1
|
Liang BE, Long LS, Wu XY, Huang MY, Lai Y, Yuan X, Wang MH, Li M, Zheng QQ, Zhang HL, Chen MC, Liu ZD, Geng X, Lyu QQ, Wang WD, Liu QH, Liu WZ, Li CL. Alginate oligosaccharide prevents renal ischemia-reperfusion injury in rats via MRC1-mediated pathway. Acta Pharmacol Sin 2025:10.1038/s41401-025-01545-3. [PMID: 40263568 DOI: 10.1038/s41401-025-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 04/24/2025]
Abstract
Acute kidney injury (AKI) is a clinical syndrome that is defined as a sudden decline in renal function and characterized by inflammation and tubular injury. Alginate oligosaccharide (AOSC), a natural product obtained from alginate by acidolysis and hydrolysis, shows activities of antioxidant, immunomodulation, and anti-inflammation. In this study, we investigated the potential of AOSC in the treatment of AKI. Renal ischemia-reperfusion (I/R) was induced in male rats by clipping both the renal artery and vein for 45 min followed by reperfusion for 24 h. The rats were treated with AOSC (100 mg/kg, i.g.) before surgery. At the end of the experiments, both kidneys were collected for protein, mRNA measurement, or histological analysis. We showed that AOSC pretreatment significantly improved glomerular and tubular function in the kidney of I/R rats. AOSC markedly inhibited I/R-induced activation of TLR4/MyD88/NF-κB/IL-1β inflammatory signaling and prevented apoptosis in the kidney. In HK2 cells subjected to hypoxia/reoxygenation (H/R) stimulation, AOSC (250-1000 μg/ml) dose-dependently prevented pro-inflammatory responses and cell apoptosis. Transcriptomic analysis revealed that I/R increased the expression levels of mannose receptor type C1 (MRC1) in the kidney, which was markedly inhibited by AOSC. Molecular docking showed that AOSC interacted with E725, N727, E733, T743, S745, and N747 of MRC1 through hydrogen bonds. MRC1 gene knockout significantly improved renal function and attenuated I/R-induced kidney inflammation and apoptosis in mice. In line with this, AOSC failed to prevent I/R-induced kidney injury in MRC1 gene knockout mice. UPLC analysis showed that the protection of AOSC in HK2 cells subjected to H/R was likely attributed to MRC1-mediated intracellular endocytosis. In conclusion, AOSC prevents I/R-induced AKI, which is at least partially mediated by MRC1.
Collapse
Affiliation(s)
- Bai-En Liang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Luo-Sha Long
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin-Yan Wu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mei-Ying Huang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying Lai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xi Yuan
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming-Hui Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Meng Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Qi Zheng
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hai-Ling Zhang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Man-Chun Chen
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhen-de Liu
- Haitang (Jiangsu) Biotechnology Co Ltd, Nantong, 226100, China
| | - Xin Geng
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Qian-Qian Lyu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Wei-Dong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Hua Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China.
- Department of Nephrology, Jieyang People's Hospital, Jieyang, 522000, China.
| | - Wei-Zhi Liu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Chun-Ling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:628-656. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
3
|
Wang J, Zhang Z, Dai T, Zhang Z, Zhang Q, Yao J, Wang L, He N, Li S. The therapeutic effect and possible mechanisms of alginate oligosaccharide on metabolic syndrome by regulating gut microbiota. Food Funct 2024; 15:9632-9661. [PMID: 39239698 DOI: 10.1039/d4fo02802c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Metabolic syndrome (MetS) is a disease condition incorporating the abnormal accumulation of various metabolic components, including overweight or abdominal obesity, insulin resistance and abnormal glucose tolerance, hypertension, atherosclerosis, or dyslipidemia. It has been proved that the gut microbiota and microbial-derived products play an important role in regulating lipid metabolism and thus the onset and development of MetS. Previous studies have demonstrated that oligosaccharides with prebiotic effects, such as chitosan oligosaccharides, can regulate the structure of the microbial community and its derived products to control weight and reduce MetS associated with obesity. Alginate oligosaccharides (AOS), natural products extracted from degraded alginate salts with high solubility and extensive biological activity, have also been found to modulate gut microbiota. This review aims to summarize experimental evidence on the positive effects of AOS on different types of MetS while providing insights into mechanisms through which AOS regulates gut microbiota for preventing and treating MetS.
Collapse
Affiliation(s)
- Jingyi Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
| | - Zixuan Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Tong Dai
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Ziheng Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Qingfeng Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Jingtong Yao
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Lijing Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| |
Collapse
|
4
|
Zhou T, Li X. Chemically modified seaweed polysaccharides: Improved functional and biological properties and prospective in food applications. Compr Rev Food Sci Food Saf 2024; 23:e13396. [PMID: 38925601 DOI: 10.1111/1541-4337.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Seaweed polysaccharides are natural biomacromolecules with unique physicochemical properties (e.g., good gelling, emulsifying, and film-forming properties) and diverse biological activities (e.g., anticoagulant, antioxidant, immunoregulatory, and antitumor effects). Furthermore, they are nontoxic, biocompatible and biodegradable, and abundant in resources. Therefore, they have been widely utilized in food, cosmetics, and pharmaceutical industries. However, their properties and bioactivities sometimes are not satisfactory for some purposes. Modification of polysaccharides can impart the amphiphilicity and new functions to the biopolymers and change the structure and conformation, thus effectively improving their functional properties and biological activities so as to meet the requirement for targeted applications. This review outlined the modification methods of representative red algae polysaccharides (carrageenan and agar), brown algae polysaccharides (fucoidan, alginate, and laminaran), and green algae polysaccharides (ulvan) that have potential food applications, including etherification, esterification, degradation, sulfation, phosphorylation, selenylation, and so on. The improved functional properties and bioactivities of the modified seaweed polysaccharides and their potential food applications are also summarized.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Xinyue Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
5
|
Lee JY, Wong CY, Koh RY, Lim CL, Kok YY, Chye SM. Natural Bioactive Compounds from Macroalgae and Microalgae for the Treatment of Alzheimer's Disease: A Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:205-224. [PMID: 38947104 PMCID: PMC11202106 DOI: 10.59249/jnkb9714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Neuroinflammation, toxic protein aggregation, oxidative stress, and mitochondrial dysfunction are key pathways in neurodegenerative diseases like Alzheimer's disease (AD). Targeting these mechanisms with antioxidants, anti-inflammatory compounds, and inhibitors of Aβ formation and aggregation is crucial for treatment. Marine algae are rich sources of bioactive compounds, including carbohydrates, phenolics, fatty acids, phycobiliproteins, carotenoids, fatty acids, and vitamins. In recent years, they have attracted interest from the pharmaceutical and nutraceutical industries due to their exceptional biological activities, which include anti-inflammation, antioxidant, anticancer, and anti-apoptosis properties. Multiple lines of evidence have unveiled the potential neuroprotective effects of these multifunctional algal compounds for application in treating and managing AD. This article will provide insight into the molecular mechanisms underlying the neuroprotective effects of bioactive compounds derived from algae based on in vitro and in vivo models of neuroinflammation and AD. We will also discuss their potential as disease-modifying and symptomatic treatment strategies for AD.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical
University, Kuala Lumpur, Malaysia
| | - Chiew Yen Wong
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Chooi Ling Lim
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Yih Yih Kok
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Department of Applied Biomedical Science and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Esposito F, Laezza A, Gargiulo V, Traboni S, Iadonisi A, La Gatta A, Schiraldi C, Bedini E. Multi-step Strategies Toward Regioselectively Sulfated M-Rich Alginates. Biomacromolecules 2023; 24:2522-2531. [PMID: 37116076 PMCID: PMC10265665 DOI: 10.1021/acs.biomac.3c00045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Sulfated alginates (ASs), as well as several artificially sulfated polysaccharides, show interesting bioactivities. The key factors for structure-activity relationships studies are the degree of sulfation and the distribution of the sulfate groups along the polysaccharide backbone (sulfation pattern). The former parameter can often be controlled through stoichiometry, while the latter requires the development of suitable chemical or enzymatic, regioselective methods and is still missing for ASs. In this work, a study on the regioselective installation of several different protecting groups on a d-mannuronic acid enriched (M-rich) alginate is reported in order to develop a semi-synthetic access to regioselectively sulfated AS derivatives. A detailed structural characterization of the obtained ASs revealed that the regioselective sulfation could be achieved complementarily at the O-2 or O-3 positions of M units through multi-step sequences relying upon a silylating or benzoylating reagent for the regioselective protection of M-rich alginic acid, followed by sulfation and deprotection.
Collapse
Affiliation(s)
- Fabiana Esposito
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Antonio Laezza
- Department of Sciences, University of Basilicata, Viale dell'Ateneo Lucano 10, I-85100 Potenza, Italy
| | - Valentina Gargiulo
- Institute of Sciences and Technologies for Sustainable Energy and Mobility, National Research Council (STEMS-CNR), Piazzale V. Tecchio 80, I-80125 Napoli, Italy
| | - Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Annalisa La Gatta
- Department of Experimental Medicine, Section of Biotechnology, University of Campania "Luigi Vanvitelli", Via de Crecchio 7, I-80138 Napoli, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, University of Campania "Luigi Vanvitelli", Via de Crecchio 7, I-80138 Napoli, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, I-80126 Napoli, Italy
| |
Collapse
|
7
|
Bi D, Huang J, Cao J, Yao L, Guo W, Zhang Z, Wu Y, Xu H, Hu Z, Xu X. Preparation, characterization and immunomodulatory effects of unsaturated sulfated oligoguluronic acid. Carbohydr Polym 2022; 301:120370. [DOI: 10.1016/j.carbpol.2022.120370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
|
8
|
Bi D, Yang X, Yao L, Hu Z, Li H, Xu X, Lu J. Potential Food and Nutraceutical Applications of Alginate: A Review. Mar Drugs 2022; 20:md20090564. [PMID: 36135753 PMCID: PMC9502916 DOI: 10.3390/md20090564] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Alginate is an acidic polysaccharide mainly extracted from kelp or sargassum, which comprises 40% of the dry weight of algae. It is a linear polymer consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G) with 1,4-glycosidic linkages, possessing various applications in the food and nutraceutical industries due to its unique physicochemical properties and health benefits. Additionally, alginate is able to form a gel matrix in the presence of Ca2+ ions. Alginate properties also affect its gelation, including its structure and experimental conditions such as pH, temperature, crosslinker concentration, residence time and ionic strength. These features of this polysaccharide have been widely used in the food industry, including in food gels, controlled-release systems and film packaging. This review comprehensively covers the analysis of alginate and discussed the potential applications of alginate in the food industry and nutraceuticals.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hui Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Correspondence: (X.X.); (J.L.); Tel.: +86-755-86532680 (X.X.); +64-9-9219999 (ext. 7381) (J.L.)
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
- Correspondence: (X.X.); (J.L.); Tel.: +86-755-86532680 (X.X.); +64-9-9219999 (ext. 7381) (J.L.)
| |
Collapse
|
9
|
Wang M, Ren J, Liu Z, Li S, Su L, Wang B, Han D, Liu G. Beneficial Effect of Selenium Doped Carbon Quantum Dots Supplementation on the in vitro Development Competence of Ovine Oocytes. Int J Nanomedicine 2022; 17:2907-2924. [PMID: 35814612 PMCID: PMC9270046 DOI: 10.2147/ijn.s360000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022] Open
Abstract
Background After the synthesis of selenium doped carbon quantum dots (Se/CDs) via a step-by-step hydrothermal synthesis method with diphenyl diselenide (DPDSe) as precursor, the beneficial effects of Se/CDs’ supplementation on the in vitro development competence of ovine oocytes were firstly investigated in this study by the assay of maturation rate, cortical granules’ (CGs) dynamics, mitochondrial activity, reactive oxygen species (ROS) production, epigenetic modification, transcript profile, and embryonic development competence. Results The results showed that the Se/CDs’ supplementation during the in vitro maturation (IVM) process not only enhanced the maturation rate, CGs’ dynamics, mitochondrial activity and embryonic developmental competence of ovine oocytes, but remarkably decreased the ROS production level of ovine oocytes. In addition, the expression levels of H3K9me3 and H3K27me3 in the ovine oocytes were significantly up-regulated after the Se/CDs’ supplementation, in consistent with the expression levels of 5mC and 5hmC. Moreover, 2994 up-regulated differentially expressed genes (DEGs) and 846 repressed DEGs were found in the oocytes after the Se/CDs’ supplementation. According to the analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), these DEGs induced by the Se/CDs’ supplementation were positively related to the progesterone mediated oocyte maturation and mitochondrial functions. And these remarkably up-regulated expression levels of DEGs related to oocyte maturation, mitochondrial function, and epigenetic modification induced by the Se/CDs’ supplementation further confirmed the beneficial effect of Se/CDs’ supplementation on the in vitro development competence of ovine oocytes. Conclusion The Se/CDs prepared in our study significantly promoted the in vitro development competence of ovine oocytes, benefiting the extended research about the potential applications of Se/CDs in mammalian breeding technologies.
Collapse
Affiliation(s)
- Mengqi Wang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Jingyu Ren
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Zhanpeng Liu
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, People’s Republic of China
| | - Daoning Han
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
- Correspondence: Gang Liu, Email
| |
Collapse
|
10
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
11
|
Lu S, Na K, Wei J, Zhang L, Guo X. Alginate oligosaccharides: The structure-function relationships and the directional preparation for application. Carbohydr Polym 2022; 284:119225. [PMID: 35287920 DOI: 10.1016/j.carbpol.2022.119225] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 01/02/2023]
Abstract
Alginate oligosaccharides (AOS) are degradation products of alginate extracted from brown algae. With low molecular weight, high water solubility, and good biological activity, AOS present anti-inflammatory, antimicrobial, antioxidant, and antitumor properties. They also exert growth-promoting effects in animals and plants. Three types of AOS, mannuronate oligosaccharides (MAOS), guluronate oligosaccharides (GAOS), and heterozygous mannuronate and guluronate oligosaccharides (HAOS), can be produced from alginate by enzymatic hydrolysis. Thus far, most studies on the applications and biological activities of AOS have been based mainly on a hybrid form of HAOS. To improve the directional production of AOS for practical applications, systematic studies on the structures and related biological activities of AOS are needed. This review provides a summary of current understanding of structure-function relationships and advances in the production of AOS. The current challenges and opportunities in the application of AOS is suggested to guide the precise application of AOS in practice.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Kai Na
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Jiani Wei
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Li Zhang
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Xiaohua Guo
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China.
| |
Collapse
|
12
|
Zhang C, Li M, Rauf A, Khalil AA, Shan Z, Chen C, Rengasamy KRR, Wan C. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives. Crit Rev Food Sci Nutr 2021; 63:303-329. [PMID: 34254536 DOI: 10.1080/10408398.2021.1946008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alginates are linear polymers comprising 40% of the dry weight of algae possess various applications in food and biomedical industries. Alginate oligosaccharides (AOS), a degradation product of alginate, is now gaining much attention for their beneficial role in food, pharmaceutical and agricultural industries. Hence this review was aimed to compile the information on alginate and AOS (prepared from seaweeds) during 1994-2020. As per our knowledge, this is the first review on the potential use of alginate oligosaccharides in different fields. The alginate derivatives are grouped according to their applications. They are involved in the isolation process and show antimicrobial, antioxidant, anti-inflammatory, antihypertension, anticancer, and immunostimulatory properties. AOS also have significant applications in prebiotics, nutritional supplements, plant growth development and others products.
Collapse
Affiliation(s)
- Chunhua Zhang
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Chuying Chen
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Wang M, Chen L, Zhang Z. Potential applications of alginate oligosaccharides for biomedicine - A mini review. Carbohydr Polym 2021; 271:118408. [PMID: 34364551 DOI: 10.1016/j.carbpol.2021.118408] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023]
Abstract
Extensive research on marine algae, especially on their health-promoting properties, has been conducted. Various ingredients with potential biomedical applications have been discovered and extracted from marine algae. Alginate oligosaccharides are low molecular weight alginate polysaccharides present in cell walls of brown algae. They exhibit various health benefits such as anti-inflammatory, anti-microbial, anti-oxidant, anti-tumor and immunomodulation. Their low-toxicity, non-immunogenicity, and biodegradability make them an excellent material in biomedicine. Alginate oligosaccharides can be chemically or biochemically modified to enhance their biological activity and potential in pharmaceutical applications. This paper provides a brief overview on alginate oligosaccharides characteristics, modification patterns and highlights their vital health promoting properties.
Collapse
Affiliation(s)
- Mingpeng Wang
- College of Life Science, Qufu Normal University, Qufu 273100, China
| | - Lei Chen
- College of Life Science, Qufu Normal University, Qufu 273100, China.
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
14
|
Bi D, Xiao S, Lin Z, Yao L, Fang W, Wu Y, Xu H, Lu J, Xu X. Alginate-Derived Mannuronate Oligosaccharide Attenuates Tauopathy through Enhancing Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4438-4445. [PMID: 33829789 DOI: 10.1021/acs.jafc.1c00394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymannuronate (PM) is an acidic polysaccharide prepared from alginate, contained in edible brown seaweeds. An unsaturated mannuronate oligosaccharide (MOS) is an enzymatically depolymerized oligosaccharide prepared from PM. The effects of MOS on attenuating tauopathy were studied in HEK293/Tau cells and primary triple transgenic (3×Tg) neurons. MOS inhibited heparin-induced aggregation of the Tau-K18 oligomer and suppressed the levels of phosphorylated Tau protein. MOS treatment reduced the activity of glycogen synthase kinase-3β (GSK-3β) by decreasing its phosphorylation levels on the sites of Y216 and increasing phosphorylation levels on the sites of S9. MOS treatment increased the ratio of LC3-II/LC3-I levels and reduced the expression of p62, indicating an increase in autophagy. Finally, MOS-induced decrease in Tau protein expression was attenuated by the addition of an autophagy inhibitor, confirming the involvement of autophagy. These data support MOS as a promising functional food or potential pharmaceutics for attenuating Tau protein-related disease.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen University, Shenzhen 518060, China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Weishan Fang
- School of Medicine, Shenzhen University, Shenzhen 518055, PR China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518060, PR China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Jun Lu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
- Institute of Biomedical Technology, Auckland University of Technology, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Discovery, Auckland 1010, New Zealand
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
15
|
Effect of Increased IL-1β on Expression of HK in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22031306. [PMID: 33525649 PMCID: PMC7865721 DOI: 10.3390/ijms22031306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by decreased glucose metabolism and increased neuroinflammation. Hexokinase (HK) is the key enzyme of glucose metabolism and is associated with mitochondria to exert its function. Recent studies have demonstrated that the dissociation of HK from mitochondria is enough to activate the NOD-like receptor protein 3 (NLRP3) inflammasome and leads to the release of interleukin-1β (IL-1β). However, the effect of increased IL-1β on the expression of HK is still unclear in AD. In this paper, we used positron emission tomography (PET), Western blotting and immunofluorescence to study the glucose metabolism, and the expression and distribution of HK in AD. Furthermore, we used lipopolysaccharide (LPS), nigericin (Nig), CY-09 and lonidamine (LND) to treat N2a and N2a-sw cells to investigate the link between IL-1β and HK in AD. The results show decreased expression of HK and the dissociation of HK from mitochondria in AD. Furthermore, a reduction of the expression of IL-1β could increase the expression of HK in AD. These results suggest that inhibiting inflammation may help to restore glucose metabolism in AD.
Collapse
|
16
|
Marine Biocompounds for Neuroprotection-A Review. Mar Drugs 2020; 18:md18060290. [PMID: 32486409 PMCID: PMC7344849 DOI: 10.3390/md18060290] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
While terrestrial organisms are the primary source of natural products, recent years have witnessed a considerable shift towards marine-sourced biocompounds. They have achieved a great scientific interest due to the plethora of compounds with structural and chemical properties generally not found in terrestrial products, exhibiting significant bioactivity ten times higher than terrestrial-sourced molecules. In addition to the antioxidant, anti-thrombotic, anti-coagulant, anti-inflammatory, anti-proliferative, anti-hypertensive, anti-diabetic, and cardio-protection properties, marine-sourced biocompounds have been investigated for their neuroprotective potential. Thus, this review aims to describe the recent findings regarding the neuroprotective effects of the significant marine-sourced biocompounds.
Collapse
|