1
|
Glenister M, Mistarz U, Cook K, Stephenson J, Dickman M. Optimisation of Heated Electrospray Ionisation Parameters to Minimise In-Source Generated Impurities in the Analysis of Oligonucleotide Therapeutics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e10033. [PMID: 40181565 PMCID: PMC11969060 DOI: 10.1002/rcm.10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025]
Abstract
RATIONALE Oligonucleotides have emerged as an important new class of therapeutic. Due to their structural complexity, this presents significant challenges for the development of analytical methods to characterise and determine their impurity profile. In this study, we introduce a sensitive ion-pair reverse phase method interfaced with mass spectrometry for analysis of antisense oligonucleotides and small interfering RNAs. METHODS Liquid chromatography-mass spectrometry analysis of antisense oligonucleotides and small interfering RNAs was performed using hexylamine: hexafluoro-2-propanol mobiles phases. LC-MS analysis was performed in both negative and positive ion mode. Electrospray ionisation source conditions including collision energy and temperature were optimised to minimise in-source generated impurities and alkylamine adducts in the analysis of oligonucleotide therapeutics. RESULTS The results show that under low or no in-source collision energy the presence of hexylamine adducts are observed and are predominantly on the lowest charge states present. As the in-source collision energy is increased, a reduction of hexylamine adducts is observed in conjunction with an increase in nucleobase loss in the gas phase, therefore generating in-source impurities. In comparison to tributylammonium acetate, increased MS sensitivity, higher charge states and effective removal of hexylamine adducts using mild source conditions was achieved. CONCLUSIONS Optimisation of the mild source conditions in conjunction with high pH mobile phases was combined with high-resolution accurate mass spectrometry analysis and automated deconvolution workflows to develop a simplified and streamlined approach for characterising oligonucleotide therapeutics and their related impurities.
Collapse
Affiliation(s)
- Mollie A. Glenister
- School of Chemical, Materials and Biological EngineeringUniversity of SheffieldSheffieldUK
| | | | - Ken Cook
- ThermoFisher ScientificHemel HempsteadUK
| | | | - Mark J. Dickman
- School of Chemical, Materials and Biological EngineeringUniversity of SheffieldSheffieldUK
| |
Collapse
|
2
|
Miglio U, Berrino E, Avanzato D, Molineris I, Miano V, Milan M, Lanzetti L, Morelli E, Hughes JM, De Bortoli M, Sapino A, Venesio T. Inhibition of the LINE1-derived MET transcript induces apoptosis and oncoprotein knockdown in cancer cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102529. [PMID: 40291377 PMCID: PMC12032326 DOI: 10.1016/j.omtn.2025.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025]
Abstract
The expression of intragenic long interspersed nuclear elements 1 (LINE1s) can generate chimeric sequences disrupting host gene transcription. Among these, L1-MET, within mesenchymal epithelial transition (MET) oncogene, is particularly interesting, as its expression has been associated with the acquisition of tumorigenic phenotypes and cancer progression. We investigated the effects of targeting L1-MET in eight cancer cell lines derived from breast, lung, and gastrointestinal cancers, as well as in non-transformed human fibroblasts and lymphocytes, using specifically developed modified antisense oligonucleotides. Inhibition of L1-MET resulted in decreased cell viability, increased apoptosis, and gene expression profile reprogramming in cancer cells, including significant downregulation of MET and epidermal growth factor receptor (EGFR) proteins. These effects were related to the L1-MET/MET expression levels and the type of cellular addiction, with pronounced impacts in cells harboring MET gene amplification and EGFR-activating mutations. They were also detectable, though less pronounced, in cancer cells with steady-state levels of MET and EGFR proteins or addiction to other oncogenes. We demonstrate that targeting L1-MET can knockdown MET and EGFR protein. The restricted expression of L1-MET to cancer cells suggests that its inhibition could be an effective strategy to induce death in oncogene-addicted tumor cells and offers a potential means to overcome the limitations of conventional targeted therapies.
Collapse
Affiliation(s)
- Umberto Miglio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Daniele Avanzato
- Department of Oncology, University of Torino Medical School, 10043 Orbassano, TO, Italy
| | - Ivan Molineris
- Department of Life Sciences and System Biology and MBC, University of Torino, 10123 Torino, Italy
| | - Valentina Miano
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
| | - Melissa Milan
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
| | - Letizia Lanzetti
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
- Department of Oncology, University of Torino Medical School, 10043 Orbassano, TO, Italy
| | - Eugenio Morelli
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
- Department of Oncology, University of Torino Medical School, 10043 Orbassano, TO, Italy
| | - James M. Hughes
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
| | - Michele De Bortoli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Tiziana Venesio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Candiolo, TO, Italy
| |
Collapse
|
3
|
Ding S, Alexander E, Liang H, Kulchar RJ, Singh R, Herzog RW, Daniell H, Leong KW. Synthetic and Biogenic Materials for Oral Delivery of Biologics: From Bench to Bedside. Chem Rev 2025; 125:4009-4068. [PMID: 40168474 DOI: 10.1021/acs.chemrev.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The development of nucleic acid and protein drugs for oral delivery has lagged behind their production for conventional nonoral routes. Over the past decade, the evolution of DNA- and RNA-based technologies combined with the innovation of state-of-the-art delivery vehicles for nucleic acids has brought rapid advancements to the biopharmaceutical field. Nucleic acid therapies have the potential to achieve long-lasting effects, or even cures, by inhibiting or editing genes, which is not possible with conventional small-molecule drugs. However, challenges and limitations must be addressed before these therapies can provide cures for chronic conditions and rare diseases, rather than only offering temporary relief. Nucleic acids and proteins face premature degradation in the acidic, enzyme-rich stomach environment and are rapidly cleared by the liver. To overcome these challenges, various delivery vehicles have been developed to transport therapeutic compounds to the intestines, where the active compounds are released and gut microbiota and mucosal immune system also play an important role. This review provides a comprehensive overview of the promises and pitfalls associated with the oral route of administration of biologics, current delivery systems, applications of orally delivered therapeutics, and the challenges and considerations for translation of nucleic acid and protein therapeutics into clinical practice.
Collapse
Affiliation(s)
- Suwan Ding
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Huiyi Liang
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachel J Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
4
|
Zhang Q, Leng X, Peng L, Lin H, Xuan G, Zhang W, Mitomo H, Ijiro K, Wang G. Streamlining Bacterial Gene Regulation via Nucleic Acid Delivery with Gold Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411723. [PMID: 39989200 DOI: 10.1002/smll.202411723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/06/2025] [Indexed: 02/25/2025]
Abstract
Delivery of exogenous nucleic acids (NAs) for gene regulation in bacteria, bypassing the barrier of the cell wall, is essential for advancing fundamental microbiology and genetic engineering, and the treatment of bacterial diseases. However, current methods that rely on electrical or chemical interventions are limited by their complexity, specialized expertise, and laboratory-specific instrumentation. This study explores the capability of gold nanoclusters (AuNCs) as carriers for delivering small-interfering RNA and antisense oligonucleotides into bacteria for targeted gene regulation while shielding them from degradation during transport. By enhancing the cytoplasmic membrane permeability, the AuNCs enable efficient internalization of NAs into both Gram-positive and Gram-negative bacteria while exerting negligible influence on bacterial activity. It is demonstrated that the rationally designed NAs can be released from the AuNCs within bacteria, enabling ~70% knockdown of mecA in Methicillin-resistant Staphylococcus aureus (MRSA). This significantly reduces MRSA's antibiotic resistance and enhances oxacillin treatment efficacy. Furthermore, the successful silencing of ligA in Escherichia coli and pilQ in Pseudomonas aeruginosa highlights the broad adaptability of the approach across diverse bacterial species. The AuNCs-based next-generation NA delivery system has the potential to transform bacterial gene regulation-previously restricted to laboratory settings-into a versatile and scalable solution for real-world application.
Collapse
Affiliation(s)
- Qingsong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, 266404, China
| | - Xinyi Leng
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, 266404, China
| | - Lin Peng
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, 266404, China
| | - Hong Lin
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, 266404, China
| | - Guanhua Xuan
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, 266404, China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, 169 Qixingnan Road, Ningbo, 315832, China
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Guoqing Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity and Institute of Evolution and Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, 266404, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Centre, Qingdao, 266237, China
| |
Collapse
|
5
|
Ye X, Jiang L, Xiong Y, Zhang C, Wang C, Qi M, Zhu C, Chen Y, Du Z, Cheng Z, Jiang H. Automatic identification of oligonucleotide metabolites in complex biological samples using ultra high-performance liquid chromatography high-resolution mass spectrometry combined with the molecule profiler software. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1254:124505. [PMID: 39923612 DOI: 10.1016/j.jchromb.2025.124505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Oligonucleotide (ON) is one of the rapidly developing fields in biotherapeutics. Ultra high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) has been widely used for the identification of metabolites due to its high sensitivity, high resolution, and ability to provide structural information. The identification of ON metabolites in matrix has been reported by UHPLC-HRMS, however, manual data processing is time-consuming. In this study, an analytical strategy based on UHPLC-QTOF-MS/MS and molecule profiler software was established and employed for the automatic identification of metabolites of ONs. Fomivirsen (FMVS), a 21-mer antisense oligonucleotide with 20 phosphorothioate linkages, was selected as proof of concept. Firstly, the sample preparation and UHPLC-QTOF-MS/MS condition were optimized. Secondly, the feasibility of the automatic identification of ON metabolites by this strategy was verified using enzymatic digests of FMVS. Finally, in vitro and in vivo metabolites of FMVS were identified. As a result, the enzymatic digests of FMVS were successfully identified by the established strategy, and a total of 17 metabolites were identified from serum, plasma and tissues. FMVS was mainly metabolized by 3'-exonuclease in plasma, liver and kidney. This is the first study on metabolites identification of FMVS, and the proposed strategy would simplify the identification of ON metabolites, thus could be used for other ON metabolites.
Collapse
Affiliation(s)
- Xinyuan Ye
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lili Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Xiong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cui Zhang
- Wuhan Hongren Biopharmaceutical Inc., Wuhan 430075, China
| | - Chenxi Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meiling Qi
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenyue Zhu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhongzhe Cheng
- Wuhan Hongren Biopharmaceutical Inc., Wuhan 430075, China.
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Wang R, Mehrjou B, Dehghan‐Banian D, Wang BYH, Li Q, Deng S, Liu C, Zhang Z, Zhu Y, Wang H, Li D, Lu X, Cheng JCY, Ong MTY, Chan HF, Li G, Chu PK, Lee WYW. Targeting Long Noncoding RNA H19 in Subchondral Bone Osteocytes and the Alleviation of Cartilage Degradation in Osteoarthritis. Arthritis Rheumatol 2025; 77:283-297. [PMID: 39482250 PMCID: PMC11865692 DOI: 10.1002/art.43028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVE Emerging evidence suggests long noncoding RNA H19 is associated with osteoarthritis (OA) pathology. However, how H19 contributes to OA has not been reported. This study aims to investigate the biologic function of H19 in OA subchondral bone remodeling and OA progression. METHODS Clinical joint samples and OA animal models induced by surgical destabilization of the medial meniscus (DMM) were used to verify the causal relationship between osteocyte H19 and OA subchondral bone and cartilage changes. MLO-Y4 osteocyte cells subjected to fluid shear stress were used to verify the mechanism underlying H19-mediated mechanoresponse. Finally, the antisense oligonucleotide (ASO) against H19 was delivered to mice knee joints by magnetic metal-organic framework (MMOF) nanoparticles to develop a site-specific delivery method for targeting osteocyte H19 for OA treatment. RESULTS Both clinical OA subchondral bone and wildtype mice with DMM-induced OA exhibit aberrant higher subchondral bone mass, with more H19 mice expressing osteocytes. On the contrary, mice with osteocyte-specific deletion of H19 are less vulnerable to DMM-induced OA phenotype. In MLO-Y4 cells, H19-mediated osteocyte mechanoresponse through PI3K/AKT/GSK3 signal activation by EZH2-induced H3K27me3 regulation on protein phosphatase 2A inhibition. Targeted inhibition of H19 (using ASO-loaded MMOF) substantially alleviates subchondral bone remodeling and OA phenotype. CONCLUSION In summary, our results provide new evidence that the elevated H19 expression in osteocytes may contribute to aberrant subchondral bone remodeling and OA progression. H19 appears to be required for the osteocyte response to mechanical stimulation, and targeting H19 represents a new promising approach for OA treatment.
Collapse
Grants
- 2020 Rising Star Award, American Society for Bone and Mineral Research
- AoE/M-402/20 Area of Excellence, University Grants Committee, Hong Kong SAR
- Start-up Fund, The Chinese University of Hong Kong, Hong Kong SAR
- Matching Grant Scheme, University Grants Committee, Hong Kong SAR
- 2412162 General Research Fund, University Grants Committee, Hong Kong SAR
- CT1.1 Center for Neuromusculoskeletal Restorative Medicine, Health@InnoHK Program, Innovation Technology Commission, Hong Kong SAR
Collapse
Affiliation(s)
- Rongliang Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; and State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong SARChina
| | - Dorsa Dehghan‐Banian
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, and Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Belle Yu Hsuan Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; and Center for Neuromusculoskeletal Restorative MedicineCUHK InnoHK Centres, Hong Kong Science ParkHong Kong SARChina
| | - Qiangqiang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; and State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, and Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Chuanhai Liu
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; and Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Zhe Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; and SH Ho Scoliosis Research LaboratoryJoint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, ShatinHong Kong SARChina
| | - Yanlun Zhu
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; and Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Haixing Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, and Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Dan Li
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong SARChina
| | - Xiaomin Lu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, and Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Jack Chun Yiu Cheng
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, and SH Ho Scoliosis Research LaboratoryJoint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, ShatinHong Kong SARChina
| | - Michael Tim Yun Ong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales HospitalThe Chinese University of Hong Kong, ShatinHong Kong SARChina
| | - Hon Fai Chan
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; and Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China, and Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong SARChina
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; and Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science ParkHong Kong SARChina
| |
Collapse
|
7
|
Oprea M, Ionita M. Antisense oligonucleotides-based approaches for the treatment of multiple myeloma. Int J Biol Macromol 2025; 291:139186. [PMID: 39732226 DOI: 10.1016/j.ijbiomac.2024.139186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Multiple myeloma (MM), a hematological malignancy which affects the monoclonal plasma cells in the bone marrow, is in rising incidence around the world, accounting for approximately 2 % of newly diagnosed cancer cases in the US, Australia, and Western Europe. Despite the progress made in the last few years in the available therapeutic options (e.g. proteasome inhibitors, immunomodulatory drugs, tumor cell-targeting monoclonal antibodies, autologous stem cell transplantation, etc.), multiple myeloma is still regarded as incurable, and the prognosis for most patients is poor, as the disease becomes refractory to treatment throughout time. Antisense oligonucleotides (ASOs), designed to be complementary to selected messenger RNA (mRNA) sequences of specific genes involved in the pathogenesis of multiple myeloma (e.g. Bcl-2, Mcl-1, STAT3, IRF4, IL6, ILF2, HK2, c-MYC, etc.), represent a promising alternative to conventional treatments, and can be tailored according to the individual requirements of each patient. The main goal of antisense therapy for multiple myeloma consists in silencing the specific genes participating in the proliferation and survival of tumor cells via RNA cleavage or RNA blockage, thus preventing mRNA interactions with ribosomes and altering the process of protein translation. So far, pre-clinical and clinical studies showed promising results when Bcl-2 (Genasense), Mcl-1 (ISIS2048), STAT3 (ISIS345794) and IRF4 (ION251) were targeted using ASOs-based formulations. However, FDA approval has not been obtained yet for these products, mainly due to ethical and financial issues posed by customized therapies and insufficient information regarding their long-term toxicity. This review aims to provide a comprehensive insight into antisense oligonucleotides-based therapies, their potential chemical modifications, the mechanisms involved in ASOs-mediated gene silencing, potential systems for ASOs delivery, and the applications of ASOs in the treatment of multiple myeloma. The relevant genetic targets in ASOs-based MM therapies were described, and the research results obtained in the studies conducted so far were analyzed, with a focus on the ASOs formulations that were already included in clinical trials. In the end, current challenges, and future perspectives of antisense therapy for MM were also discussed.
Collapse
Affiliation(s)
- Madalina Oprea
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Mariana Ionita
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; ebio-Hub Research Centre, National University of Science and Technology Politehnica Bucharest-Campus, Iuliu Maniu 6, 061344 Bucharest, Romania.
| |
Collapse
|
8
|
Liu Y, Lippens JL, Prostko P, de Vries R, Valkenborg D, De Vijlder T. OligoDistiller: A Platform Agnostic Software Tool for MS and MS 2 Data Analysis of Complex Oligonucleotides and Their Impurities. Anal Chem 2025; 97:96-105. [PMID: 39733345 DOI: 10.1021/acs.analchem.4c02667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Oligonucleotides are currently one of the most rapidly advancing classes of therapeutic modalities. Understanding critical quality attributes, such as the impurity profile, stability, potential metabolites, and sequence conformity, is the key to their ultimate success. To obtain the information presented above, liquid chromatography-mass spectrometry (LC-MS) is often employed. However, data interpretation can be challenging due to multiple charge states, unknown species, chemical noises, and overlapping isotope envelopes (OIEs) of distinct but unresolved species. To address these challenges, we have developed an MS-platform agnostic, multifunctional R package and a web-tool for automated and interactive MS and MS2 data analysis, OligoDistiller. From the MS spectrum of a complex mixture of two synthetic strands, our tool OligoDistiller annotated and quantified 45 oligonucleotide-related features including 13 unknown impurities and 6 OIEs, which all together explained 90.8% of the detected peaks. Also, major product ions were assigned from the MS2 spectrum of a 47-mer DNA strand, covering 80.3% of the oligonucleotide sequence. We provide not only diverse isotope quality metrics for each annotated feature but also an interactive data review module allowing for direct inspection of the part of raw spectrum linked to a selected feature. This tool OligoDistiller is freely available at https://github.com/daniellyz/OligoDistiller.
Collapse
Affiliation(s)
- Youzhong Liu
- Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Piotr Prostko
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Agoralaan 1, BE 3590 Diepenbeek, Belgium
| | - Ronald de Vries
- Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Dirk Valkenborg
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Agoralaan 1, BE 3590 Diepenbeek, Belgium
| | | |
Collapse
|
9
|
Daga P, Singh G, Menon T, Sztukowska M, Kalra DK. Emerging RNAi Therapies to Treat Hypertension. Mol Diagn Ther 2025; 29:25-41. [PMID: 39400663 DOI: 10.1007/s40291-024-00747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Hypertension (HTN), often dubbed the "silent killer," poses a significant global health challenge, affecting over 1.3 billion individuals. Despite advances in treatment, effective long-term blood pressure (BP) control remains elusive, necessitating novel therapeutic approaches. Poor control of BP remains a leading cause of cardiovascular morbidity and mortality worldwide and is becoming an even larger global health problem due to the aging population, rising rates of obesity, poorer dietary patterns and overall cardiometabolic health, and suboptimal rates of patient adherence and optimal BP control. Ribonucleic acid interference (RNAi) technology, which leverages the body's natural gene-silencing mechanism, has emerged as a promising strategy for several diseases and has recently been tested for its antihypertensive effects. We systematically reviewed peer-reviewed articles from databases including PubMed, EMBASE, and Scopus for studies examining RNAi's role in managing HTN, focusing on mechanisms, clinical utility, and safety profile. Key early-phase trials of some RNAi-leading candidate drugs are detailed. Also highlighted are challenges such as target specificity, delivery mechanisms, durability of effect, and immunogenicity. We conclude by summarizing how RNAi has a significant potential role in HTN therapy due to their unique benefits, such as long-term duration of action, infrequent dosing, and lack of major side effects.
Collapse
Affiliation(s)
- Pawan Daga
- Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Gurnoor Singh
- Division of Cardiology, Department of Medicine, Rudd Heart and Lung Center, University of Louisville School of Medicine, 201 Abraham Flexner Way, Suite 600, Louisville, KY, 40202, USA
| | - Tushar Menon
- Division of Cardiology, Department of Medicine, Rudd Heart and Lung Center, University of Louisville School of Medicine, 201 Abraham Flexner Way, Suite 600, Louisville, KY, 40202, USA
| | - Maryta Sztukowska
- Clinical Trials Unit, University of Louisville School of Medicine, Louisville, KY, USA
- University of Information Technology and Management, Rzeszow, Poland
| | - Dinesh K Kalra
- Division of Cardiology, Department of Medicine, Rudd Heart and Lung Center, University of Louisville School of Medicine, 201 Abraham Flexner Way, Suite 600, Louisville, KY, 40202, USA.
| |
Collapse
|
10
|
van der Vloet L, Hilaire PBS, Bouillod C, Isin EM, Heeren RMA, Vandenbosch M. How can MSI enhance our understanding of ASO distribution? Drug Discov Today 2025; 30:104275. [PMID: 39701373 DOI: 10.1016/j.drudis.2024.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/05/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
In the dynamic field of drug discovery and development, a comprehensive understanding of drug absorption, distribution, metabolism, excretion, and toxicity is crucial. Mass spectrometry imaging (MSI) has become a key analytical tool in the pharmaceutical industry, allowing evaluation of drug biodistribution and molecular profiles. Antisense oligonucleotides (ASOs) are emerging drug candidates for treating neurologic diseases. This review explores the potential of MSI in investigating ASOs' spatial distribution within neurological disease models. Here, we focus on multimodal molecular imaging to gain insights into ASO distribution, simultaneously with a better understanding of the molecular pathways affected by ASOs. An improved understanding of therapeutic ASOs in tissue will potentially improve neurologic therapies, emphasizing their importance in patient care.
Collapse
Affiliation(s)
- Laura van der Vloet
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | | | - Christophe Bouillod
- Institut de Recherche et Développement Servier Paris-Saclay, Rue Francis Perrin, 91190 Gif-sur-Yvette, France
| | - Emre M Isin
- Institut de Recherche et Développement Servier Paris-Saclay, Rue Francis Perrin, 91190 Gif-sur-Yvette, France
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | - Michiel Vandenbosch
- The Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
11
|
Bereczki Z, Benczik B, Balogh OM, Marton S, Puhl E, Pétervári M, Váczy-Földi M, Papp ZT, Makkos A, Glass K, Locquet F, Euler G, Schulz R, Ferdinandy P, Ágg B. Mitigating off-target effects of small RNAs: conventional approaches, network theory and artificial intelligence. Br J Pharmacol 2025; 182:340-379. [PMID: 39293936 DOI: 10.1111/bph.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 09/20/2024] Open
Abstract
Three types of highly promising small RNA therapeutics, namely, small interfering RNAs (siRNAs), microRNAs (miRNAs) and the RNA subtype of antisense oligonucleotides (ASOs), offer advantages over small-molecule drugs. These small RNAs can target any gene product, opening up new avenues of effective and safe therapeutic approaches for a wide range of diseases. In preclinical research, synthetic small RNAs play an essential role in the investigation of physiological and pathological pathways as silencers of specific genes, facilitating discovery and validation of drug targets in different conditions. Off-target effects of small RNAs, however, could make it difficult to interpret experimental results in the preclinical phase and may contribute to adverse events of small RNA therapeutics. Out of the two major types of off-target effects we focused on the hybridization-dependent, especially on the miRNA-like off-target effects. Our main aim was to discuss several approaches, including sequence design, chemical modifications and target prediction, to reduce hybridization-dependent off-target effects that should be considered even at the early development phase of small RNA therapy. Because there is no standard way of predicting hybridization-dependent off-target effects, this review provides an overview of all major state-of-the-art computational methods and proposes new approaches, such as the possible inclusion of network theory and artificial intelligence (AI) in the prediction workflows. Case studies and a concise survey of experimental methods for validating in silico predictions are also presented. These methods could contribute to interpret experimental results, to minimize off-target effects and hopefully to avoid off-target-related adverse events of small RNA therapeutics. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Zoltán Bereczki
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bettina Benczik
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Olivér M Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szandra Marton
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Eszter Puhl
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Mátyás Pétervári
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Sanovigado Kft, Budapest, Hungary
| | - Máté Váczy-Földi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fabian Locquet
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Gerhild Euler
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
12
|
Khuu A, Verreault M, Colin P, Tran H, Idbaih A. Clinical Applications of Antisense Oligonucleotides in Cancer: A Focus on Glioblastoma. Cells 2024; 13:1869. [PMID: 39594617 PMCID: PMC11592788 DOI: 10.3390/cells13221869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Antisense oligonucleotides (ASOs) are promising drugs capable of modulating the protein expression of virtually any target with high specificity and high affinity through complementary base pairing. However, this requires a deep understanding of the target sequence and significant effort in designing the correct complementary drug. In addition, ASOs have been demonstrated to be well tolerated during their clinical use. Indeed, they are already used in many diseases due to pathogenic RNAs of known sequences and in several neurodegenerative diseases and metabolic diseases, for which they were given marketing authorizations (MAs) in Europe and the United States. Their use in oncology is gaining momentum with several identified targets, promising preclinical and clinical results, and recent market authorizations in the US. However, many challenges remain for their clinical use in cancer. It seems necessary to take a step back and review our knowledge of ASOs and their therapeutic uses in oncology. The objectives of this review are (i) to summarize the current state of the art of ASOs; (ii) to discuss the therapeutic use of ASOs in cancer; and (iii) to focus on ASO usage in glioblastoma, the challenges, and the perspective ahead.
Collapse
Affiliation(s)
- Alexandre Khuu
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Maïté Verreault
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
| | - Philippe Colin
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Helene Tran
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Ahmed Idbaih
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
| |
Collapse
|
13
|
Dume B, Licarete E, Banciu M. Advancing cancer treatments: The role of oligonucleotide-based therapies in driving progress. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102256. [PMID: 39045515 PMCID: PMC11264197 DOI: 10.1016/j.omtn.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Although recent advancements in cancer immunology have resulted in the approval of numerous immunotherapies, minimal progress has been observed in addressing hard-to-treat cancers. In this context, therapeutic oligonucleotides, including interfering RNAs, antisense oligonucleotides, aptamers, and DNAzymes, have gained a central role in cancer therapeutic approaches due to their capacity to regulate gene expression and protein function with reduced toxicity compared with conventional chemotherapeutics. Nevertheless, systemic administration of naked oligonucleotides faces many extra- and intracellular challenges that can be overcome by using effective delivery systems. Thus, viral and non-viral carriers can improve oligonucleotide stability and intracellular uptake, enhance tumor accumulation, and increase the probability of endosomal escape while minimizing other adverse effects. Therefore, gaining more insight into fundamental mechanisms of actions of various oligonucleotides and the challenges posed by naked oligonucleotide administration, this article provides a comprehensive review of the recent progress on oligonucleotide delivery systems and an overview of completed and ongoing cancer clinical trials that can shape future oncological treatments.
Collapse
Affiliation(s)
- Bogdan Dume
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Al Dera H, AlQahtani B. Molecular mechanisms and antisense oligonucleotide therapies of familial amyotrophic lateral sclerosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102271. [PMID: 39176177 PMCID: PMC11338942 DOI: 10.1016/j.omtn.2024.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease, presents considerable challenges in both diagnosis and treatment. It is categorized into sporadic and familial amyotrophic lateral sclerosis (fALS); the latter accounts for approximately 10% of cases and is primarily inherited in an autosomal dominant manner. This review summarizes the molecular genetics of fALS, highlighting key mutations that contribute to its pathogenesis, such as mutations in SOD1, FUS, and C9orf72. Central to this discourse is exploring antisense oligonucleotides (ASOs) that target these genetic aberrations, providing a promising therapeutic strategy. This review provides a detailed overview of the molecular mechanisms underlying fALS and the potential therapeutic value of ASOs, offering new insights into treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Hussain Al Dera
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Bdour AlQahtani
- College of Medicine at King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Fazoli RTJ, Drager LF, Kalil-Filho R, Generoso G. RNA interference therapy in cardiology: will new targets improve therapeutic goals? Drugs Context 2024; 13:2024-3-1. [PMID: 39188988 PMCID: PMC11346576 DOI: 10.7573/dic.2024-3-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/10/2024] [Indexed: 08/28/2024] Open
Abstract
The discovery of RNA interference in 1998 opened avenues for the manipulation of gene expression, leading to the development of small interfering RNA (siRNA) drugs. Patisiran, the first FDA-approved siRNA medication, targets hereditary transthyretin amyloidosis with polyneuropathy. Givosiran, lumasiran and nedosiran further expand siRNA applications in treating rare genetic diseases, demonstrating positive outcomes. In cardiology, inclisiran, approved for hypercholesterolaemia, showcases sustained reductions in LDL cholesterol levels. However, ongoing research aims to establish its impact on cardiovascular outcomes. Lipoprotein(a), an independent risk factor for atherosclerotic cardiovascular disease, has become a focus of siRNA therapies, precipitating the development of specific siRNA drugs like olpasiran, zerlasiran and lepodisiran, with promising reductions in lipoprotein(a) levels. Research to assess the effectiveness of these medications in reducing events is currently under way. Zodasiran and plozasiran address potential risk factors for cardiovascular diseases, targeting triglyceride-rich lipoproteins. Zilebesiran, which targets hepatic angiotensinogen mRNA, has demonstrated a dose-related reduction in serum angiotensinogen levels, thereby lowering blood pressure in patients with systemic arterial hypertension. The evolving siRNA methodology presents a promising future in cardiology, with ongoing studies assessing its effectiveness in various conditions. In the future, larger studies will provide insights into improvements in cardiovascular outcomes, long-term safety and broader applications in the general population. This review highlights the historical timeline of the development of siRNA-based drugs, their clinical indications, potential side-effects and future perspectives.
Collapse
Affiliation(s)
- Renata TJ Fazoli
- Centro de Cardiologia, Hospital Sirio-Libanes, São Paulo, Brasil
| | - Luciano F Drager
- Centro de Cardiologia, Hospital Sirio-Libanes, São Paulo, Brasil
- Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Roberto Kalil-Filho
- Centro de Cardiologia, Hospital Sirio-Libanes, São Paulo, Brasil
- Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Giuliano Generoso
- Centro de Cardiologia, Hospital Sirio-Libanes, São Paulo, Brasil
- Center for Clinical and Epidemiological Research, University Hospital, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
16
|
Lee M, Kim M, Lee M, Kim S, Park N. Nanosized DNA Hydrogel Functionalized with a DNAzyme Tetrahedron for Highly Efficient Gene Silencing. Biomacromolecules 2024; 25:4913-4924. [PMID: 38963792 DOI: 10.1021/acs.biomac.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
DNAzymes are DNA oligonucleotides that have catalytic activity without the assistance of protein enzymes. In particular, RNA-cleaving DNAzymes were considered as ideal candidates for gene therapy due to their unique characteristics. Nevertheless, efforts to use DNAzyme as a gene therapeutic agent are limited by issues such as their low physiological stability in serum and intracellular delivery efficiency. In this study, we developed a nanosized synthetic DNA hydrogel functionalized with a DNAzyme tetrahedron (TDz Dgel) to overcome these limitations. We observed remarkable improvement in the gene-silencing effect as well as intracellular uptake without the support of gene transfection reagents using TDz Dgel. The improved catalytic activity of the DNAzyme resulted from the combination of the cell-penetrating DNA tetrahedron structure and high stability of DNA hydrogel. We envision that this approach will become a convenient and efficient strategy for gene-silencing therapy using DNAzyme in the future.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Minchul Kim
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Minjae Lee
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| |
Collapse
|
17
|
Joshi P, Keyvani Chahi A, Liu L, Moreira S, Vujovic A, Hope KJ. RNA binding protein-directed control of leukemic stem cell evolution and function. Hemasphere 2024; 8:e116. [PMID: 39175825 PMCID: PMC11339706 DOI: 10.1002/hem3.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 05/26/2024] [Indexed: 08/24/2024] Open
Abstract
Strict control over hematopoietic stem cell decision making is essential for healthy life-long blood production and underpins the origins of hematopoietic diseases. Acute myeloid leukemia (AML) in particular is a devastating hematopoietic malignancy that arises from the clonal evolution of disease-initiating primitive cells which acquire compounding genetic changes over time and culminate in the generation of leukemic stem cells (LSCs). Understanding the molecular underpinnings of these driver cells throughout their development will be instrumental in the interception of leukemia, the enabling of effective treatment of pre-leukemic conditions, as well as the development of strategies to target frank AML disease. To this point, a number of precancerous myeloid disorders and age-related alterations are proving as instructive models to gain insights into the initiation of LSCs. Here, we explore this myeloid dysregulation at the level of post-transcriptional control, where RNA-binding proteins (RBPs) function as core effectors. Through regulating the interplay of a myriad of RNA metabolic processes, RBPs orchestrate transcript fates to govern gene expression in health and disease. We describe the expanding appreciation of the role of RBPs and their post-transcriptional networks in sustaining healthy hematopoiesis and their dysregulation in the pathogenesis of clonal myeloid disorders and AML, with a particular emphasis on findings described in human stem cells. Lastly, we discuss key breakthroughs that highlight RBPs and post-transcriptional control as actionable targets for precision therapy of AML.
Collapse
Affiliation(s)
- Pratik Joshi
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Ava Keyvani Chahi
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Lina Liu
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Steven Moreira
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Ana Vujovic
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| | - Kristin J. Hope
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CenterUniversity Health NetworkTorontoCanada
| |
Collapse
|
18
|
Valatabar N, Oroojalian F, Kazemzadeh M, Mokhtarzadeh AA, Safaralizadeh R, Sahebkar A. Recent advances in gene delivery nanoplatforms based on spherical nucleic acids. J Nanobiotechnology 2024; 22:386. [PMID: 38951806 PMCID: PMC11218236 DOI: 10.1186/s12951-024-02648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Gene therapy is a therapeutic option for mitigating diseases that do not respond well to pharmacological therapy. This type of therapy allows for correcting altered and defective genes by transferring nucleic acids to target cells. Notably, achieving a desirable outcome is possible by successfully delivering genetic materials into the cell. In-vivo gene transfer strategies use two major classes of vectors, namely viral and nonviral. Both of these systems have distinct pros and cons, and the choice of a delivery system depends on therapeutic objectives and other considerations. Safe and efficient gene transfer is the main feature of any delivery system. Spherical nucleic acids (SNAs) are nanotechnology-based gene delivery systems (i.e., non-viral vectors). They are three-dimensional structures consisting of a hollow or solid spherical core nanoparticle that is functionalized with a dense and highly organized layer of oligonucleotides. The unique structural features of SNAs confer them a high potency in internalization into various types of tissue and cells, a high stability against nucleases, and efficay in penetrating through various biological barriers (such as the skin, blood-brain barrier, and blood-tumor barrier). SNAs also show negligible toxicity and trigger minimal immune response reactions. During the last two decades, all these favorable physicochemical and biological attributes have made them attractive vehicles for drug and nucleic acid delivery. This article discusses the unique structural properties, types of SNAs, and also optimization mechanisms of SNAs. We also focus on recent advances in the synthesis of gene delivery nanoplatforms based on the SNAs.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mina Kazemzadeh
- Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Li Y, Chen S, Rahimizadeh K, Zhang Z, Veedu RN. Inhibition of survivin by 2'- O-methyl phosphorothioate-modified steric-blocking antisense oligonucleotides. RSC Adv 2024; 14:13336-13341. [PMID: 38660533 PMCID: PMC11040434 DOI: 10.1039/d4ra01925c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Chemically modified antisense oligonucleotide (ASO) has been established as a successful therapeutic strategy for treating various human diseases. To date, ten ASO drugs, which are capable of either inducing mRNA degradation via RNase H recruitment (fomivirsen, mipomersen, inotersen, volanesorsen and tofersen) or splice modulation (eteplirsen, nusinersen, golodirsen, viltolarsen and casimersen), have been approved by the regulatory agencies for market entry. Nonetheless, none of these approved drugs are prescribed as cancer therapy. Towards this, we have developed steric-blocking ASOs targeting BIRC5 - a well-validated oncogene. Initial screening was performed by transfection of HepG2 cells with seven BIRC5 exon-2 targeting, uniformly 2'-OMe-PS modified ASOs at 400 nM respectively, leading to the identification of two best-performing candidates ASO-2 and ASO-7 in reducing the production of BIRC5 mRNA. Subsequent dose-response assay was conducted via transfection of HepG2 cells by different concentrations (400, 200, 100, 50, 25 nM) of ASO-2 and ASO-7 respectively, showing that both ASOs consistently and efficiently inhibited BIRC5 mRNA expression in a dose-dependent manner. Furthermore, western blot analysis confirmed that ASO-7 could significantly repress survivin production on protein level. Based on our preliminary results, we believe that ASO-7 could be a useful BIRC5 inhibitor for both research purpose and therapeutic development.
Collapse
Affiliation(s)
- Yalin Li
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy Zhengzhou 450018 China
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Murdoch 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Nedlands WA 6009 Australia
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Murdoch 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Nedlands WA 6009 Australia
| | - Zhen Zhang
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy Zhengzhou 450018 China
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University Murdoch 6150 Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science Nedlands WA 6009 Australia
| |
Collapse
|
20
|
Assefa M, Gepfert A, Zaheer M, Hum JM, Skinner BW. Casimersen (AMONDYS 45™): An Antisense Oligonucleotide for Duchenne Muscular Dystrophy. Biomedicines 2024; 12:912. [PMID: 38672266 PMCID: PMC11048227 DOI: 10.3390/biomedicines12040912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Casimersen (AMONDYS 45TM) is an antisense oligonucleotide of the phosphorodiamidate morpholino oligomer subclass developed by Sarepta therapeutics. It was approved by the Food and Drug Administration (FDA) in February 2021 to treat Duchenne muscular dystrophy (DMD) in patients whose DMD gene mutation is amenable to exon 45 skipping. Administered intravenously, casimersen binds to the pre-mRNA of the DMD gene to skip a mutated region of an exon, thereby producing an internally truncated yet functional dystrophin protein in DMD patients. This is essential in maintaining the structure of a myocyte membrane. While casimersen is currently continuing in phase III of clinical trials in various countries, it was granted approval by the FDA under the accelerated approval program due to its observed increase in dystrophin production. This article discusses the pathophysiology of DMD, summarizes available treatments thus far, and provides a full drug review of casimersen (AMONDYS 45TM).
Collapse
Affiliation(s)
- Milyard Assefa
- School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Addison Gepfert
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA; (A.G.); (M.Z.)
| | - Meesam Zaheer
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA; (A.G.); (M.Z.)
| | - Julia M. Hum
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA
| | - Brian W. Skinner
- Division of Clinical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA;
| |
Collapse
|
21
|
Bains S, Giudicessi JR, Odening KE, Ackerman MJ. State of Gene Therapy for Monogenic Cardiovascular Diseases. Mayo Clin Proc 2024; 99:610-629. [PMID: 38569811 DOI: 10.1016/j.mayocp.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024]
Abstract
Over the past 2 decades, significant efforts have been made to advance gene therapy into clinical practice. Although successful examples exist in other fields, gene therapy for the treatment of monogenic cardiovascular diseases lags behind. In this review, we (1) highlight a brief history of gene therapy, (2) distinguish between gene silencing, gene replacement, and gene editing technologies, (3) discuss vector modalities used in the field with a special focus on adeno-associated viruses, (4) provide examples of gene therapy approaches in cardiomyopathies, channelopathies, and familial hypercholesterolemia, and (5) present current challenges and limitations in the gene therapy field.
Collapse
Affiliation(s)
- Sahej Bains
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - John R Giudicessi
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine (Division of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine (Division of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, MN.
| |
Collapse
|
22
|
Ratajczyk EJ, Šulc P, Turberfield AJ, Doye JPK, Louis AA. Coarse-grained modeling of DNA-RNA hybrids. J Chem Phys 2024; 160:115101. [PMID: 38497475 DOI: 10.1063/5.0199558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/26/2024] [Indexed: 03/19/2024] Open
Abstract
We introduce oxNA, a new model for the simulation of DNA-RNA hybrids that is based on two previously developed coarse-grained models-oxDNA and oxRNA. The model naturally reproduces the physical properties of hybrid duplexes, including their structure, persistence length, and force-extension characteristics. By parameterizing the DNA-RNA hydrogen bonding interaction, we fit the model's thermodynamic properties to experimental data using both average-sequence and sequence-dependent parameters. To demonstrate the model's applicability, we provide three examples of its use-calculating the free energy profiles of hybrid strand displacement reactions, studying the resolution of a short R-loop, and simulating RNA-scaffolded wireframe origami.
Collapse
Affiliation(s)
- Eryk J Ratajczyk
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, USA
- School of Natural Sciences, Department of Bioscience, Technical University Munich, 85748 Garching, Germany
| | - Andrew J Turberfield
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
23
|
Saikia BB, Bhowmick S, Malat A, Preetha Rani MR, Thaha A, Muneer PMA. ICAM-1 Deletion Using CRISPR/Cas9 Protects the Brain from Traumatic Brain Injury-Induced Inflammatory Leukocyte Adhesion and Transmigration Cascades by Attenuating the Paxillin/FAK-Dependent Rho GTPase Pathway. J Neurosci 2024; 44:e1742232024. [PMID: 38326036 PMCID: PMC10941244 DOI: 10.1523/jneurosci.1742-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is identified as an initiator of neuroinflammatory responses that lead to neurodegeneration and cognitive and sensory-motor deficits in several pathophysiological conditions including traumatic brain injury (TBI). However, the underlying mechanisms of ICAM-1-mediated leukocyte adhesion and transmigration and its link with neuroinflammation and functional deficits following TBI remain elusive. Here, we hypothesize that blocking of ICAM-1 attenuates the transmigration of leukocytes to the brain and promotes functional recovery after TBI. The experimental TBI was induced in vivo by fluid percussion injury (25 psi) in male and female wild-type and ICAM-1-/- mice and in vitro by stretch injury (3 psi) in human brain microvascular endothelial cells (hBMVECs). We treated hBMVECs and animals with ICAM-1 CRISPR/Cas9 and conducted several biochemical analyses and demonstrated that CRISPR/Cas9-mediated ICAM-1 deletion mitigates blood-brain barrier (BBB) damage and leukocyte transmigration to the brain by attenuating the paxillin/focal adhesion kinase (FAK)-dependent Rho GTPase pathway. For analyzing functional outcomes, we used a cohort of behavioral tests that included sensorimotor functions, psychological stress analyses, and spatial memory and learning following TBI. In conclusion, this study could establish the significance of deletion or blocking of ICAM-1 in transforming into a novel preventive approach against the pathophysiology of TBI.
Collapse
Affiliation(s)
- Bibhuti Ballav Saikia
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
| | - Saurav Bhowmick
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
| | - Anitha Malat
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
| | - M R Preetha Rani
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
| | - Almas Thaha
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
| | - P M Abdul Muneer
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey 08820
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, New Jersey 07110
| |
Collapse
|
24
|
Popova KB, Penchovsky R. General and Specific Cytotoxicity of Chimeric Antisense Oligonucleotides in Bacterial Cells and Human Cell Lines. Antibiotics (Basel) 2024; 13:122. [PMID: 38391508 PMCID: PMC10885958 DOI: 10.3390/antibiotics13020122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
In the last two decades, antisense oligonucleotide technology has emerged as a promising approach to tackling various healthcare issues and diseases, such as antimicrobial resistance, cancer, and neurodegenerative diseases. Despite the numerous improvements in the structure and modifications of the antisense oligonucleotides (ASOs), there are still specific problems with their clinical efficacy and preclinical cytotoxicity results. To better understand the effects of the ASOs in this paper, we conducted many MTT assays to assess the general and specific cytotoxicity of four new chimeric ASOs in bacterial cells and human cell lines. We demonstrate the absence of inhibitory activity in the human pathogenic bacteria Staphylococcus aureus by non-specific ASOs. The pVEC-ASO1 and pVEC-ASO2 are designed to have no specific targets in S. aureus. They have only partial hybridization to the guanylate kinase mRNA. The pVEC-ASO3 targets UBA2 mRNA, a hallmark cancer pathology in MYC-driven cancer, while pVEC-ASO4 has no complementary sequences. We discovered some cytotoxicity of the non-specific ASOs in healthy and cancer human cell lines. The results are compared with two other ASOs, targeting specific mRNA in cancer cells. All ASOs are delivered into the cell via the cell-penetrating oligopeptide pVEC, which is attached to them. We draw a good correlation between the thermodynamic stability of ASO/target RNA and the toxicity effect in human cell lines. The data obtained signify the importance of thorough bioinformatic analysis and high specificity in designing and developing novel ASOs for safer therapeutic agents in clinical practice.
Collapse
Affiliation(s)
- Katya B Popova
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| | - Robert Penchovsky
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
25
|
Duong HQ, Nguyen TH, Hoang MC, Ngo VL, Le VT. RNA therapeutics for β-thalassemia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:97-107. [PMID: 38458745 DOI: 10.1016/bs.pmbts.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
β-thalassemia is an autosomal recessive disease, caused by one or more mutations in the β-globin gene that reduces or abolishes β-globin chain synthesis causing an imbalance in the ratio of α- and β-globin chain. Therefore, the ability to target mutations will provide a good result in the treatment of β-thalassemia. RNA therapeutics represents a promising class of drugs inclusive antisense oligonucleotides (ASO), small interfering RNA (siRNA), microRNA (miRNA) and APTAMER have investigated in clinical trials for treatment of human diseases as β-thalassemia; Especially, ASO therapeutics can completely treat β-thalassemia patients by the way of making ASO infiltrating through erythrocyte progenitor cells, migrating to the nucleus and hybridizing with abnormal splicing sites to suppress an abnormal splicing pattern of β-globin pre-mRNA. As a result, the exactly splicing process is restored to increase the expression of β-globin which increases the amount of mature hemoglobin of red blood cells of β-thalassemia patients. Furthermore, current study demonstrates that RNA-based therapeutics get lots of good results for β-thalassemia patients. Then, this chapter focuses on current advances of RNA-based therapeutics and addresses current challenges with their development and application for treatment of β-thalassemia patients.
Collapse
Affiliation(s)
| | | | | | - Van-Lang Ngo
- Hanoi University of Public Health, Hanoi, Vietnam
| | - Van-Thu Le
- Hanoi University of Public Health, Hanoi, Vietnam
| |
Collapse
|
26
|
Khan FA, Fang N, Zhang W, Ji S. The multifaceted role of Fragile X-Related Protein 1 (FXR1) in cellular processes: an updated review on cancer and clinical applications. Cell Death Dis 2024; 15:72. [PMID: 38238286 PMCID: PMC10796922 DOI: 10.1038/s41419-023-06413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
RNA-binding proteins (RBPs) modulate the expression level of several target RNAs (such as mRNAs) post-transcriptionally through interactions with unique binding sites in the 3'-untranslated region. There is mounting information that suggests RBP dysregulation plays a significant role in carcinogenesis. However, the function of FMR1 autosomal homolog 1(FXR1) in malignancies is just beginning to be unveiled. Due to the diversity of their RNA-binding domains and functional adaptability, FXR1 can regulate diverse transcript processing. Changes in FXR1 interaction with RNA networks have been linked to the emergence of cancer, although the theoretical framework defining these alterations in interaction is insufficient. Alteration in FXR1 expression or localization has been linked to the mRNAs of cancer suppressor genes, cancer-causing genes, and genes involved in genomic expression stability. In particular, FXR1-mediated gene regulation involves in several cellular phenomena related to cancer growth, metastasis, epithelial-mesenchymal transition, senescence, apoptosis, and angiogenesis. FXR1 dysregulation has been implicated in diverse cancer types, suggesting its diagnostic and therapeutic potential. However, the molecular mechanisms and biological effects of FXR1 regulation in cancer have yet to be understood. This review highlights the current knowledge of FXR1 expression and function in various cancer situations, emphasizing its functional variety and complexity. We further address the challenges and opportunities of targeting FXR1 for cancer diagnosis and treatment and propose future directions for FXR1 research in oncology. This work intends to provide an in-depth review of FXR1 as an emerging oncotarget with multiple roles and implications in cancer biology and therapy.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Na Fang
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Weijuan Zhang
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Shaoping Ji
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
- Zhengzhou Shuqing Medical College, Zhengzhou, China.
| |
Collapse
|
27
|
Imaralu OE, Aluganti Narasimhulu C, Singal PK, Singla DK. Role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in diabetic complications. Can J Physiol Pharmacol 2024; 102:14-25. [PMID: 37748207 DOI: 10.1139/cjpp-2023-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cardiovascular disease (CVD) complications have remained a major cause of death among patients with diabetes. Hence, there is a need for effective therapeutics against diabetes-induced CVD complications. Since its discovery, proprotein convertase subtilisin/kexin type 9 (PCSK9) has been reported to be involved in the pathology of various CVDs, with studies showing a positive association between plasma levels of PCSK9, hyperglycemia, and dyslipidemia. PCSK9 regulates lipid homeostasis by interacting with low-density lipoprotein receptors (LDLRs) present in hepatocytes and subsequently induces LDLR degradation via receptor-mediated endocytosis, thereby reducing LDL uptake from circulation. In addition, PCSK9 also induces pro-inflammatory cytokine expression and apoptotic cell death in diabetic-CVD. Furthermore, therapies designed to inhibit PCSK9 effectively reduces diabetic dyslipidemia with clinical studies reporting reduced cardiovascular events in patients with diabetes and no significant adverse effect on glycemic controls. In this review, we discuss the role of PCSK9 in the pathogenesis of diabetes-induced CVD and the potential mechanisms by which PCSK9 inhibition reduces cardiovascular events in diabetic patients.
Collapse
Affiliation(s)
- Omonzejie E Imaralu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Pawan K Singal
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
28
|
Wang AF, Ayyar VS. Pharmacodynamic Models of Indirect Effects and Irreversible Inactivation with Turnover: Applicability to Mechanism-Based Modeling of Gene Silencing and Targeted Protein Degradation. J Pharm Sci 2024; 113:191-201. [PMID: 37884193 DOI: 10.1016/j.xphs.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Indirect response (IDR) and turnover with inactivation (TI) comprise two arrays of mechanism-based pharmacodynamic (PD) models widely used to describe delayed drug effects. IDR Model-IV (stimulation of response loss) and TI (irreversible loss) have been described with discerning "signature" profiles; classical IDR-IV response-time profiles display slow declines where peak response shifts later with increasing dose, whereas TI profiles feature steep response declines with earlier-shifting nadirs. Herein, we demonstrate mathematical convergence of IDR-IV and TI models upon implementation with identical linear versus nonlinear pharmacologic effect terms. Time of peak response in IDR-IV can in fact shift earlier or later depending on PK or PD parameters (e.g., kel, Smax) and effect type. A generalized dynamic model linking mRNA and protein turnover is proposed. Applicability of IDR-IV and TI, with either linear or nonlinear terms acting on degradation/catabolism/loss of response, is demonstrated through model-fitting PK-PD effects of three proteolysis-targeting chimeras (PROTACs) and two ligand-conjugated small interfering RNAs (siRNA). This work clarifies mathematical properties, convergence, and expected responses of IDR-IV and TI, demonstrates their applicability for targeted gene-silencing and protein-degrading agents, and illustrates how well-designed in vivo studies covering broad dose ranges with richly sampled time-points can influence PK-PD model structure and parameter resolution.
Collapse
Affiliation(s)
- Angelia F Wang
- Clinical Pharmacology & Pharmacometrics, Janssen Research and Development, Spring House, PA, USA
| | - Vivaswath S Ayyar
- Clinical Pharmacology & Pharmacometrics, Janssen Research and Development, Spring House, PA, USA.
| |
Collapse
|
29
|
Moccia M, Pascucci B, Saviano M, Cerasa MT, Terzidis MA, Chatgilialoglu C, Masi A. Advances in Nucleic Acid Research: Exploring the Potential of Oligonucleotides for Therapeutic Applications and Biological Studies. Int J Mol Sci 2023; 25:146. [PMID: 38203317 PMCID: PMC10778772 DOI: 10.3390/ijms25010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, nucleic acids have emerged as powerful biomaterials, revolutionizing the field of biomedicine. This review explores the multifaceted applications of nucleic acids, focusing on their pivotal role in various biomedical applications. Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), possess unique properties such as molecular recognition ability, programmability, and ease of synthesis, making them versatile tools in biosensing and for gene regulation, drug delivery, and targeted therapy. Their compatibility with chemical modifications enhances their binding affinity and resistance to degradation, elevating their effectiveness in targeted applications. Additionally, nucleic acids have found utility as self-assembling building blocks, leading to the creation of nanostructures whose high order underpins their enhanced biological stability and affects the cellular uptake efficiency. Furthermore, this review delves into the significant role of oligonucleotides (ODNs) as indispensable tools for biological studies and biomarker discovery. ODNs, short sequences of nucleic acids, have been instrumental in unraveling complex biological mechanisms. They serve as probes for studying gene expression, protein interactions, and cellular pathways, providing invaluable insights into fundamental biological processes. By examining the synergistic interplay between nucleic acids as powerful biomaterials and ODNs as indispensable tools for biological studies and biomarkers, this review highlights the transformative impact of these molecules on biomedical research. Their versatile applications not only deepen our understanding of biological systems but also are the driving force for innovation in diagnostics and therapeutics, ultimately advancing the field of biomedicine.
Collapse
Affiliation(s)
- Maria Moccia
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Strada Provinciale 35d, n. 9, 00010 Montelibretti, Italy; (M.M.); (B.P.)
| | - Barbara Pascucci
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Strada Provinciale 35d, n. 9, 00010 Montelibretti, Italy; (M.M.); (B.P.)
| | - Michele Saviano
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, URT Caserta, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Maria Teresa Cerasa
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Giovanni Amendola 122/O, 70126 Bari, Italy;
| | - Michael A. Terzidis
- Laboratory of Chemical Biology, Department of Nutritional Sciences and Dietetics, Sindos Campus, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy;
- Center of Advanced Technologies, Adam Mickiewicz University, 61-712 Poznań, Poland
| | - Annalisa Masi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Strada Provinciale 35d, n. 9, 00010 Montelibretti, Italy; (M.M.); (B.P.)
| |
Collapse
|
30
|
Hussen BM, Abdullah KH, Abdullah SR, Majeed NM, Mohamadtahr S, Rasul MF, Dong P, Taheri M, Samsami M. New insights of miRNA molecular mechanisms in breast cancer brain metastasis and therapeutic targets. Noncoding RNA Res 2023; 8:645-660. [PMID: 37818447 PMCID: PMC10560790 DOI: 10.1016/j.ncrna.2023.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 10/12/2023] Open
Abstract
Brain metastases in breast cancer (BC) patients are often associated with a poor prognosis. Recent studies have uncovered the critical roles of miRNAs in the initiation and progression of BC brain metastasis, highlighting the disease's underlying molecular pathways. miRNA-181c, miRNA-10b, and miRNA-21, for example, are all overexpressed in BC patients. It has been shown that these three miRNAs help tumors grow and metastasize by targeting genes that control how cells work. On the other hand, miRNA-26b5p, miRNA-7, and miRNA-1013p are all downregulated in BC brain metastasis patients. They act as tumor suppressors by controlling the expression of genes related to cell adhesion, angiogenesis, and invasion. Therapeutic miRNA targeting has considerable promise in treating BC brain metastases. Several strategies have been proposed to modulate miRNA expression, including miRNA-Mimics, antagomirs, and small molecule inhibitors of miRNA biogenesis. This review discusses the aberrant expression of miRNAs and metastatic pathways that lead to the spread of BC cells to the brain. It also explores miRNA therapeutic target molecular mechanisms and BC brain metastasis challenges with advanced strategies. The targeting of certain miRNAs opens a new door for the development of novel therapeutic approaches for this devastating disease.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Khozga Hazhar Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | | | - Sayran Mohamadtahr
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Samsami
- Cancer Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Giordani S, Marassi V, Zattoni A, Roda B, Reschiglian P. Liposomes characterization for market approval as pharmaceutical products: Analytical methods, guidelines and standardized protocols. J Pharm Biomed Anal 2023; 236:115751. [PMID: 37778202 DOI: 10.1016/j.jpba.2023.115751] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Liposomes are nano-sized lipid-based vesicles widely studied for their drug delivery capabilities. Compared to standard carries they exhibit better properties such as improved site-targeting and drug release, protection of drugs from degradation and clearance, and lower toxic side effects. At present, scientific literature is rich of studies regarding liposomes-based systems, while 14 types of liposomal products have been authorized to the market by EMA and FDA and many others have been approved by national agencies. Although the interest in nanodevices and nanomedicine has steadily increased in the last two decades the development of documentation regulating and standardizing all the phases of their development and quality control still suffers from major inadequacy due to the intrinsic complexity of nano-systems characterization. Many generic documents (Type 1) discussing guidelines for the study of nano-systems (lipidic and not) have been proposed while there is a lack of robust and standardized methods (Type 2 documents). As a result, a widespread of different techniques, approaches and methodologies are being used, generating results of variable quality and hard to compare with each other. Additionally, such documents are often subject to updates and rewriting further complicating the topic. Within this context the aim of this work is focused on bridging the gap in liposome characterization: the most recent standardized methodologies suitable for liposomes characterization are here reported (with the corresponding Type 2 documents) and revised in a short and pragmatical way focused on providing the reader with a practical background of the state of the art. In particular, this paper will put the accent on the methodologies developed to evaluate the main critical quality attributes (CQAs) necessary for liposomes market approval.
Collapse
Affiliation(s)
- Stefano Giordani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Valentina Marassi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy.
| | - Andrea Zattoni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy.
| | - Pierluigi Reschiglian
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy
| |
Collapse
|
32
|
Man HSJ, Moosa VA, Singh A, Wu L, Granton JT, Juvet SC, Hoang CD, de Perrot M. Unlocking the potential of RNA-based therapeutics in the lung: current status and future directions. Front Genet 2023; 14:1281538. [PMID: 38075698 PMCID: PMC10703483 DOI: 10.3389/fgene.2023.1281538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 02/12/2024] Open
Abstract
Awareness of RNA-based therapies has increased after the widespread adoption of mRNA vaccines against SARS-CoV-2 during the COVID-19 pandemic. These mRNA vaccines had a significant impact on reducing lung disease and mortality. They highlighted the potential for rapid development of RNA-based therapies and advances in nanoparticle delivery systems. Along with the rapid advancement in RNA biology, including the description of noncoding RNAs as major products of the genome, this success presents an opportunity to highlight the potential of RNA as a therapeutic modality. Here, we review the expanding compendium of RNA-based therapies, their mechanisms of action and examples of application in the lung. The airways provide a convenient conduit for drug delivery to the lungs with decreased systemic exposure. This review will also describe other delivery methods, including local delivery to the pleura and delivery vehicles that can target the lung after systemic administration, each providing access options that are advantageous for a specific application. We present clinical trials of RNA-based therapy in lung disease and potential areas for future directions. This review aims to provide an overview that will bring together researchers and clinicians to advance this burgeoning field.
Collapse
Affiliation(s)
- H. S. Jeffrey Man
- Temerty Faculty of Medicine, Institute of Medical Science, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Vaneeza A. Moosa
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, ON, Canada
| | - Anand Singh
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Licun Wu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, ON, Canada
| | - John T. Granton
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Stephen C. Juvet
- Temerty Faculty of Medicine, Institute of Medical Science, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Chuong D. Hoang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marc de Perrot
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
33
|
Animasaun DA, Lawrence JA. Antisense RNA (asRNA) technology: the concept and applications in crop improvement and sustainable agriculture. Mol Biol Rep 2023; 50:9545-9557. [PMID: 37755651 DOI: 10.1007/s11033-023-08814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Antisense RNA (asRNA) technology is a method used to silence genes and inhibit their expression. Gene function relies on expression, which follows the central dogma of molecular biology. The use of asRNA can regulate gene expression by targeting specific mRNAs, which can result in changes in phenotype, disease resistance, and other traits associated with protein expression profiles. This technology uses short, single-stranded oligonucleotide strands that are complementary to the targeted mRNA. Manipulating and regulating protein expression during its translation can either knock out or knock down the expression of a gene of interest. Therefore, functional genomics can benefit from this technology since it allows for the regulation of protein expression. In this review, we discuss the concept, and applications of asRNA technology which include delaying ripening, prolonging shelf life, biofortification, and increasing biotic and abiotic resistance among others in crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- David Adedayo Animasaun
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
- Plant Tissue Culture Lab, Central Research Laboratories, University of Ilorin, P.M.B.1515, Ilorin, Kwara State, Nigeria.
| | - Judith Amaka Lawrence
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
| |
Collapse
|
34
|
Yang K, Xiao Y, Zhong L, Zhang W, Wang P, Ren Y, Shi L. p53-regulated lncRNAs in cancers: from proliferation and metastasis to therapy. Cancer Gene Ther 2023; 30:1456-1470. [PMID: 37679529 DOI: 10.1038/s41417-023-00662-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as master gene regulators through various mechanisms such as transcription, translation, protein modification and RNA-protein complexes. LncRNA dysregulation is frequently associated with a variety of biological functions and human diseases including cancer. The p53 network is a key tumor-suppressive mechanism that transcriptionally activates target genes to suppress cellular proliferation in human malignancies. Recent research indicates that lncRNAs play an important role in the p53 signaling pathway. In this review, we summarize the current knowledge of lncRNAs in p53-relevant functions and provide an overview of how these altered lncRNAs contribute to tumor initiation and progression. We also discuss the association between lncRNA and up- or downstream genes of p53. These findings imply that lncRNAs can help identify cellular vulnerabilities that may prove to be promising potential biomarkers and therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Kaixin Yang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yinan Xiao
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Linghui Zhong
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Peng Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075131, People's Republic of China
| | - Yaru Ren
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
35
|
Haque US, Yokota T. Enhancing Antisense Oligonucleotide-Based Therapeutic Delivery with DG9, a Versatile Cell-Penetrating Peptide. Cells 2023; 12:2395. [PMID: 37830609 PMCID: PMC10572411 DOI: 10.3390/cells12192395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Antisense oligonucleotide-based (ASO) therapeutics have emerged as a promising strategy for the treatment of human disorders. Charge-neutral PMOs have promising biological and pharmacological properties for antisense applications. Despite their great potential, the efficient delivery of these therapeutic agents to target cells remains a major obstacle to their widespread use. Cellular uptake of naked PMO is poor. Cell-penetrating peptides (CPPs) appear as a possibility to increase the cellular uptake and intracellular delivery of oligonucleotide-based drugs. Among these, the DG9 peptide has been identified as a versatile CPP with remarkable potential for enhancing the delivery of ASO-based therapeutics due to its unique structural features. Notably, in the context of phosphorodiamidate morpholino oligomers (PMOs), DG9 has shown promise in enhancing delivery while maintaining a favorable toxicity profile. A few studies have highlighted the potential of DG9-conjugated PMOs in DMD (Duchenne Muscular Dystrophy) and SMA (Spinal Muscular Atrophy), displaying significant exon skipping/inclusion and functional improvements in animal models. The article provides an overview of a detailed understanding of the challenges that ASOs face prior to reaching their targets and continued advances in methods to improve their delivery to target sites and cellular uptake, focusing on DG9, which aims to harness ASOs' full potential in precision medicine.
Collapse
Affiliation(s)
- Umme Sabrina Haque
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
36
|
Hınçer A, Ahan RE, Aras E, Şeker UÖŞ. Making the Next Generation of Therapeutics: mRNA Meets Synthetic Biology. ACS Synth Biol 2023; 12:2505-2515. [PMID: 37672348 PMCID: PMC10510722 DOI: 10.1021/acssynbio.3c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 09/08/2023]
Abstract
The development of mRNA-based therapeutics centers around the natural functioning of mRNA molecules to provide the genetic information required for protein translation. To improve the efficacy of these therapeutics and minimize side effects, researchers can focus on the features of mRNA itself or the properties of the delivery agent to achieve the desired response. The tools considered for mRNA manipulation can be improved in terms of targetability, tunability, and translatability to medicine. While ongoing studies are dedicated to improving conventional approaches, innovative approaches can also be considered to unleash the full potential of mRNA-based therapeutics. Here, we discuss the opportunities that emerged from introducing synthetic biology to mRNA therapeutics. It includes a discussion of modular self-assembled mRNA nanoparticles, logic gates on a single mRNA molecule, and other possibilities.
Collapse
Affiliation(s)
- Ahmet Hınçer
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center, Bilkent
University, Ankara 06800, Turkey
| | - Recep Erdem Ahan
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center, Bilkent
University, Ankara 06800, Turkey
| | - Ebru Aras
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center, Bilkent
University, Ankara 06800, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center, Bilkent
University, Ankara 06800, Turkey
| |
Collapse
|
37
|
Pandey E, Harris EN. Chloroquine and cytosolic galectins affect endosomal escape of antisense oligonucleotides after Stabilin-mediated endocytosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:430-443. [PMID: 37575283 PMCID: PMC10412722 DOI: 10.1016/j.omtn.2023.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Non-DNA-binding Stabilin-2/HARE receptors expressed on liver sinusoidal endothelial cells specifically bind to and internalize several classes of phosphorothioate antisense oligonucleotides (PS-ASOs). After Stabilin-mediated uptake, PS-ASOs are trafficked within endosomes (>97%-99%), ultimately resulting in destruction in the lysosome. The ASO entrapment in endosomes lowers therapeutic efficacy, thereby increasing the overall dose for patients. Here, we use confocal microscopy to characterize the intracellular route transverse by PS-ASOs after Stabilin receptor-mediated uptake in stable recombinant Stabilin-1 and -2 cell lines. We found that PS-ASOs as well as the Stabilin-2 receptor transverse the classic path: clathrin-coated vesicle-early endosome-late endosome-lysosome. Chloroquine exposure facilitated endosomal escape of PS-ASOs leading to target knockdown by more than 50% as compared to untreated cells, resulting in increased PS-ASO efficacy. We also characterize cytosolic galectins as novel contributor for PS-ASO escape. Galectins knockdown enhances ASO efficacy by more than 60% by modulating EEA1, Rab5C, and Rab7A mRNA expression, leading to a delay in the endosomal vesicle maturation process. Collectively, our results provide additional insight for increasing PS-ASO efficacy by enhancing endosomal escape, which can further be utilized for other nucleic acid-based modalities.
Collapse
Affiliation(s)
- Ekta Pandey
- University of Nebraska, Department of Biochemistry, Beadle Center, 1901 Vine St., Lincoln, NE 68588, USA
| | - Edward N. Harris
- University of Nebraska, Department of Biochemistry, Beadle Center, 1901 Vine St., Lincoln, NE 68588, USA
| |
Collapse
|
38
|
Babalola BA, Akinsuyi OS, Folajimi EO, Olujimi F, Otunba AA, Chikere B, Adewumagun IA, Adetobi TE. Exploring the future of SARS-CoV-2 treatment after the first two years of the pandemic: A comparative study of alternative therapeutics. Biomed Pharmacother 2023; 165:115099. [PMID: 37406505 DOI: 10.1016/j.biopha.2023.115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
One of the most pressing challenges associated with SARS-CoV-2 treatment is the emergence of new variants that may be more transmissible, cause more severe disease, or be resistant to current treatments and vaccines. The emergence of SARS-CoV-2 has led to a global pandemic, resulting in millions of deaths worldwide. Various strategies have been employed to combat the virus, including neutralizing monoclonal antibodies (mAbs), CRISPR/Cas13, and antisense oligonucleotides (ASOs). While vaccines and small molecules have proven to be an effective means of preventing severe COVID-19 and reducing transmission rates, the emergence of new virus variants poses a challenge to their effectiveness. Monoclonal antibodies have shown promise in treating early-stage COVID-19, but their effectiveness is limited in severe cases and the emergence of new variants may reduce their binding affinity. CRISPR/Cas13 has shown potential in targeting essential viral genes, but its efficiency, specificity, and delivery to the site of infection are major limitations. ASOs have also been shown to be effective in targeting viral RNA, but they face similar challenges to CRISPR/Cas13 in terms of delivery and potential off-target effects. In conclusion, a combination of these strategies may provide a more effective means of combating SARS-CoV-2, and future research should focus on improving their efficiency, specificity, and delivery to the site of infection. It is evident that the continued research and development of these alternative therapies will be essential in the ongoing fight against SARS-CoV-2 and its potential future variants.
Collapse
Affiliation(s)
| | | | | | - Folakemi Olujimi
- Department of Biochemistry, Mountain Top University, Prayer-City, Ogun State, Nigeria
| | | | - Bruno Chikere
- Department of Biochemistry, Covenant University, Ogun State, Nigeria
| | | | | |
Collapse
|
39
|
Mehmandar-Oskuie A, Jahankhani K, Rostamlou A, Arabi S, Sadat Razavi Z, Mardi A. Molecular landscape of LncRNAs in bladder cancer: From drug resistance to novel LncRNA-based therapeutic strategies. Biomed Pharmacother 2023; 165:115242. [PMID: 37531786 DOI: 10.1016/j.biopha.2023.115242] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Bladder cancer (BC) is a common and serious type of cancer that ranks among the top ten most prevalent malignancies worldwide. Due to the high occurrence rate of BC, the aggressive nature of cancer cells, and their resistance to medication, managing this disease has become a growing challenge in clinical care. Long noncoding RNAs (lncRNAs) are a group of RNA transcripts that do not code for proteins and are more than 200 nucleotides in length. They play a significant role in controlling cellular pathways and molecular interactions during the onset, development and progression of different types of cancers. Recent advancements in high-throughput gene sequencing technology have led to the identification of various differentially expressed lncRNAs in BC, which indicate abnormal expression. In this review, we summarize that these lncRNAs have been found to impact several functions related to the development of BC, including proliferation, cell growth, migration, metastasis, apoptosis, epithelial-mesenchymal transition, and chemo- and radio-resistance. Additionally, lncRNAs may improve prognosis prediction for BC patients, indicating a future use for them as prognostic and diagnostic biomarkers for BC patients. This review highlights that genetic tools and anti-tumor agents, such as CRISPR/Cas systems, siRNA, shRNA, antisense oligonucleotides, and vectors, have been created for use in preclinical cancer models. This has led to a growing interest in using lncRNAs based on positive research findings.
Collapse
Affiliation(s)
- Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, IZMIR, Turkey
| | - Sepideh Arabi
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahra Sadat Razavi
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
40
|
Uriostegui-Arcos M, Mick ST, Shi Z, Rahman R, Fiszbein A. Splicing activates transcription from weak promoters upstream of alternative exons. Nat Commun 2023; 14:3435. [PMID: 37301863 PMCID: PMC10256964 DOI: 10.1038/s41467-023-39200-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Transcription and splicing are intrinsically coupled. Alternative splicing of internal exons can fine-tune gene expression through a recently described phenomenon called exon-mediated activation of transcription starts (EMATS). However, the association of this phenomenon with human diseases remains unknown. Here, we develop a strategy to activate gene expression through EMATS and demonstrate its potential for treatment of genetic diseases caused by loss of expression of essential genes. We first identified a catalog of human EMATS genes and provide a list of their pathological variants. To test if EMATS can be used to activate gene expression, we constructed stable cell lines expressing a splicing reporter based on the alternative splicing of motor neuron 2 (SMN2) gene. Using small molecules and antisense oligonucleotides (ASOs) currently used for treatment of spinal muscular atrophy, we demonstrated that increase of inclusion of alternative exons can trigger an activation of gene expression up to 45-fold by enhancing transcription in EMATS-like genes. We observed the strongest effects in genes under the regulation of weak human promoters located proximal to highly included skipped exons.
Collapse
Affiliation(s)
| | - Steven T Mick
- Biology Department, Boston University, Boston, 02215, USA
| | - Zhuo Shi
- Biology Department, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Rufuto Rahman
- Biology Department, Boston University, Boston, 02215, USA
| | - Ana Fiszbein
- Biology Department, Boston University, Boston, 02215, USA.
| |
Collapse
|
41
|
Haydinger CD, Ashander LM, Tan ACR, Smith JR. Intercellular Adhesion Molecule 1: More than a Leukocyte Adhesion Molecule. BIOLOGY 2023; 12:biology12050743. [PMID: 37237555 DOI: 10.3390/biology12050743] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein in the immunoglobulin superfamily expressed on the surface of multiple cell populations and upregulated by inflammatory stimuli. It mediates cellular adhesive interactions by binding to the β2 integrins macrophage antigen 1 and leukocyte function-associated antigen 1, as well as other ligands. It has important roles in the immune system, including in leukocyte adhesion to the endothelium and transendothelial migration, and at the immunological synapse formed between lymphocytes and antigen-presenting cells. ICAM-1 has also been implicated in the pathophysiology of diverse diseases from cardiovascular diseases to autoimmune disorders, certain infections, and cancer. In this review, we summarize the current understanding of the structure and regulation of the ICAM1 gene and the ICAM-1 protein. We discuss the roles of ICAM-1 in the normal immune system and a selection of diseases to highlight the breadth and often double-edged nature of its functions. Finally, we discuss current therapeutics and opportunities for advancements.
Collapse
Affiliation(s)
- Cameron D Haydinger
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Alwin Chun Rong Tan
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
42
|
Hsieh EWY, Snapper SB, de Zoeten EF. Editorial: Inborn errors of immunity and mucosal immunity. Front Immunol 2023; 14:1208798. [PMID: 37228613 PMCID: PMC10203951 DOI: 10.3389/fimmu.2023.1208798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Affiliation(s)
- Elena Wen-Yuan Hsieh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Section of Pediatric Allergy and Immunology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO, United States
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Edwin F. de Zoeten
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
43
|
Gupta R, Salave S, Rana D, Karunakaran B, Butreddy A, Benival D, Kommineni N. Versatility of Liposomes for Antisense Oligonucleotide Delivery: A Special Focus on Various Therapeutic Areas. Pharmaceutics 2023; 15:1435. [PMID: 37242677 PMCID: PMC10222274 DOI: 10.3390/pharmaceutics15051435] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Nucleic acid therapeutics, specifically antisense oligonucleotides (ASOs), can effectively modulate gene expression and protein function, leading to long-lasting curative effects. The hydrophilic nature and large size of oligonucleotides present translational challenges, which have led to the exploration of various chemical modifications and delivery systems. The present review provides insights into the potential role of liposomes as a drug delivery system for ASOs. The potential benefits of liposomes as an ASO carrier, along with their method of preparation, characterization, routes of administration, and stability aspects, have been thoroughly discussed. A novel perspective in terms of therapeutic applications of liposomal ASO delivery in several diseases such as cancer, respiratory disease, ophthalmic delivery, infectious diseases, gastrointestinal disease, neuronal disorders, hematological malignancies, myotonic dystrophy, and neuronal disorders remains the major highlights of this review.
Collapse
Affiliation(s)
- Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
44
|
Kieser RE, Khan S, Bejar N, Kiss DL. The Dawning of a New Enterprise: RNA Therapeutics for the Skin. JOURNAL OF DERMATOLOGY AND SKIN SCIENCE 2023; 5:4-13. [PMID: 38435714 PMCID: PMC10907068 DOI: 10.29245/2767-5092/2023/1.1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Despite being under development for decades, RNA therapeutics have only recently emerged as viable drug platforms. The COVID-19 mRNA vaccines have demonstrated the promise and power of the platform technology. In response, novel RNA drugs are entering clinical trials at an accelerating rate. As the skin is the largest and most accessible organ, it has always been a preferred target for drug discovery. This holds true for RNA therapies as well, and multiple candidate RNA-based drugs are currently in development for an array of skin conditions. In this mini review, we catalog the RNA therapies currently in clinical trials for different dermatological diseases. We summarize the main types of RNA-related drugs and use examples of drugs currently in development to illustrate their key mechanism of action.
Collapse
Affiliation(s)
- Rachel E. Kieser
- Center for RNA Therapeutics
- Department of Cardiovascular Sciences
- Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave, R10-113, Houston 77030, TX, USA
| | - Shaheerah Khan
- Center for RNA Therapeutics
- Department of Cardiovascular Sciences
- Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave, R10-113, Houston 77030, TX, USA
| | - Nada Bejar
- Center for RNA Therapeutics
- Department of Cardiovascular Sciences
- Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave, R10-113, Houston 77030, TX, USA
| | - Daniel L. Kiss
- Center for RNA Therapeutics
- Department of Cardiovascular Sciences
- Weill Cornell Medical College, New York, NY, USA
- Houston Methodist Cancer Center, Houston, TX, USA
- Houston Methodist Academic Institute, Houston Methodist Research Institute, 6670 Bertner Ave, R10-113, Houston 77030, TX, USA
| |
Collapse
|
45
|
Wong KH, Lal SK. Alternative antiviral approaches to combat influenza A virus. Virus Genes 2023; 59:25-35. [PMID: 36260242 PMCID: PMC9832087 DOI: 10.1007/s11262-022-01935-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/06/2022] [Indexed: 01/14/2023]
Abstract
Influenza A (IAV) is a major human respiratory pathogen that contributes to a significant threat to health security, worldwide. Despite vaccinations and previous immunisations through infections, humans can still be infected with influenza several times throughout their lives. This phenomenon is attributed to the antigenic changes of hemagglutinin (HA) and neuraminidase (NA) proteins in IAV via genetic mutation and reassortment, conferring antigenic drift and antigenic shift, respectively. Numerous findings indicate that slow antigenic drift and reassortment-derived antigenic shift exhibited by IAV are key processes that allow IAVs to overcome the previously acquired host immunity, which eventually leads to the annual re-emergence of seasonal influenza and even pandemic influenza, in rare occasions. As a result, current therapeutic options hit a brick wall quickly. As IAV remains a constant threat for new outbreaks worldwide, the underlying processes of genetic changes and alternative antiviral approaches for IAV should be further explored to improve disease management. In the light of the above, this review discusses the characteristics and mechanisms of mutations and reassortments that contribute to IAV's evolution. We also discuss several alternative RNA-targeting antiviral approaches, namely the CRISPR/Cas13 systems, RNA interference (RNAi), and antisense oligonucleotides (ASO) as potential antiviral approaches against IAV.
Collapse
Affiliation(s)
- Ka Heng Wong
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor DE, Malaysia
| | - Sunil K Lal
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor DE, Malaysia.
- Tropical Medicine & Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia.
| |
Collapse
|
46
|
Zhang Z, Huang Y, Li J, Su F, Kuo JC, Hu Y, Zhao X, Lee RJ. Antitumor Activity of Anti-miR-21 Delivered through Lipid Nanoparticles. Adv Healthc Mater 2023; 12:e2202412. [PMID: 36412002 PMCID: PMC11468686 DOI: 10.1002/adhm.202202412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/17/2022] [Indexed: 11/23/2022]
Abstract
The ability of lipid nanoparticles (LNPs) to deliver nucleic acids have shown a great therapeutic potential to treat a variety of diseases. Here, an optimized formulation of QTsome lipid nanoparticles (QTPlus) is utilized to deliver an anti-miR-21 (AM21) against cancer. The miR-21 downstream gene regulation and antitumor activity is evaluated using mouse and human cancer cells and macrophages. The antitumor activity of QTPlus encapsulating AM21 (QTPlus-AM21) is further evaluated in combination with erlotinib and atezolizumab (ATZ). QTPlus-AM21 demonstrates a superior miR-21-dependent gene regulation and eventually inhibits A549 non-small cell lung cancer growth in vitro. QTPlus-AM21 further induces chemo-sensitization of A549 cells to erlotinib with a combination index of 0.6 in inhibiting A549 cell growth. When systemically administers to MC38 tumor-bearing mouse model, QTPlus-AM21 exhibits an antitumor immune response with over 80% tumor growth inhibition (TGI%) and over twofold and fourfold PD-1 and PD-L1 upregulation in tumors and spleens. The combination therapy of QTPlus-AM21 and ATZ further shows a higher antitumor response (TGI% over 90%) and successfully increases M1 macrophages and CD8 T cells into TME. This study provides new insights into the antitumor mechanism of AM21 and shows great promise of QTPlus-AM21 in combination with chemotherapies and immunotherapies.
Collapse
Affiliation(s)
- Zhongkun Zhang
- Division of Pharmaceutics and PharmacologyCollege of PharmacyThe Ohio State University500 W 12th AvenueColumbusOH43210USA
| | - Yirui Huang
- Division of Pharmaceutics and PharmacologyCollege of PharmacyThe Ohio State University500 W 12th AvenueColumbusOH43210USA
| | - Jing Li
- Zhejiang Haichang Biotechnology Co., Ltd.HangzhouZhejiang310000P. R. China
| | - Fei Su
- Zhejiang Haichang Biotechnology Co., Ltd.HangzhouZhejiang310000P. R. China
| | - Jimmy Chun‐Tien Kuo
- Division of Pharmaceutics and PharmacologyCollege of PharmacyThe Ohio State University500 W 12th AvenueColumbusOH43210USA
| | - Yingwen Hu
- The Whiteoak Group, Inc.RockvilleMD20855USA
| | | | - Robert J. Lee
- Division of Pharmaceutics and PharmacologyCollege of PharmacyThe Ohio State University500 W 12th AvenueColumbusOH43210USA
| |
Collapse
|
47
|
Mehta M, Raguraman R, Ramesh R, Munshi A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 2022; 191:114569. [PMID: 36252617 PMCID: PMC10411638 DOI: 10.1016/j.addr.2022.114569] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Traditionally majority of eukaryotic gene expression is influenced by transcriptional and post-transcriptional events. Alterations in the expression of proteins that act post-transcriptionally can affect cellular signaling and homeostasis. RNA binding proteins (RBPs) are a family of proteins that specifically bind to RNAs and are involved in post-transcriptional regulation of gene expression and important cellular processes such as cell differentiation and metabolism. Deregulation of RNA-RBP interactions and any changes in RBP expression or function can lead to various diseases including cancer. In cancer cells, RBPs play an important role in regulating the expression of tumor suppressors and oncoproteins involved in various cell-signaling pathways. Several RBPs such as HuR, AUF1, RBM38, LIN28, RBM24, tristetrapolin family and Musashi play critical roles in various types of cancers and their aberrant expression in cancer cells makes them an attractive therapeutic target for cancer treatment. In this review we provide an overview of i). RBPs involved in cancer progression and their mechanism of action ii). the role of RBPs, including HuR, in breast cancer progression and DNA damage response and iii). explore RBPs with emphasis on HuR as therapeutic target for breast cancer therapy.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73013, USA.
| |
Collapse
|
48
|
Mollica L, Cupaioli FA, Rossetti G, Chiappori F. An overview of structural approaches to study therapeutic RNAs. Front Mol Biosci 2022; 9:1044126. [PMID: 36387283 PMCID: PMC9649582 DOI: 10.3389/fmolb.2022.1044126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2023] Open
Abstract
RNAs provide considerable opportunities as therapeutic agent to expand the plethora of classical therapeutic targets, from extracellular and surface proteins to intracellular nucleic acids and its regulators, in a wide range of diseases. RNA versatility can be exploited to recognize cell types, perform cell therapy, and develop new vaccine classes. Therapeutic RNAs (aptamers, antisense nucleotides, siRNA, miRNA, mRNA and CRISPR-Cas9) can modulate or induce protein expression, inhibit molecular interactions, achieve genome editing as well as exon-skipping. A common RNA thread, which makes it very promising for therapeutic applications, is its structure, flexibility, and binding specificity. Moreover, RNA displays peculiar structural plasticity compared to proteins as well as to DNA. Here we summarize the recent advances and applications of therapeutic RNAs, and the experimental and computational methods to analyze their structure, by biophysical techniques (liquid-state NMR, scattering, reactivity, and computational simulations), with a focus on dynamic and flexibility aspects and to binding analysis. This will provide insights on the currently available RNA therapeutic applications and on the best techniques to evaluate its dynamics and reactivity.
Collapse
Affiliation(s)
- Luca Mollica
- Department of Medical Biotechnologies and Translational Medicine, L.I.T.A/University of Milan, Milan, Italy
| | | | | | - Federica Chiappori
- National Research Council—Institute for Biomedical Technologies, Milan, Italy
| |
Collapse
|
49
|
Boron Clusters as Enhancers of RNase H Activity in the Smart Strategy of Gene Silencing by Antisense Oligonucleotides. Int J Mol Sci 2022; 23:ijms232012190. [PMID: 36293047 PMCID: PMC9603397 DOI: 10.3390/ijms232012190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/28/2022] Open
Abstract
Boron cluster-conjugated antisense oligonucleotides (B-ASOs) have already been developed as therapeutic agents with “two faces”, namely as potential antisense inhibitors of gene expression and as boron carriers for boron neutron capture therapy (BNCT). The previously observed high antisense activity of some B-ASOs targeting the epidermal growth factor receptor (EGFR) could not be rationally assigned to the positioning of the boron cluster unit: 1,2-dicarba-closo-dodecaborane (0), [(3,3′-Iron-1,2,1′,2′-dicarbollide) (1-), FESAN], and dodecaborate (2-) in the ASO chain and its structure or charge. For further understanding of this observation, we performed systematic studies on the efficiency of RNase H against a series of B-ASOs models. The results of kinetic analysis showed that pyrimidine-enriched B-ASO oligomers activated RNase H more efficiently than non-modified ASO. The presence of a single FESAN unit at a specific position of the B-ASO increased the kinetics of enzymatic hydrolysis of complementary RNA more than 30-fold compared with unmodified duplex ASO/RNA. Moreover, the rate of RNA hydrolysis enhanced with the increase in the negative charge of the boron cluster in the B-ASO chain. In conclusion, a “smart” strategy using ASOs conjugated with boron clusters is a milestone for the development of more efficient antisense therapeutic nucleic acids as inhibitors of gene expression.
Collapse
|
50
|
Bumma N, Kahwash R, Parikh SV, Isfort M, Freimer M, Vallakati A, Redder E, Campbell CM, Sharma N, Efebera Y, Stino A. Multidisciplinary amyloidosis care in the era of personalized medicine. Front Neurol 2022; 13:935936. [PMID: 36341129 PMCID: PMC9630033 DOI: 10.3389/fneur.2022.935936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Amyloidosis refers to a group of conditions where abnormal protein-or amyloid-deposits in tissues or organs, often leading to organ malfunction. Amyloidosis affects nearly any organ system, but especially the heart, kidneys, liver, peripheral nervous system, and gastrointestinal tract. Neuromuscular deficits comprise some of its ubiquitous manifestations. Amyloidosis can be quite challenging to diagnose given its clinical heterogeneity and multi-system nature. Early diagnosis with accurate genetic and serologic subtyping is key for effective management and prevention of organ decline. In this review, we highlight the value of a multidisciplinary comprehensive amyloidosis clinic. While such a model exists at numerous clinical and research centers across the globe, the lack of more widespread adoption of such a model remains a major hindrance to the timely diagnosis of amyloidosis. Such a multidisciplinary care model allows for the timely and effective diagnosis of amyloidosis, be it acquired amyloid light amyloidosis (AL), hereditary transthyretin amyloidosis (hATTR), or wild type amyloidosis (TTR-wt), especially in the current era of personalized genomic medicine. A multidisciplinary clinic optimizes the delivery of singular or combinatorial drug therapies, depending on amyloid type, fibril deposition location, and disease progression. Such an arrangement also helps advance research in the field. We present our experience at The Ohio State University, as one example out of many, to highlight the centrality of a multi-disciplinary clinic in amyloidosis care.
Collapse
Affiliation(s)
- Naresh Bumma
- Division of Hematology-Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Rami Kahwash
- Division of Cardiology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Samir V. Parikh
- Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Michael Isfort
- Division of Neuromuscular Medicine, Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Miriam Freimer
- Division of Neuromuscular Medicine, Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ajay Vallakati
- Division of Cardiology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Elyse Redder
- Oncology Rehabilitation, The Ohio State University James Cancer Center, Columbus, OH, United States
| | - Courtney M. Campbell
- Division of Cardiology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Cardiovascular Division, Cardio-Oncology Center of Excellence, Washington University in St. Louis, St. Louis, MO, United States
| | - Nidhi Sharma
- Division of Hematology-Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Yvonne Efebera
- Ohio Health, Department of Hematology/Oncology and Blood and Marrow Transplant, Columbus, OH, United States
| | - Amro Stino
- Division of Neuromuscular Medicine, Department of Neurology, The University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|