1
|
Gopalsamy RG, Antony PJ, Athesh K, Hillary VE, Montalvão MM, Hariharan G, Santana LADM, Borges LP, Gurgel RQ. Dietary essential oil components: A systematic review of preclinical studies on the management of gastrointestinal diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156630. [PMID: 40085990 DOI: 10.1016/j.phymed.2025.156630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND The gut is responsible for the digestion and absorption of nutrients, immune regulation, and barrier function. However, factors like poor diet, stress, and infection, can disrupt the balance of the gut microbiota and lead to intestinal inflammation and dysfunction. PURPOSE This systematic review aims to evaluate the effects of dietary plants-derived essential oil components on gut health and intestinal functions in animal models. METHODS The literature was gathered from the Scopus, Web of Science, PubMed, and Embase databases by using related search terms, such as "dietary plants", "dietary sources", "essential oils", "gut health", "intestine", "anti-inflammatory", "antioxidant", and "gut microbiota". RESULTS The results indicate that plant-derived dietary essential oil components, such as butyrolactone-I, carvacrol, cinnamaldehyde, citral, D-limonene, eugenol, farnesol, geraniol, indole, nerolidol, oleic acid, thymol, trans-anethole, vanillin, α-bisabolol, α-linolenic acid, α-pinene, α-terpineol, β-carotene, β-caryophyllene, and β-myrcene have been found to regulate gut health by influencing vital signalling pathways associated with inflammation. Dietary essential oil components modulate the expression of tumor necrosis factor alpha, interleukin 1 beta (IL-1β), interleukin (IL)-6, IL-10, inducible nitric oxide synthase, cyclooxygenase-2, toll-like receptor-4, matrix metalloproteinase, and interferon gamma in mitigating gut inflammation. The primary signalling molecules controlled by these molecules were AMP-activated protein kinase (AMPK), protein kinase B, extracellular signal-regulated kinase, c-Jun N-terminal kinase, mitogen-activated protein kinase, myeloid differentiation primary response 88, nuclear factor erythroid-2-related factor-2, and phosphoinositide 3-kinase (PI3K). Moreover, these phytochemicals have been shown to improve glucose homeostasis by regulating glucose transporter 4, glucagon-like peptide-1, peroxisome proliferator-activated receptor gamma, nuclear factor kappa B, AMPK, PI3K, and uncoupling protein-1. They can also reduce thiobarbituric acid reactive substance, malondialdehyde, and oxidative stress and enhance superoxide dismutase, catalase, and glutathione peroxidase levels. CONCLUSION In conclusion, dietary plants-derived essential oil components have the potential to mitigate inflammation and oxidative stress in the gut. However, additional clinical investigations are necessary to confirm their complete potential in improving human gut health functions.
Collapse
Affiliation(s)
- Rajiv Gandhi Gopalsamy
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India; Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil
| | - Poovathumkal James Antony
- Department of Microbiology, North Bengal University, St. Joseph's College, Darjeeling, West Bengal, India
| | - Kumaraswamy Athesh
- School of Sciences, Bharata Mata College (Autonomous), Kochi, Kerala, India
| | - Varghese Edwin Hillary
- Division of Phytochemistry and Drug-Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kochi, Kerala, India
| | | | | | | | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Ricardo Queiroz Gurgel
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, Brazil.
| |
Collapse
|
2
|
Mrisho II, Musazade E, Chen H, Zhao H, Xing J, Li X, Han J, Cai E. Unlocking the Therapeutic Potential of Patchouli Leaves: A Comprehensive Review of Phytochemical and Pharmacological Insights. PLANTS (BASEL, SWITZERLAND) 2025; 14:1034. [PMID: 40219102 PMCID: PMC11990424 DOI: 10.3390/plants14071034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
Plant-based products play an increasingly vital role in the pharmaceutical industry, including Pogostemon cablin (Blanco) Benth. (patchouli), which is notable for its rich history and extensive use in traditional medicine. Patchouli has a longstanding historical use as a remedy for a wide range of health conditions, including colds, fevers, headaches, inflammation, digestive disorders, and insect and snake bites. Comprehensive phytochemical studies have revealed that patchouli leaves contain diverse valuable bioactive compounds, notably patchouli alcohol, β-patchoulene, pogostone, α-bulnesene, and β-caryophyllene. Recent studies have demonstrated that patchouli leaves exhibit various pharmacological properties, including anti-oxidant, anti-inflammatory, antimicrobial, antidepressant, and anticancer effects. Despite robust traditional knowledge, specific therapeutic applications of patchouli leaves require scientific validation and standardization of their bioactive compounds. This review provides a comprehensive overview of the existing literature on the phytochemical composition, pharmacological properties, and underlying mechanisms of action of patchouli essential oil (PEO) and plant extracts obtained from patchouli leaves. It offers detailed insights into potential therapeutic applications, aiming to inform and guide future research across multiple medical disciplines. Ultimately, this review underscores the need for further research to validate and develop the medicinal applications of patchouli leaves, providing a foundation for future healthcare advancements.
Collapse
Affiliation(s)
- Isack Ibrahim Mrisho
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (I.I.M.); (H.C.); (H.Z.); (J.X.); (X.L.)
| | - Elshan Musazade
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Haobo Chen
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (I.I.M.); (H.C.); (H.Z.); (J.X.); (X.L.)
| | - Huixuan Zhao
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (I.I.M.); (H.C.); (H.Z.); (J.X.); (X.L.)
| | - Junjia Xing
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (I.I.M.); (H.C.); (H.Z.); (J.X.); (X.L.)
| | - Xue Li
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (I.I.M.); (H.C.); (H.Z.); (J.X.); (X.L.)
| | - Jiahong Han
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (I.I.M.); (H.C.); (H.Z.); (J.X.); (X.L.)
| | - Enbo Cai
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (I.I.M.); (H.C.); (H.Z.); (J.X.); (X.L.)
| |
Collapse
|
3
|
Subudhi L, Thatoi H, Banerjee A. Anti-inflammatory activity of essential oil from medicinal plants: An insight into molecular mechanism, in-silico studies and signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156364. [PMID: 39862791 DOI: 10.1016/j.phymed.2025.156364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/14/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Medicinal plants have historically been the cornerstone of treatment for a myriad of ailments. With modern pharmacology, many contemporary drugs have been derived from traditional medicine practices. Essential oils from these plants, known for their anti-inflammatory capabilities, have played a significant role in treating conditions such as cardiovascular and inflammatory skin diseases, as well as joint inflammation. This study revisits these ancient remedies to further explore their efficacy and mechanisms in the modern context. FOCUS AREA This review focuses on identifying and analysing the primary phytochemical in medicinal plants that exhibit anti-inflammatory properties. The chemical classes of interest include alkaloids, polyphenols, terpenoids, flavonoids, saponins, and tannins, which are prevalent in the essential oils derived from therapeutic plants. By understanding their role in modulating molecular pathways, this study aims to highlight their potential in the treatment of inflammatory diseases. METHODS The study employs in silico techniques such as molecular modelling and docking to examine the pharmacokinetics and toxicity profiles of selected phytochemical. This approach facilitates a deeper understanding of how these natural compounds interact at the molecular level, either as activators or inhibitors, which can influence various biochemical pathways related to inflammation. RESULTS Preliminary findings suggest that specific phytochemical significantly modulate inflammatory pathways, offering potential therapeutic targets. The analysis reveals that these natural substances can effectively reduce inflammation without the adverse side effects commonly associated with synthetic drugs. The study provides a detailed characterization of the active components within essential oils and their respective anti-inflammatory actions. CONCLUSION The review underscores the immense potential for medicinal plants as a source for developing new and safer pharmaceuticals aimed at treating inflammatory conditions. By harnessing the power of natural phytochemical, there is a promising avenue for creating innovative drug therapies. This study encourages further research into the utilization of natural plant products, promoting a broader application in medicinal treatments and a return to nature-centric solutions in healthcare.
Collapse
Affiliation(s)
- Lopamudra Subudhi
- Centre for Industrial Biotechnology Research, Siksha 'O' Anusandhan Deemed to be University, Campus 2, Kalinganagar, Bhubaneswar-751003, Odisha, India
| | - Hrudayanath Thatoi
- Centre for Industrial Biotechnology Research, Siksha 'O' Anusandhan Deemed to be University, Campus 2, Kalinganagar, Bhubaneswar-751003, Odisha, India
| | - Amrita Banerjee
- Centre for Industrial Biotechnology Research, Siksha 'O' Anusandhan Deemed to be University, Campus 2, Kalinganagar, Bhubaneswar-751003, Odisha, India.
| |
Collapse
|
4
|
Kacholi DS. Antiasthmatic Medicinal Plants of Tanzania: An Ethnomedicinal and Ethnopharmacological Review. ScientificWorldJournal 2024; 2024:4420431. [PMID: 39228457 PMCID: PMC11371437 DOI: 10.1155/2024/4420431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
Traditional medicinal plants (TMPs) are a significant part of people's quality of life, offering a natural substitute for modern drugs with numerous side effects. In Tanzania, data on antiasthmatic TMPs are highly fragmented. This review, a comprehensive compilation of ethnobotanical research evidence, aimed to provide a thorough understanding of TMPs used by the locals for asthma management and identify species that have already been investigated in preclinical studies. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. To gather relevant literature on antiasthmatic TMPs used by Tanzanians, a web search using electronic databases (Scopus, PubMed, ProQuest, Academic Library, Web of Science, SciFinder, Wiley Online Library, Google Scholar, ScienceDirect, and African Journals Online) was conducted. The scientific names were verified through the Plants of the World Online database, and the collected information was analysed for descriptive statistics using Microsoft Excel software. The ethnomedicinal information was obtained from 24 different articles. Microsoft Excel software was used to analyse the data using descriptive statistics. A total of 62 TMPs belonging to 33 families were identified. Species of the Fabaceae (14.5%) and Rubiaceae families (8.1%) are the most utilized. The analysis revealed that trees (42.0%) and leaves (40.0%) are the most utilized life forms and plant parts, respectively. Most plant materials (59.7%) used to make remedies were collected from the wild environment. Decoction (55.0%) is the dominant preparation method of remedies, and the majority (69.0%) were orally administered. Of the recorded TMPs, 22.6% had their in vivo antiasthmatic activity reported in the literature. The review also highlighted the strategic significance of preparations of remedies made from TMPs for discovering and developing new antiasthmatic drugs. However, the need to identify the molecular targets of action and toxicological aspects of the TMPs should be considered.
Collapse
Affiliation(s)
- David Sylvester Kacholi
- Department of Biological SciencesDar es Salaam University College of EducationUniversity of Dar es Salaam, P.O. Box 2329, Dar es Salaam, Tanzania
| |
Collapse
|
5
|
Laha A, Sarkar A, Panja AS, Bandopadhyay R. Screening of Prospective Antiallergic Compound as FcεRI Inhibitors and Its Antiallergic Efficacy Through Immunoinformatics Approaches. Mol Biotechnol 2024; 66:26-33. [PMID: 36988875 DOI: 10.1007/s12033-023-00728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The occurrence of allergy, a type I hypersensitivity reaction, is rising exponentially all over the world. Sometimes, allergy proves to be fatal for atopic patients, due to the occurrence of anaphylaxis. This study is aimed to find an anti-allergic agent that can inhibit the binding of IgE to Human High Affinity IgE Receptor (FCεRI), thereby preventing the degranulation of mast cells. A considerable number of potential anti-allergic compounds were assessed for their inhibitory strength through ADMET studies. AUTODOCK was used for estimating the binding energy between anti-allergic compounds and FCεRI, along with the interacting amino acids. The docked pose showing favorable binding energy was subjected to molecular dynamics simulation study. Marrubiin, a diterpenoid lactone from Lamiaceae, and epicatechin-3-gallate appears to be effective in blocking the Human High Affinity IgE Receptor (FCεRI). This in-silico study proposes the use of marrubiin and epicatechin-3-gallate, in the downregulation of allergic responses. Due to the better inhibition constant, future direction of this study is to analyze the safety and efficacy of marrubiin in anti-allergic activities through in-vivo clinical human trials.
Collapse
Affiliation(s)
- Anubhab Laha
- UGC Centre for Advanced Study, Department of Botany, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
- Department of Botany, Chandernagore College, Chandernagore, Hooghly, West Bengal, 712136, India
| | - Aniket Sarkar
- Post-Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Anindya Sundar Panja
- Department of Biotechnology, Molecular Informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Rajib Bandopadhyay
- UGC Centre for Advanced Study, Department of Botany, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
6
|
Kowalczyk T, Merecz-Sadowska A, Ghorbanpour M, Szemraj J, Piekarski J, Bijak M, Śliwiński T, Zajdel R, Sitarek P. Enhanced Natural Strength: Lamiaceae Essential Oils and Nanotechnology in In Vitro and In Vivo Medical Research. Int J Mol Sci 2023; 24:15279. [PMID: 37894959 PMCID: PMC10607815 DOI: 10.3390/ijms242015279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
The Lamiaceae is one of the most important families in the production of essential oils known to have a wide spectrum of biological activity. Recent research has highlighted the dermatological capabilities of various Lamiaceae essential oils, which appear to offer potential in free radical scavenging and anti-inflammatory activity. Some have also been extensively studied for their tissue remodeling and wound-healing, anti-aging, anti-melanogenic, and anti-cancer properties. Certain Lamiaceae essential oils are promising as novel therapeutic alternatives for skin disorders. This potential has seen substantial efforts dedicated to the development of modern formulations based on nanotechnology, enabling the topical application of various Lamiaceae essential oils. This review provides a comprehensive summary of the utilization of various essential oils from the Lamiaceae family over the past decade. It offers an overview of the current state of knowledge concerning the use of these oils as antioxidants, anti-inflammatory agents, wound-healers, anti-aging agents, anti-melanogenic agents, and anticancer agents, both alone and in combination with nanoparticles. Additionally, the review explores their potential applicability in patents regarding skin diseases.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (T.Ś.)
| | - Janusz Piekarski
- Department of Surgical Oncology, Medical University in Lodz, 93-513 Lodz, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Tomasz Śliwiński
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (T.Ś.)
| | - Radosław Zajdel
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
7
|
Yun SE, Choi BBR, Nam SH, Kim GC. Antimicrobial Effects of Edible Mixed Herbal Extracts on Oral Microorganisms: An In Vitro Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1771. [PMID: 37893489 PMCID: PMC10608150 DOI: 10.3390/medicina59101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: The oral cavity is inhabited by pathogenic bacteria, whose growth can be inhibited by synthetic oral drugs, including antibiotics and other chemical compounds. Natural antimicrobial substances that elicit fewer negative side effects may serve as alternatives to synthetic agents for long-term use. Thus, the aim of this study was to evaluate the effects of edible mixed herbal extracts on the growth of oral pathogenic bacteria. Materials and Methods: The yield of each herbal extract was as follows: 5% Schizonepeta tenuifolia Briq (STB), 10.94% Mentha piperascens (MP), 5.47% Acanthopanax sessiliflorus Seem (AS), and 10.66% Glycyrrhiza uralensis (GU). The herbal extracts used included 0.5 mg/mL STB, 1.5 mg/mL MP, 1.5 mg/mL AS, and 2.0 mg/mL GU. Antimicrobial tests, morphological analyses (using scanning electron microscopy), microbial surface hydrophobicity measurements, and oral malodor reduction tests were performed using each extract. Statistical analyses were performed with IBM® SPSS® (version 24), using paired t-tests. Results: The mixed herbal extracts significantly inhibited the growth of Streptococcus mutans, Enterococcus faecalis, Candida albicans, and Porphyromonas gingivalis compared to the control (p < 0.001). Scanning electron microscopy results further revealed altered cellular morphology in the groups treated with the mixed herbal extracts. Additionally, the hydrophobicity assay results showed that the mixed herbal extracts reduced the oral adhesion capacities of bacteria (p < 0.001). Administration of the mixed herbal extracts also reduced the levels of volatile sulfur compounds, the main contributors to oral malodor (p < 0.001). Conclusions: Edible mixed herbal extracts can effectively eliminate oral pathogens and may be useful for improving oral health. The herbal extracts used were effective against all species of oral pathogens studied in this report.
Collapse
Affiliation(s)
- Se-Eun Yun
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan 50561, Republic of Korea; (S.-E.Y.); (B.-B.r.C.)
| | - Byul-Bo ra Choi
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan 50561, Republic of Korea; (S.-E.Y.); (B.-B.r.C.)
| | - Seoul-Hee Nam
- Department of Dental Hygiene, Kangwon National University, Samcheok 25949, Republic of Korea;
| | - Gyoo-Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
8
|
Lam VP, Beomseon L, Anh VK, Loi DN, Kim S, Kwang-ya L, Park J. Effectiveness of silver nitrate application on plant growth and bioactive compounds in Agastache rugosa (Fisch. & C.A.Mey.) kuntze. Heliyon 2023; 9:e20205. [PMID: 37810151 PMCID: PMC10559964 DOI: 10.1016/j.heliyon.2023.e20205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The objective of this study was to determine the optimal dose of silver nitrate (AgNO3) for plant growth and to increase the main bioactive compounds in A. rugosa cultivated in a hydroponic system. The application of soaked diniconazole (120 μmol mol-1) to all plants at 7 days after transplanting (DAT) for dwarfing plant height, optimizing cultivation space in the plant factory. Subsequently, plants were soaked with 50, 100, 200, and 400 μmol mol-1 AgNO3 for 10 min at 25 DAT and harvested at 39 DAT. The results indicated that 200 and 400 μmol mol-1 treatments tended to severely decrease plant growth parameters compared to treatments with lower concentrations. The net photosynthetic rate was significantly reduced by the 200 and 400 μmol mol-1 treatments compared to treatments with other concentrations. The 400 μmol mol-1 treatment led to the lowest concentrations of chlorophyll a, chlorophyll a/b, total carotenoid, chlorophyll b, and the total chlorophyll. However, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was considerably increased in 50, 100, 200, and 400 μmol mol-1 compared to that of the control plants. A higher rosmarinic acid (RA) concentration in the whole plant was noticed with the 400 μmol mol-1 treatment compared with that of the untreated plants. The 100 μmol mol-1 treatment exhibited the highest concentration and content of tilianin in the whole plant. Concentration of acacetin 1 significantly increased in the whole plant with 100 and 200 μmol mol-1 treatments compared with that of the untreated plants. Concentrations of acacetin 2 and 3 in the whole plant were the highest with 100 and 200 μmol mol-1 treatments, respectively. The results demonstrated that 100 μmol mol-1 treatments can be used to increase bioactive compounds without severely limiting the plant growth and reducing chlorophyll concentrations of A. rugosa. Implementing this optimal dose can enable growers and researchers to cultivate A. rugosa more efficiently, enhancing bioactive compound content and overall plant performance, thus harnessing the potential health benefits of this valuable plant species.
Collapse
Affiliation(s)
- Vu Phong Lam
- Department of Horticultural Science, Chungnam National University, Daejeon, 34134, South Korea
- Department of Agronomy, Tay Bac University, Son La, 360000, Viet Nam
| | - Lee Beomseon
- Naru Agricultural Consultancy Company, Jisanmaeul-gil 19, Buk-gu, Gwangju city, 61014, South Korea
| | - Vu Ky Anh
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
| | - Dao Nhan Loi
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
- Department of Agronomy, Tay Bac University, Son La, 360000, Viet Nam
| | - Sunwoo Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
| | - Lee Kwang-ya
- Institude of Agriculture Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Jongseok Park
- Department of Horticultural Science, Chungnam National University, Daejeon, 34134, South Korea
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
| |
Collapse
|
9
|
Chen S, Chen J, Xu Y, Wang X, Li J. Elsholtzia: A genus with antibacterial, antiviral, and anti-inflammatory advantages. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115549. [PMID: 35878785 DOI: 10.1016/j.jep.2022.115549] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Elsholtzia (family Labiaceae) is an important source of folk traditional Chinese medicine, mainly used to relieve the symptoms of cold, fever, pneumonia and so on. However, currently available data on its traditional and pharmacological advantages have not been comprehensively reviewed. AIM OF THE REVIEW This review provides up-to-date and comprehensive information on the ethnopharmacological, phytochemical, pharmacological properties and toxicity of Elsholtzia, highlights the antibacterial, antiviral, and anti-inflammatory advantages of the genus, and explores its therapeutic potential. MATERIALS AND METHODS Use Google Scholar, Scifinder, PubMed, Springer, Elsevier, Wiley, Web of Science and other online database search to collect the research literatures on application, chemistry and biological activity of Elsholtzia published before December 2021. Their scientific names have been verified using The Plant List and World Flora Online websites. RESULTS A total of 42 species of Elsholtzia are widely distributed all over the world, especially in Yunnan Province (China). Since Elsholtzia genus is commonly used in the folk to treat respiratory infectious diseases such as cold and fever, growing numbers of studies have confirmed their antiviral, antibacterial and anti-inflammatory activities. So far, about 221 non-volatile compounds and 1008 volatile compounds have been identified from Elsholtzia plants, mainly containing flavonoids and terpenoids showing convincing antibacterial, antiviral and anti-inflammatory activities. Further research found that their antibacterial and antiviral spectrums are broad, and volatile oils are considered to be the main antibacterial components. Their anti-inflammatory mechanism is mainly through the inhibition of NF-κB and MAPKs signaling pathways. Toxicological studies have not established its toxicity. CONCLUSIONS By summarizing the latest information on genus Elsholtzia, their traditional uses, material basis and mechanisms of action in antiviral, antibacterial and anti-inflammatory aspects were described, providing new insights for the genus and its importance as a potential natural resource of antiviral and anti-inflammatory drugs, giving evidence and new ideas for the development of herbal medicines.
Collapse
Affiliation(s)
- Shuqi Chen
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jixin Chen
- Guangzhou University of Chinese Medicine, Second Clinical Medical College, Guangzhou, China
| | - Yifan Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Institute of Integrated Chinese and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Institute of Integrated Chinese and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Institute of Integrated Chinese and Western Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong-Hongkong-Macao Joint Laboratory of Infectious Respiratory Disease, China.
| |
Collapse
|
10
|
Zaman W, Ullah F, Parmar G, Saqib S, Ayaz A, Park S. Foliar micromorphology of selected medicinal Lamiaceae taxa and their taxonomic implication using scanning electron microscopy. Microsc Res Tech 2022; 85:3217-3236. [PMID: 35716090 DOI: 10.1002/jemt.24179] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022]
Abstract
In this research, 25 medicinally used Lamiaceae species belonging to 20 genera have been studied and identified for the nine disorders. We used scanning electron microscopy (SEM) for qualitative and quantitative morphological character identification. The micromorphological characters observed here were important for distinguishing the studied taxa. The highest medicinal values were reported for Vitex negundo and Scutellaria baicalensis for all considered categories except urinary and otorhinolaryngology disorders. The foliar epidermal anatomical characteristics revealed that the micromorphological features of the Lamiaceae species provide taxonomically significant and accurate identification information to delimitate the family species. Moreover, we focused on both qualitative (epidermal cell shape, stomata type, stomatal pore shape, subsidiary cell shape, glandular trichomes, and non-glandular trichome shape) as well as quantitative features (epidermal cell size, stomata size, stomatal pore size, subsidiary cell size, and trichomes size). The trichomes diversity was different in most species' on adaxial and abaxial surfaces. In most species, anomocytic stomata were observed, but other types such as diacytic, paracytic, and tetracytic type stomata were also examined. The diverse pattern of anatomical characters suggests that the studied taxa provide insight evidence for the taxonomic observation of the Traditional Chinese Medicinal plants from the Lamiaceae. This work sets an avenue for future research and taxonomic exploration of medicinal flora through microscopic investigations.
Collapse
Affiliation(s)
- Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Fazal Ullah
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,Chinese Academy of Sciences, Beijing, China
| | | | - Saddam Saqib
- Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Asma Ayaz
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| |
Collapse
|
11
|
In Vitro Potential of Clary Sage and Coriander Essential Oils as Crop Protection and Post-Harvest Decay Control Products. Foods 2022; 11:foods11030312. [PMID: 35159462 PMCID: PMC8834200 DOI: 10.3390/foods11030312] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
Owing to their various application fields and biological properties, natural products and essential oils (EO) in particular are nowadays attracting more attention as alternative methods to control plant pathogens and pests, weeds, and for post-harvest applications. Additionally, to overcome EO stability issues and low persistence of effects, EO encapsulation in β-cyclodextrin (β-CD) could represent a promising avenue. Thus, in this work, the EO distilled from two aromatic plants (Salvia sclarea L. and Coriandrum sativum L.) have been evaluated in vitro for their antifungal, herbicidal and insecticidal activities, against major plant pathogens and pests of agronomical importance. Both plants were grown on unpolluted and trace-element-polluted soils, so as to investigate the effect of the soil pollution on the EO compositions and biological effects. These EO are rich in oxygenated monoterpenes (clary sage and coriander seeds EO), or aliphatic aldehydes (coriander aerial parts EO), and were unaltered by the soil pollution. The tested EO successfully inhibited the growth of two phytopathogenic fungi, Zymoseptoria tritici and Fusarium culmorum, displaying IC50 ranging from 0.46 to 2.08 g L−1, while also exerting anti-germinative, herbicidal, repellent and fumigant effects. However, no improvement of the EO biological effects was observed in the presence of β-CD, under these in vitro experimental conditions. Among the tested EO, the one from aerial parts of coriander displayed the most significant antifungal and herbicidal effects, while the three of them exerted valuable broad-range insecticidal effects. As a whole, these findings suggest that EO produced on polluted areas can be of great interest to the agricultural area, given their faithful chemical compositions and valuable biological effects.
Collapse
|
12
|
Chemical Composition, Antioxidant and Anti-Inflammatory Activities of Clary Sage and Coriander Essential Oils Produced on Polluted and Amended Soils-Phytomanagement Approach. Molecules 2021; 26:molecules26175321. [PMID: 34500751 PMCID: PMC8434190 DOI: 10.3390/molecules26175321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
The potential of essential oils (EO), distilled from two aromatic plants—clary sage (Salvia sclarea L.) and coriander (Coriandrum sativum L.)—in view of applications as natural therapeutic agents was evaluated in vitro. These two were cultivated on a trace element (TE)-polluted soil, as part of a phytomanagement approach, with the addition of a mycorrhizal inoculant, evaluated for its contribution regarding plant establishment, growth, and biomass production. The evaluation of EO as an antioxidant and anti-inflammatory, with considerations regarding the potential influence of the TE-pollution and of the mycorrhizal inoculation on the EO chemical compositions, were the key focuses. Besides, to overcome EO bioavailability and target accession issues, the encapsulation of EO in β-cyclodextrin (β-CD) was also assessed. Firstly, clary sage EO was characterized by high proportions of linalyl acetate (51–63%) and linalool (10–17%), coriander seeds EO by a high proportion of linalool (75–83%) and lesser relative amounts of γ-terpinene (6–9%) and α-pinene (3–5%) and coriander aerial parts EO by 2-decenal (38–51%) and linalool (22–39%). EO chemical compositions were unaffected by both soil pollution and mycorrhizal inoculation. Of the three tested EO, the one from aerial parts of coriander displayed the most significant biological effects, especially regarding anti-inflammatory potential. Furthermore, all tested EO exerted promising antioxidant effects (IC50 values ranging from 9 to 38 g L−1). However, EO encapsulation in β-CD did not show a significant improvement of EO biological properties in these experimental conditions. These findings suggest that marginal lands polluted by TE could be used for the production of EO displaying faithful chemical compositions and valuable biological activities, with a non-food perspective.
Collapse
|
13
|
Beet Molasses Enhance Salinity Tolerance in Thymus serpyllum-A Study under Greenhouse Condition. PLANTS 2021; 10:plants10091819. [PMID: 34579352 PMCID: PMC8465920 DOI: 10.3390/plants10091819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/24/2023]
Abstract
The growing demand for Thymus serpyllum biomass to produce drugs, cosmetics and spices necessitates the search for innovative methods mitigating the negative effects of environmental stressors in order to improve its yield under unfavorable conditions. Due to the exposure of plants to salinity stress (SS), we investigated the effect of sugar beet molasses (SBM) on the growth and biochemical parameters related to plants’ response to SS. Wild thyme plants were treated for 5 weeks to sodium chloride and 3% molasses solution using two modes of application (soil irrigation or foliar sprays). Plants irrigated by SBM showed slighter stem growth inhibition than control plants, high stress tolerance index and maintained a constant root water content under salt stress. Moreover plants treated with 100 mM NaCl and soil-applied SBM had lower lipid peroxidation level, showed lower POD activity, higher total soluble protein content and maintained a more even free amino acids level, compared to the control treatments. The concentration of potassium ions was higher in the case of plant roots irrigation with sugar beet molasses compared to control plants. In this experiment, most of the growth and biochemical parameters from foliar molasses-sprayed plants did not differ significantly from the control. We provided evidence that soil-applied SBM beneficially changed the plant’s biochemical response to salt stress. On the basis of the obtained results, we conclude that this soil amendment contributes to the strengthening of plant protection against this harmful environmental factor.
Collapse
|
14
|
Gupta A, Vedula S, Srivastava R, Tamoli S, Mundhe N, Wagh DN, Batra S, Patil M, Pawar HB, Rai RK. Prospective, Randomized, Open-Label, Blinded End Point, Two-Arm, Comparative Clinical Study to Evaluate the Efficacy and Safety of a Fixed Ayurvedic Regimen (FAR) as Add-on to Conventional Treatment in the Management of Mild and Moderate COVID-19 Patients. J Pharm Bioallied Sci 2021; 13:256-267. [PMID: 34349488 PMCID: PMC8291116 DOI: 10.4103/jpbs.jpbs_242_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
Background: The traditional healthcare systems are being avidly looked into in the quest for effective remedies to tackle the menace of COVID-19 pandemic. Objective: This was a prospective randomized, controlled open-label, blinded end point (PROBE) study to evaluate the efficacy and safety of a fixed ayurvedic regimen (FAR) as an add-on to conventional treatment/standard of care (SOC) in the management of mild-to-moderate COVID-19 infection. Methodology: A total of 68 patients were recruited who consumed either FAR + SOC (n = 35) or SOC only (n = 33) for 28 days. Primary outcomes assessed were mean time required for clinical recovery and proportion of patients showing clinical recovery between the groups. Secondary outcomes assessed included mean time required for testing SARS-CoV-2 negative, change in clinical status on World Health Organization (WHO) ordinal scale, number of days of hospitalization, change in disease progression and requirement of oxygen/intensive care unit admission/ventilator support/rescue medication, health status on WHO quality of life (QOL) BREF and safety on the basis of occurrence of adverse event/serious adverse event (AE/SAE) and changes in laboratory parameters. Results: Patients consuming FAR as an add-on SOC showed faster clinical recovery from the day of onset of symptoms by 51.34% (P < 0.05) as compared to SOC group. A higher proportion of patients taking FAR recovered within the first 2 weeks compared to those taking only SOC. It was observed that 5 times more patients recovered within 7 days in FAR group when compared to SOC (P < 0.05) group. An earlier clinical recovery was observed in clinical symptoms such as sore throat, cough, loss of taste and myalgia (P < 0.05). Improvement in postclinical symptoms such as appetite, digestion, stress and anxiety was also obs served to be better with the use of FAR. Requirement of rescue medications such as antipyretics, analgesics and antibiotics was also found to be reduced in the FAR group (P < 0.05). FAR showed a significant improvement in all the assessed domains of QOL. None of the AEs/SAE reported in the study were assessed to be related to the study drugs. Further, FAR did not produce any significant change in the laboratory safety parameters and was assessed to be safe. Conclusion: FAR could be an effective and safe add-on ayurvedic regimen to standard of care in the management of mild and moderate COVID-19 patients. CTRI number: CTRI/2020/09/027914.
Collapse
Affiliation(s)
- Arun Gupta
- Healthcare Research, Dabur Research and Development Centre, Dabur India Limited, Uttar Pradesh, India
| | - Sasibhushan Vedula
- Healthcare Research, Dabur Research and Development Centre, Dabur India Limited, Uttar Pradesh, India
| | - Ruchi Srivastava
- Healthcare Research, Dabur Research and Development Centre, Dabur India Limited, Uttar Pradesh, India
| | | | - Narendra Mundhe
- Department of Kayachikitsa, KVTR Ayurveda College and Hospital, Boradi, Shirpur, Maharashtra, India
| | - D N Wagh
- Cottage Hospital, Shripur, Maharashtra, India
| | - Sanjay Batra
- Department of Kayachikitsa, KVTR Ayurveda College and Hospital, Boradi, Shirpur, Maharashtra, India
| | - Manoj Patil
- Covid Care Center, Shingave, Shirpur, Maharashtra, India
| | | | - Rajiva K Rai
- Healthcare Research, Dabur Research and Development Centre, Dabur India Limited, Uttar Pradesh, India
| |
Collapse
|
15
|
Chen M, Xiao H, Chen B, Bian Z, Kwan HY. The advantages of using Scutellaria baicalensis and its flavonoids for the management of non-viral hepatocellular carcinoma. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
16
|
Moumni S, Elaissi A, Trabelsi A, Merghni A, Chraief I, Jelassi B, Chemli R, Ferchichi S. Correlation between chemical composition and antibacterial activity of some Lamiaceae species essential oils from Tunisia. BMC Complement Med Ther 2020; 20:103. [PMID: 32245466 PMCID: PMC7118912 DOI: 10.1186/s12906-020-02888-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/09/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Lamiaceae family is one of the most diverse and common plant families in terms of ethnomedicine due to their potential therapeutic effects. The aim of this study is to investigate the correlation between the chemical composition and the antibacterial effect of five essential oils from this family against five reference bacterial strains responsible of nosocomial diseases and foodborne illnesses. METHODS The commercial essential oils of Tunisian Rosmarinus officinalis, Thymus capitatus, Origanum majorana and Salvia officinalis were analyzed by GC/FID and GC-MS. Essential oils were evaluated for their antibacterial activities by disc diffusion and microbroth dilution methods against five reference bacterial strains: Pseudomonas aeruginosa, Escherichia coli, Salmonella enterica, Bacillus subtilis and Staphylococcus aureus. The inhibition zone diameter values and the twenty major compounds of the selected essential oils were subjected to PCA and HCA analysis. RESULTS Analysis by GC/FID and GC/MS allowed the identification of ninety-one components representing 96.0 to 98.2% of the total oils. The different component contents varied according to the species. The main components were carvacrol, 1,8-cineole, α-thujone, α-terpineol and α-pinene. The PCA and the HCA of the selected essential oil components and the inhibition zone diameter (IZD) values identified four species groups and subgroups. Each essential oils group constituted a chemotype responsible for their bacterial inhibition ability. Thymus capitatus essential oil showed the strongest antibacterial activity with MBC ranging from 0.73 to 2.94 mg mL- 1. CONCLUSION Rosmarinus officinalis, Thymus capitatus, Origanum majorana and Salvia officinalis essential oils have shown promising antibacterial activities against reference bacterial strains responsible for nosocomial diseases and foodborne illnesses.
Collapse
Affiliation(s)
- Sarra Moumni
- Laboratory of Chemical, Pharmaceutical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, rue Avicenne, 5000, Monastir, Tunisia.
| | - Ameur Elaissi
- Laboratory of Chemical, Pharmaceutical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, rue Avicenne, 5000, Monastir, Tunisia
| | - Amine Trabelsi
- Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Monastir, Avenue Avicenne, 5000, Monastir, Tunisia
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imed Chraief
- Department of Biochemistry, Faculty of Medicine, University of Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Brahim Jelassi
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, rue Avicenne, 5000, Monastir, Tunisia
| | - Rachid Chemli
- Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Monastir, Avenue Avicenne, 5000, Monastir, Tunisia
| | - Salima Ferchichi
- Biochemistry Laboratory CHU Farhat Hached, 4000, Sousse, Tunisia
| |
Collapse
|