it to take part in several lipophilic–hydrophilic interactions,
and to improve blood solubility and brain permeability of the overall
structure. In CNS-active compounds, morpholines are used (1) to enhance
the potency through molecular interactions, (2) to act as a scaffold
directing the appendages in the correct position, and (3) to modulate
pharmacokinetic/pharmacodynamic (PK/PD) properties. In this perspective,
selected morpholine-containing CNS drug candidates are discussed to
reveal the active pharmacophores accountable for the (1) modulation
of receptors involved in mood disorders and pain, (2) bioactivity
toward enzymes and receptors responsible for neurodegenerative diseases,
and (3) inhibition of enzymes involved in the pathology of CNS tumors.
The medicinal chemistry/pharmacological activity of morpholine derivatives
is discussed, in the effort to highlight the importance of morpholine
ring interactions in the active site of different targets, particularly
reporting binding features retrieved from PDB data, when available.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy
| | - Lorenzo Calugi
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Trabocchi
- Department of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
19
|
Ruiz-Cantero MC, González-Cano R, Tejada MÁ, Santos-Caballero M, Perazzoli G, Nieto FR, Cobos EJ. Sigma-1 receptor: A drug target for the modulation of neuroimmune and neuroglial interactions during chronic pain. Pharmacol Res 2021; 163:105339. [PMID: 33276102 DOI: 10.1016/j.phrs.2020.105339] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Immune and glial cells play a pivotal role in chronic pain. Therefore, it is possible that the pharmacological modulation of neurotransmission from an exclusively neuronal perspective may not be enough for adequate pain management, and the modulation of complex interactions between neurons and other cell types might be needed for successful pain relief. In this article, we review the current scientific evidence for the modulatory effects of sigma-1 receptors on communication between the immune and nervous systems during inflammation, as well as the influence of this receptor on peripheral and central neuroinflammation. Several experimental models of pathological pain are considered, including peripheral and central neuropathic pain, osteoarthritic, and cancer pain. Sigma-1 receptor inhibition prevents peripheral (macrophage infiltration into the dorsal root ganglion) and central (activation of microglia and astrocytes) neuroinflammation in several pain models, and enhances immune-driven peripheral opioid analgesia during painful inflammation, maximizing the analgesic potential of peripheral immune cells. Therefore, sigma-1 antagonists may constitute a new class of analgesics with an unprecedented mechanism of action and potential utility in several painful disorders.
Collapse
Affiliation(s)
- M Carmen Ruiz-Cantero
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Rafael González-Cano
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Miguel Á Tejada
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Miriam Santos-Caballero
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Gloria Perazzoli
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain; Department of Nursing, Physiotherapy and Medicine, University of Almería, Almería, Spain
| | - Francisco R Nieto
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain; Teófilo Hernando Institute for Drug Discovery, Madrid, Spain.
| |
Collapse
|
20
|
Turones LC, Martins AN, Moreira LKDS, Fajemiroye JO, Costa EA. Development of pyrazole derivatives in the management of inflammation. Fundam Clin Pharmacol 2020; 35:217-234. [PMID: 33171533 DOI: 10.1111/fcp.12629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/15/2023]
Abstract
The therapeutic limitations and poor management of inflammatory conditions are anticipated to impact patients negatively over the coming decades. Following the synthesis of the first pyrazole-antipyrine in 1887, several other derivatives have been screened for anti-inflammatory, analgesic, and antipyretic activities. Arguably, the pyrazole ring, as a major pharmacophore and central scaffold partly, defines the pharmacological profile of several derivatives. In this review, we explore the structural-activity relationship that accounts for the pharmacological profile of pyrazole derivatives and highlights future research perspectives capable of optimizing current advancement in the search for safe and efficacy anti-inflammatory drugs. The flourishing research into the pyrazole derivatives as drug candidates has advanced our understanding of inflammation-related diseases and treatment.
Collapse
Affiliation(s)
- Larissa Córdova Turones
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Aline Nazareth Martins
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Lorrane Kelle da Silva Moreira
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - James Oluwagbamigbe Fajemiroye
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| |
Collapse
|
21
|
Ma K, Zhu D, Zhang C, Lv L. Botulinum Toxin Type A Possibly Affects Ca v3.2 Calcium Channel Subunit in Rats with Spinal Cord Injury-Induced Muscle Spasticity. Drug Des Devel Ther 2020; 14:3029-3041. [PMID: 32801642 PMCID: PMC7395704 DOI: 10.2147/dddt.s256814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) often causes muscle spasticity, which can be inhibited by using calcium channel blocker. Botulinum toxin type A (BoT-A) shows therapeutic efficacy on spasticity and may exert inhibitory effects on the calcium channel. METHODS A rat model with muscle spasticity was established after SCI via contusion and compression. Different concentrations (0, 1, 3 and 6 U/kg) of BoT-A Botox were injected in the extensor digitorum longus (EDL) muscles of the right hindlimb in the muscle spasticity model. The changes of muscle spasticity and calcium level in EDL muscles were measured after the establishment of SCI-induced spasticity. Cav3.2 calcium channel subunit and its mutant (M1560V) were analyzed using Western blot before (input) or after immunoprecipitation with anti-FLAG antibody, and their currents were measured in motoneurons by using whole-cell voltage clamp recordings. RESULTS SCI induced muscle spasticity, whereas calcium level in EDL muscles and expression of Cav3.2 was increased in the SCI model when compared with the sham group (p < 0.05). BoT-A Botox treatment significantly reduced muscle spasticity and calcium level in EDL muscles and Cav3.2 expression in a dose-dependent way (p < 0.05). The ratio of biotinylated to total Cav3.2 was reduced in the mutant (M1560V) of Cav3.2 and lower than that in the wild Cav3.2. BoT-A Botox intervention also reduced the current values of calcium channel and the ratio in a dose-dependent way (p < 0.05). DISCUSSION BoT-A Botox possibly attenuates SCI-induced muscle spasticity by affecting the expression of Cav3.2 calcium channel subunit in the rat models. There may be multiple mechanisms for the function of BoT-A Botox. Further work is needed to be done to address these issues.
Collapse
Affiliation(s)
- Kening Ma
- Department of Pain Medicine, The First Hospital of Jilin University, Changchun130021, People’s Republic of China
| | - Dan Zhu
- Department of Neurologic Medicine, The First Hospital of Jilin University, Changchun130021, People’s Republic of China
| | - Chunguo Zhang
- Department of Pain Medicine, The First Hospital of Jilin University, Changchun130021, People’s Republic of China
| | - Lijie Lv
- Department of Medicine and Pension, The First Hospital of Jilin University, Changchun130021, People’s Republic of China
| |
Collapse
|
22
|
Sun L, Fleetwood-Walker S, Mitchell R, Joosten EA, Cheung CW. Prolonged Analgesia by Spinal Cord Stimulation Following a Spinal Injury Associated With Activation of Adult Neural Progenitors. Pain Pract 2020; 20:859-877. [PMID: 32474998 DOI: 10.1111/papr.12921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Responses of spinal progenitors to spinal cord stimulation (SCS) following spinal cord injury (SCI) in rats were assessed to reveal their potential contribution to SCS-induced analgesia. METHODS Spinal epidural electrodes were implanted in rats at T12 rostral to a quadrant dorsal horn injury at T13. Further groups additionally received either a microlesion to the dorsolateral funiculus (DLF) or gabapentin (10 mg/kg). SCS was performed at 25 Hz for 10 minutes on day 4 (early SCS) and at 10 Hz for 10 minutes on day 8 (late SCS) after injury. Paw withdrawal threshold (PWT) was measured before injury, 30 minutes before or after SCS, and before cull on day 14, followed by immunostaining assessment. RESULTS Paw withdrawal thresholds in uninjured animals (51.0 ± 4.0 g) were markedly reduced after SCI (17.3 ± 2.2 g). This was significantly increased by early SCS (38.5 ± 5.2 g, P < 0.01) and further enhanced by late SCS (50.9 ± 1.9 g, P < 0.01) over 6 days. Numbers of neural progenitors expressing nestin, Sox2, and doublecortin (DCX) in the spinal dorsal horn were increased 6 days after SCS by 6-fold, 2-fold, and 2.5-fold, respectively (P < 0.05 to 0.01). The elevated PWT evoked by SCS was abolished by DLF microlesions (48.9 ± 2.6 g vs. 19.0 ± 3.9 g, P < 0.01) and the number of nestin-positive cells was reduced to the level without SCS (P < 0.05). Gabapentin enhanced late SCS-induced analgesia from 37.0 ± 3.9 g to 54.0 ± 0.8 g (P < 0.01) and increased gamma-aminobutyric acid (GABA)-ergic neuronal marker vesicular GABA transporter-positive newborn cells 2-fold (P < 0.01). CONCLUSIONS Spinal progenitor cells appear to be activated by SCS via descending pathways, which may be enhanced by gabapentin and potentially contributes to relief of SCI-induced neuropathic pain.
Collapse
Affiliation(s)
- Liting Sun
- Brain and Spinal Cord Innovation Research Center, The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai, China
| | - Sue Fleetwood-Walker
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Rory Mitchell
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Elbert A Joosten
- Department of Anesthesiology/Pain Management, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, University of Hong Kong, HKSAR, China
| |
Collapse
|
23
|
Linciano P, Rossino G, Listro R, Rossi D, Collina S. Sigma-1 receptor antagonists: promising players in fighting neuropathic pain. Pharm Pat Anal 2020; 9:77-85. [PMID: 32539668 DOI: 10.4155/ppa-2020-0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sigma-1 receptors (S1Rs) are strongly correlated to neuropathic pain (NP), since their inactivation may decrease allodynia or dysesthesia, promoting analgesic effects. In the recent patent landscape, S1R antagonists endowed with nanomolar S1Rs affinity emerged as potent antinociceptive agents. So far, three patented compounds have been proposed for counteracting NP. Particularly PV-752 and AV1066, disclosed by the University of Pavia (Italy) and Anavex, respectively, showed good analgesic activity in preclinical studies. Moreover, E-52862 developed by Esteve (Spain) has been proved to be effective, both in preclinical and Phase II clinical trials, against several symptoms of NP. These patents ascertain S1R antagonists as potential drugs, alone or in combination with other analgesic drugs, for managing NP in humans.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Roberta Listro
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
24
|
Bravo-Caparrós I, Ruiz-Cantero MC, Perazzoli G, Cronin SJF, Vela JM, Hamed MF, Penninger JM, Baeyens JM, Cobos EJ, Nieto FR. Sigma-1 receptors control neuropathic pain and macrophage infiltration into the dorsal root ganglion after peripheral nerve injury. FASEB J 2020; 34:5951-5966. [PMID: 32157739 DOI: 10.1096/fj.201901921r] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/17/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022]
Abstract
Neuron-immune interaction in the dorsal root ganglia (DRG) plays a pivotal role in the neuropathic pain development after nerve injury. Sigma-1 receptor (Sig-1R) is expressed by DRG neurons but its role in neuropathic pain is not fully understood. We investigated the effect of peripheral Sig-1R on neuroinflammation in the DRG after spared (sciatic) nerve injury (SNI) in mice. Nerve injury induced a decrease in NeuN staining along with the nuclear eccentricity and ATF3 expression in the injured DRG. Sig-1R was present in all DRG neurons examined, and after SNI this receptor translocated to the periphery of the soma and the vicinity of the nucleus, especially in injured ATF3 + neurons. In WT mice, injured DRG produced the chemokine CCL2, and this was followed by massive infiltration of macrophages/monocytes, which clustered mainly around sensory neurons with translocated Sig-1R, accompanied by robust IL-6 increase and mechanical allodynia. In contrast, Sig-1R knockout (Sig-1R-KO) mice showed reduced levels of CCL2, decreased macrophage/monocyte infiltration into DRG, and less IL-6 and neuropathic mechanical allodynia after SNI. Our findings point to an important role of peripheral Sig-1R in sensory neuron-macrophage/monocyte communication in the DRG after peripheral nerve injury; thus, these receptors may contribute to the neuropathic pain phenotype.
Collapse
Affiliation(s)
- Inmaculada Bravo-Caparrós
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria IBS. GRANADA, Granada, Spain
| | - M Carmen Ruiz-Cantero
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria IBS. GRANADA, Granada, Spain
| | - Gloria Perazzoli
- Instituto de Investigación Biosanitaria IBS. GRANADA, Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada, Spain
| | | | - José M Vela
- Drug Discovery and Preclinical Development, Esteve, Barcelona, Spain
| | - Mohamed F Hamed
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Josef M Penninger
- Institute of Molecular Biotechnology, Vienna, Austria
- Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, Canada
| | - José M Baeyens
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria IBS. GRANADA, Granada, Spain
| | - Enrique J Cobos
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria IBS. GRANADA, Granada, Spain
- Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| | - Francisco R Nieto
- Department of Pharmacology, School of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria IBS. GRANADA, Granada, Spain
| |
Collapse
|
25
|
Choi SR, Beitz AJ, Lee JH. Inhibition of Cytochrome P450 Side-Chain Cleavage Attenuates the Development of Mechanical Allodynia by Reducing Spinal D-Serine Production in a Murine Model of Neuropathic Pain. Front Pharmacol 2019; 10:1439. [PMID: 31866864 PMCID: PMC6908476 DOI: 10.3389/fphar.2019.01439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Research indicates that neurosteroids are locally synthesized in the central nervous system and play an important modulatory role in nociception. While the neurosteroidogenic enzyme, cytochrome P450 side-chain cleavage enzyme (P450scc), is the initiating enzyme of steroidogenesis, P450scc has not been examined under the pathophysiological conditions associated with peripheral neuropathy. Thus, we investigated whether chronic constriction injury (CCI) of the sciatic nerve increases the expression of P450scc in the spinal cord and whether this increase modulates serine racemase (Srr) expression and D-serine production contributing to the development of neuropathic pain. CCI increased the immunoreactivity of P450scc in astrocytes of the ipsilateral lumbar spinal cord dorsal horn. Intrathecal administration of the P450scc inhibitor, aminoglutethimide, during the induction phase of neuropathic pain (days 0 to 3 post-surgery) significantly suppressed the CCI-induced development of mechanical allodynia and thermal hyperalgesia, the increased expression of astrocyte Srr in both the total and cytosol levels, and the increases in D-serine immunoreactivity at day 3 post-surgery. By contrast, intrathecal administration of aminoglutethimide during the maintenance phase of pain (days 14 to 17 post-surgery) had no effect on the developed neuropathic pain nor the expression of spinal Srr and D-serine immunoreactivity at day 17 post-surgery. Intrathecal administration of exogenous D-serine during the induction phase of neuropathic pain (days 0 to 3 post-surgery) restored the development of mechanical allodynia, but not the thermal hyperalgesia, that were suppressed by aminoglutethimide administration. Collectively, these results demonstrate that spinal P450scc increases the expression of astrocyte Srr and D-serine production, ultimately contributing to the development of mechanical allodynia induced by peripheral nerve injury.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, United States
| | - Jang-Hern Lee
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
26
|
Lipiński PFJ, Szűcs E, Jarończyk M, Kosson P, Benyhe S, Misicka A, Dobrowolski JC, Sadlej J. Affinity of fentanyl and its derivatives for the σ 1-receptor. MEDCHEMCOMM 2019; 10:1187-1191. [PMID: 31391893 PMCID: PMC6657672 DOI: 10.1039/c9md00222g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/18/2019] [Indexed: 01/29/2023]
Abstract
Fentanyl and its 11 commercially available derivatives were investigated as to their affinity for the σ1 receptor. The parent compound is a rather poor binder (IC50 = 4973 nM), but its close derivatives (benzylfentanyl or p-fluorofentanyl) have submicromolar affinities. Modelling provides a structural basis for the observed trends in activity.
Collapse
Affiliation(s)
- Piotr F J Lipiński
- Department of Neuropeptides , Mossakowski Medical Research Centre , Polish Academy of Sciences , 02-106 Warsaw , Poland .
| | - Edina Szűcs
- Institute of Biochemistry , Biological Research Centre , Hungarian Academy of Sciences , Szeged , Hungary
- Doctoral School of Theoretical Medicine , University of Szeged , Faculty of Medicine , Szeged , Hungary
| | | | - Piotr Kosson
- Toxicology Research Laboratory , Mossakowski Medical Research Centre , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Sándor Benyhe
- Institute of Biochemistry , Biological Research Centre , Hungarian Academy of Sciences , Szeged , Hungary
| | - Aleksandra Misicka
- Department of Neuropeptides , Mossakowski Medical Research Centre , Polish Academy of Sciences , 02-106 Warsaw , Poland .
- Faculty of Chemistry , University of Warsaw , 02-093 Warsaw , Poland
| | | | - Joanna Sadlej
- Faculty of Mathematics and Natural Sciences , Cardinal Stefan Wyszyński University in Warsaw , 1/3 Wóycickiego-Str. , 01-938 Warsaw , Poland
| |
Collapse
|