1
|
Tan L, He G, Shen C, He S, Chen Y, Guo X. Construction of a ferroptosis-based prediction model for the prognosis of MYCN-amplified neuroblastoma and screening and verification of target sites. Hereditas 2025; 162:41. [PMID: 40108662 PMCID: PMC11921587 DOI: 10.1186/s41065-025-00413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Neuroblastoma (NB) is a prevalent extracranial solid tumor in pediatric patients. Of these, the MYCN-amplified type has a poor treatment response and prognosis. To enhance therapeutic efficacy and prognostic outcomes, numerous research teams have undertaken extensive investigations through various pathways and directions. Among these, ferroptosis has recently emerged as a significant area of research focus.Ferroptosis, a type of iron-dependent cell death, is primarily caused by lipid peroxides. This study intends to develop a prognosis model based on MYCN-amplified NB and ferroptosis-related genes (FGs). METHODS Data for this study were sourced from the TARGET and FerrDb databases. Lasso regression algorithms and univariate COX analysis were leveraged to determine feature genes; multivariate COX analysis was employed to develop a prediction model and risk scores; and receiver operating characteristic (ROC) curves and Kaplan-Meier analysis were utilized to assess the predictive ability of the model. Furthermore, discrepancies in immune cell infiltration (ICI) between the high-risk (HR) and low-risk (LR) populations were assessed via CIBERSORT analysis. Finally, experiments were conducted on MYCN-amplified and MYCN non-amplified cells so as to validate the differential expression of the gene. RESULTS A prediction model was constructed and risk scores were calculated based on 4 genes (LIFR, TP53, NRAS, and OSBPL9). The HR group, which was stratified by the median score, had a lower overall survival rate than the LR group.The differences in expression of each gene between MYCN-amplified and MYCN non-amplified cells were further confirmed through cell experiments and qPCR. CONCLUSION The prediction model in this study can be employed to forecast the prognosis of MYCN-amplified NB. These genes may represent promising new ferroptosis-related intervention targets (FITs) in treating MYCN-amplified NB, with the potential to improve patient outcomes.
Collapse
Affiliation(s)
- Linjun Tan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, China
- Department of Pediatrics, Guizhou Children's Hospital, No.149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, China
| | - Guoqian He
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Chengqi Shen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Sijia He
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Yan Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, China.
- Department of Pediatrics, Guizhou Children's Hospital, No.149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, China.
- Collaborative Innovation Center for Tissue Injury Repairand Regenerative Medicine of Zunyi Medical University, No.149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, China.
| | - Xia Guo
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, China.
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Section 3, South Renmin Road, Chengdu, 610041, China.
| |
Collapse
|
2
|
Alenad AMH, Khan MS, Al-Twaijry N, Alokail MS, Shano LB, Karthikeyan S, Naz H, Jali BR. Suppression of necroptosis-driven cell death and inflammation in hypoxic neuroblastoma (SH-SY5Y) cells by necrostatin-1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04023-z. [PMID: 40095052 DOI: 10.1007/s00210-025-04023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Neuroblastoma (NB) is the most typical malignant extracranial solid tumor in the pediatric population. The advent of drug resistance is an essential deterrent in treating high-risk NB patients despite a multi-modality remedy. Inflammation-induced early neuronal degeneration plays a leading part in the pathogenesis of NB via necroptosis; however, the mechanisms remained cryptic. Our current investigation determines the anti-inflammatory and neuroprotective effect of necroptosis inhibitor necrostatin-1 (Nec-1) in receptor-interacting proteins 1 and 3 (RIP1/3)-induced cell death pathway and inflammation caused by hypoxia mimetic agent cobalt chloride (CoCl2). Our biomolecular study illustrates that necroptosis marker RIP1/3 and mixed-lineage kinase domain-like pseudokinase (MLKL) protein expression was increased after treatment with CoCl2 in SH-SY5Y cells. Subsequently, elevated expression levels of RIP1/3 and MLKL further contributed to the inflammation by activating transcription factors extracellular signal-regulated protein kinase (ERK1/2), nuclear factor kappa-B (NF-κB), and releasing high levels of proinflammatory cytokines, such as vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1/CCL2). At the same time, Nec-1 treatment reduced the RIP1/3 and MLKL, phospho-ERK1/2, p65 subunit of NF-κB expression, and VEGF and MCP-1 levels. Molecular docking analysis of RIP1/3-necrostatin-1 complex highlights a significant interaction between necrostatin-1 and specific amino acid residues within the protein. Based on our promising results, necrostatin-1 could be exploited as a therapeutic agent during neuroblastoma's pathogenesis and its molecular therapy.
Collapse
Affiliation(s)
- Amal Majed H Alenad
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Nojood Al-Twaijry
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Majed S Alokail
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Leon Bernet Shano
- Division of Physics, School of Advanced Science, Vellore Institute of Technology (VIT) Chennai Campus, Vandalur- Kelambakkam Road, Chennai, Tamil Nadu, 600 127, India
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology University, Vandalur- Kelambakkam Road, Vellore, Tamil Nadu, 600 127, India
| | - Huma Naz
- Department of Internal Medicine, University of Missouri, Mizzou, Columbia, MO, 65211, USA
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology Burla Sambalpur Odisha, Burla, 768018, India.
| |
Collapse
|
3
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
4
|
Hua Z, Chen B, Gong B, Lin M, Ma Y, Li Z. SESN1 functions as a new tumor suppressor gene via Toll-like receptor signaling pathway in neuroblastoma. CNS Neurosci Ther 2024; 30:e14664. [PMID: 38516781 PMCID: PMC10958400 DOI: 10.1111/cns.14664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
AIMS Neuroblastoma (NB) is the most common extracranial solid tumor in children, with a 5-year survival rate of <50% in high-risk patients. MYCN amplification is an important factor that influences the survival rate of high-risk patients. Our results indicated MYCN regulates the expression of SESN1. Therefore, this study aimed to investigate the role and mechanisms of SESN1 in NB. METHODS siRNAs or overexpression plasmids were used to change MYCN, SESN1, or MyD88's expression. The role of SESN1 in NB cell proliferation, migration, and invasion was elucidated. Xenograft mice models were built to evaluate SESN1's effect in vivo. The correlation between SESN1 expression and clinicopathological data of patients with NB was analyzed. RNA-Seq was done to explore SESN1's downstream targets. RESULTS SESN1 was regulated by MYCN in NB cells. Knockdown SESN1 promoted NB cell proliferation, cell migration, and cell invasion, and overexpressing SESN1 had opposite functions. Knockdown SESN1 promoted tumor growth and shortened tumor-bearing mice survival time. Low expression of SESN1 had a positive correlation with poor prognosis in patients with NB. RNA-Seq showed that Toll-like receptor (TLR) signaling pathway, and PD-L1 expression and PD-1 checkpoint pathway in cancer were potential downstream targets of SESN1. Knockdown MyD88 or TLRs inhibitor HCQ reversed the effect of knockdown SESN1 in NB cells. High expression of SESN1 was significantly associated with a higher immune score and indicated an active immune microenvironment for patients with NB. CONCLUSIONS SESN1 functions as a new tumor suppressor gene via TLR signaling pathway in NB.
Collapse
Affiliation(s)
- Zhongyan Hua
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Bo Chen
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Baocheng Gong
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Meizhen Lin
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Yifan Ma
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Zhijie Li
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
5
|
Chen Y, Liu M, Wei H, Guo J, Zhang S, Bu X, Chen S, Zhang D, Guan S. Alcohol induces hepatocytes necroptosis through the LC3/RIPK1/RIPK3 pathway. Food Chem Toxicol 2023; 182:114124. [PMID: 37898230 DOI: 10.1016/j.fct.2023.114124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Excessive alcohol consumption leads to serious liver injury. Necroptosis is a programmed cell death form, which has been confirmed to be involved in alcoholic liver injury. However, the exact mechanism remains still unclear. In this study, we found that ethanol caused hepatocytes necroptosis by activating receptor-interacting serine/threonine-protein kinase 1 and 3 (RIPK1 and RIPK3). Meanwhile, autophagy was activated in ethanol-treated hepatocytes. Accumulative studies have demonstrated a possible link between autophagy and necroptosis. Microtubule-associated protein 1 light chain 3 (LC3), an autophagy marker protein, is essential for autophagosome biogenesis/maturation. But little attention has been paid to its functional role. In this study, we explored whether LC3 was involved in ethanol-induced necroptosis. The data showed that LC3 interacted with RIPK1 and RIPK3 in ethanol-treated AML12 cells and mice liver by co-immunoprecipitation (co-IP) and colocalization assay. Ethanol-induced necrosome formation and subsequent necroptosis were alleviated in hepatocytes by knockdown of LC3 or autophagy inhibitor 3-methyladenine (3-MA). These results demonstrated that LC3 accumulation facilitated the formation of necrosome by LC3-RIPK1 and LC3-RIPK3 interactions, eventually caused hepatocytes necroptosis after acute ethanol exposure. Our current research could potentially offer a new understanding of the intricate mechanisms involved in the development of acute alcoholic liver injury.
Collapse
Affiliation(s)
- Yuelin Chen
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Meitong Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Hongdi Wei
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jiakang Guo
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Shengzhuo Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Xiujuan Bu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Shanshan Chen
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Duoduo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
6
|
Cornett K, Puderbaugh A, Back O, Craven R. GAPDH in neuroblastoma: Functions in metabolism and survival. Front Oncol 2022; 12:979683. [PMID: 36267982 PMCID: PMC9577191 DOI: 10.3389/fonc.2022.979683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroblastoma is a pediatric cancer of neural crest cells. It develops most frequently in nerve cells around the adrenal gland, although other locations are possible. Neuroblastomas rely on glycolysis as a source of energy and metabolites, and the enzymes that catalyze glycolysis are potential therapeutic targets for neuroblastoma. Furthermore, glycolysis provides a protective function against DNA damage, and there is evidence that glycolysis inhibitors may improve outcomes from other cancer treatments. This mini-review will focus on glyceraldehyde 3-phosphate dehydrogenase (GAPDH), one of the central enzymes in glycolysis. GAPDH has a key role in metabolism, catalyzing the sixth step in glycolysis and generating NADH. GAPDH also has a surprisingly diverse number of localizations, including the nucleus, where it performs multiple functions, and the plasma membrane. One membrane-associated function of GAPDH is stimulating glucose uptake, consistent with a role for GAPDH in energy and metabolite production. The plasma membrane localization of GAPDH and its role in glucose uptake have been verified in neuroblastoma. Membrane-associated GAPDH also participates in iron uptake, although this has not been tested in neuroblastoma. Finally, GAPDH activates autophagy through a nuclear complex with Sirtuin. This review will discuss these activities and their potential role in cancer metabolism, treatment and drug resistance.
Collapse
|
7
|
Ye G, Wang Y. Construction of a Prognostic Nomogram Based on Autophagy-Related Genes for Children With Neuroblastoma. Evol Bioinform Online 2022; 18:11769343221120960. [PMID: 36046056 PMCID: PMC9421005 DOI: 10.1177/11769343221120960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroblastoma (NB) is the most common solid malignancy in children. MYCN gene amplification is the most relevant genetic alteration in patients with NB and is associated with poor prognosis. Autophagy plays specific roles in the occurrence, development, and progression of NB. Here, we aimed to identify and assess the prognostic effects of autophagy-related genes (ARGs) in patients with NB and MYCN gene amplification. Differentially expressed ARGs were identified in patients with NB with and without MYCN gene amplification, and the ARG expression patterns and related clinical data from the Therapeutically Applicable Research to Generate Effective Treatments database were used as the training cohort. Least absolute shrinkage and selection operator analyses were used to identify prognostic ARGs associated with event-free survival (EFS), and a prognostic risk score model was developed. Model performance was assessed using the Kaplan–Meier method and receiver operating characteristic (ROC) curves. The prognostic ARG mode l was verified using the validation cohort dataset, GSE49710. Finally, a nomogram was constructed by combining the ARGbased risk score with clinicopathological factors. Three ARGs (GABARAPL1, NBR1, and PINK1) were selected to build a prognostic risk score model. The EFS in the low-risk group was significantly better than that in the high-risk group in both the training and validation cohorts. A nomogram incorporating the prognostic risk score, age, and International Neuroblastoma Staging System stage showed a favorable predictive ability for EFS rates according to the area under the ROC curve at 3 years (AUC = 0.787) and 5 years (AUC = 0.787). The nomogram demonstrated good discrimination and calibration. Our risk score model for the 3 ARGs can be used as an independent prognostic factor in patients with NB and MYCN gene amplification. The model can accurately predict the 3- and 5-year survival rates.
Collapse
Affiliation(s)
- Guogang Ye
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Wang
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Jia X, Xin M, Xu J, Xiang X, Li X, Jiao Y, Wang L, Jiang J, Pang F, Zhang X, Zhang J. Inhibition of autophagy potentiates the cytotoxicity of the irreversible FGFR1-4 inhibitor FIIN-2 on lung adenocarcinoma. Cell Death Dis 2022; 13:750. [PMID: 36042213 PMCID: PMC9428205 DOI: 10.1038/s41419-022-05201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/21/2023]
Abstract
For patients with platinum-resistant lung adenocarcinoma (LUAD), the exploration of new effective drug candidates is urgently needed. Fibroblast growth factor receptors (FGFRs) have been identified as promising targets for LUAD therapy. The purpose of this study was to determine the exact role of the irreversible FGFR1-4 inhibitor FIIN-2 in LUAD and to clarify its underlying molecular mechanisms. Our results demonstrated that FIIN-2 significantly inhibited the proliferation, colony formation, and migration of A549 and A549/DDP cells but induced the mitochondria-mediated apoptosis of these cells. Meanwhile, FIIN-2 increased the autophagy flux of A549 and A549/DDP cells by inhibiting the mammalian target of rapamycin (mTOR) and further activating the class III PI3K complex pathway. More importantly, in vivo and in vitro experiments showed that autophagy inhibitors could enhance the cytotoxicity of FIIN-2 on A549 and A549/DDP cells, confirming that FIIN-2 induced protective autophagy. These findings indicated that FIIN-2 is a potential drug candidate for LUAD treatment, and its use in combination with autophagy inhibitors might be an efficient treatment strategy, especially for patients with cisplatin resistance.
Collapse
Affiliation(s)
- Xiuqin Jia
- grid.27255.370000 0004 1761 1174Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong Province China ,grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Ming Xin
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Juanjuan Xu
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Xindong Xiang
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Xuan Li
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Yuhan Jiao
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Lulin Wang
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Jingjing Jiang
- grid.415912.a0000 0004 4903 149XThe Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Feng Pang
- grid.415912.a0000 0004 4903 149XDepartment of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Xianzhen Zhang
- grid.415912.a0000 0004 4903 149XDepartment of Oncology, Liaocheng People’s Hospital, Liaocheng, 252000 Shandong Province China
| | - Jian Zhang
- grid.27255.370000 0004 1761 1174Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong Province China
| |
Collapse
|
9
|
Toson B, Fortes IS, Roesler R, Andrade SF. Targeting Akt/PKB in pediatric tumors: A review from preclinical to clinical trials. Pharmacol Res 2022; 183:106403. [PMID: 35987481 DOI: 10.1016/j.phrs.2022.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
The serine/threonine kinase Akt is a major player in the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and its modulation impacts multiple cellular processes such as growth, proliferation, and survival. Several abnormalities in this pathway have been documented over the years, and these alterations were shown to have great implications in tumorigenesis and resistance to chemotherapy. Thus, multiple Akt inhibitors have been developed and tested in adult tumors, and some of them are currently undergoing phase I, II, and III clinical trials for distinct cancers that arise during adulthood. Despite that, the impact of these inhibitors is still not fully understood in pediatric tumors, and Akt-specific targeting seems to be a promising approach to treat children affected by cancers. This review summarizes recent available evidence of Akt inhibitors in pediatric cancers, from both preclinical and clinical studies. In short, we demonstrate the impact that Akt inhibition provides in tumorigenesis, and we suggest targeting the PI3K/Akt/mTOR signaling pathway, alone or in combination with other inhibitors, is a feasible tool to achieve better outcomes in pediatric tumors.
Collapse
Affiliation(s)
- Bruno Toson
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isadora S Fortes
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Saulo F Andrade
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil.
| |
Collapse
|
10
|
Ikeda-Murakami K, Ikeda T, Watanabe M, Tani N, Ishikawa T. Central nervous system stimulants promote nerve cell death under continuous hypoxia. Hum Cell 2022; 35:1391-1407. [PMID: 35737220 DOI: 10.1007/s13577-022-00734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022]
Abstract
Intake of central nervous system (CNS) stimulants causes hypoxia and brain edema, which results in nerve cell death. However, no study has yet investigated the direct and continuous effects on nerve cells of CNS stimulants under hypoxia. Thus, based on autopsy cases, the effects of CNS stimulant drugs on the CNS were examined. The pathological changes in cultured nerve cells when various CNS stimulants were added under a hypoxic condition were also investigated. Five groups (Group A, stimulants; Group B, stimulants with psychiatric drugs; Group C, caffeine; Group D, psychiatric drugs; and Group E, no drugs) according to the detected drugs in autopsy cases were compared, and brain edema was evaluated using morphological findings. Furthermore, the number of dead cultured nerve cells was counted after the addition of drugs (4-aminopyridine (4-AP), caffeine, and ephedrine) under hypoxia (3% O2). Staining with anti-receptor-interacting protein 3 (RIP3) and other associated stains was also performed to investigate the neuronal changes in the brain. Group A showed significantly more brain edema than the other groups. In the culture experiments, the ratio of nerve cell death after the addition of 4-AP was the highest in the hypoxic condition. Groups with stimulants detected were stained more strongly by RIP3 immunostaining than by other staining. Addition of stimulants to cultured nerve cells in a persistent hypoxic condition led to severe cytotoxicity and nerve cell death. These findings suggest that necroptosis is involved in nerve cell death due to the addition of CNS stimulants in the hypoxic condition.
Collapse
Affiliation(s)
- Kei Ikeda-Murakami
- Department of Legal Medicine, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan.
| | - Tomoya Ikeda
- Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center, Department of Legal Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
| | - Miho Watanabe
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, Health and Medical Science Innovation Laboratory 403, University of Tsukuba, Tsukuba City, Ibaraki, 305-8575, Japan
| | - Naoto Tani
- Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center, Department of Legal Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
| | - Takaki Ishikawa
- Department of Legal Medicine, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
- Forensic Autopsy Section, Medico-Legal Consultation and Postmortem Investigation Support Center, Department of Legal Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno, Osaka, 545-8585, Japan
| |
Collapse
|
11
|
Fu J, Yang Y, Zhu L, Chen Y, Liu B. Unraveling the Roles of Protein Kinases in Autophagy: An Update on Small-Molecule Compounds for Targeted Therapy. J Med Chem 2022; 65:5870-5885. [PMID: 35390258 DOI: 10.1021/acs.jmedchem.1c02053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinases, which catalyze the phosphorylation of proteins, are involved in several important cellular processes, such as autophagy. Of note, autophagy, originally described as a mechanism for intracellular waste disposal and recovery, has been becoming a crucial biological process closely related to many types of human diseases. More recently, the roles of protein kinases in autophagy have been gradually elucidated, and the design of small-molecule compounds to modulate targets to positively or negatively interfere with the cytoprotective autophagy or autophagy-associated cell death may provide a new clue on the current targeted therapy. Thus, in this Perspective, we focus on summarizing the different roles of protein kinases, including positive, negative, and bidirectional regulations of autophagy. Moreover, we discuss several small-molecule compounds targeting these protein kinases in human diseases, highlighting their pivotal roles in autophagy for targeted therapeutic purposes.
Collapse
Affiliation(s)
- Jiahui Fu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yushang Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingjuan Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Evaluating the Effects of Separate and Concomitant Use of MK-2206 and Salinomycin on Prostate Cancer Cell Line. Rep Biochem Mol Biol 2022; 11:157-165. [PMID: 35765523 PMCID: PMC9208569 DOI: 10.52547/rbmb.11.1.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 01/11/2023]
Abstract
Background Prostate cancer is known as one of the most prevalent health disorders in the male population globally. The aim of the current study was to evaluate the effects of separate and concomitant use of MK-2206 and salinomycin on prostate cancer cell line. Methods The antitumor potential of separate and concomitant use of MK-2206 and salinomycin was evaluated in a panel of prostate cancer cell line (PC-3). To get insights into the underlying mechanism of action, different assays including the rate of apoptosis, cell viability, and gene expression were performed in treated prostate cancer cells. Results A significant reduction was detected in the viability percentage of prostate cancer cells (p< 0.001) and the rate of Akt expression (p< 0.001) in all salinomycin, MK-2206, and salinomycin+MK-2206 groups compared to the negative control group. Furthermore, in comparison with the negative control group, there was a notable increase in both the rate of Bad expression (p< 0.001) and prostate cancer cells apoptosis after salinomycin, MK-2206, and salinomycin+MK-2206 treatments. Moreover, the concomitant use of salinomycin+MK-2206 revealed synergistic improvements regarding the viability of prostate cancer cells and the rate of the Akt and Bad expressions compared to the separate administration of salinomycin and MK-2206 (all p< 0.05). Conclusion The findings of the present study may contribute to improving the efficacy of the therapies regarding the management of prostate cancer and providing a beneficial strategy in clinical trials.
Collapse
|
13
|
Wu J, Ye J, Xie Q, Liu B, Liu M. Targeting Regulated Cell Death with Pharmacological Small Molecules: An Update on Autophagy-Dependent Cell Death, Ferroptosis, and Necroptosis in Cancer. J Med Chem 2022; 65:2989-3001. [PMID: 35130435 DOI: 10.1021/acs.jmedchem.1c01572] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulated cell death is a widely attractive subject among the topics of cancer therapy and has gained some advances for discovery of targeted anticancer drugs. In the past decade, nonapoptotic regulated cell death has been implicated in the development and therapeutic responses of a variety of human cancers. Hitherto, targeting autophagy-dependent cell death (ADCD), ferroptosis, and necroptosis with small molecules has been emerging as a hopeful strategy for the improvement of potential cancer therapy, which may have an advantage to bypass the apoptosis-resistance machinery. Thus, in this perspective, we concentrate on the key molecular insights into ADCD, ferroptosis, and necroptosis and summarize the corresponding small molecules in potential cancer therapy. Moreover, the relationships between the three subroutines and small molecules modulating the crosstalk are discussed. We believe that these inspiring findings would be advantageous to exploiting more potential targets and pharmacological small molecules in future cancer treatment.
Collapse
Affiliation(s)
- Junhao Wu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Orthopedics, and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Ye
- State Key Laboratory of Biotherapy and Cancer Center and Department of Orthopedics, and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Xie
- State Key Laboratory of Biotherapy and Cancer Center and Department of Orthopedics, and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Orthopedics, and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming Liu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Orthopedics, and Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Gao J, Ma K, Zhang L, Li T, Zhao B, Jiang Y. Paired related homeobox 1 attenuates autophagy via acetyl-CoA carboxylase 1-regulated fatty acid metabolism in salivary adenoid cystic carcinoma. FEBS Open Bio 2022; 12:1006-1016. [PMID: 35032368 PMCID: PMC9063443 DOI: 10.1002/2211-5463.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 10/07/2021] [Accepted: 01/12/2022] [Indexed: 12/01/2022] Open
Abstract
Autophagy can affect the invasion and metastasis of carcinoma. Our previous study has shown that invasion and epithelial‐mesenchymal transition in salivary adenoid cystic carcinoma (SACC) can be promoted by the metabolic reprogramming of free fatty acids (FFAs). However, the effect of FFA metabolism on autophagy in SACC remains unknown. In this study, we showed that overexpression of paired related homeobox 1 (PRRX1) reduced the number of autophagosomes and decreased the expression of LC3 and Beclin‐1 in SACC patients and SACC‐83 cells in vitro. Moreover, PRRX1‐mediating FFA reprogramming triggered to autophagy via regulating acetyl‐CoA carboxylase 1 (ACC1), leading to invasion and migration in SACC.
Collapse
Affiliation(s)
- Jie Gao
- Department of Oral Implantology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,School of Stomatology of Qingdao University, Qingdao, 266003, China
| | - Kangjie Ma
- Department of Oral Implantology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,School of Stomatology of Qingdao University, Qingdao, 266003, China
| | - Li Zhang
- Department of Oral Implantology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Tao Li
- Department of Joint Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Baodong Zhao
- Department of Oral Implantology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yaping Jiang
- Department of Oral Implantology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
15
|
Synthetic Heterocyclic Derivatives as Kinase Inhibitors Tested for the Treatment of Neuroblastoma. Molecules 2021; 26:molecules26237069. [PMID: 34885651 PMCID: PMC8658969 DOI: 10.3390/molecules26237069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the last few years, small molecules endowed with different heterocyclic scaffolds have been developed as kinase inhibitors. Some of them are being tested at preclinical or clinical levels for the potential treatment of neuroblastoma (NB). This disease is the most common extracranial solid tumor in childhood and is responsible for 10% to 15% of pediatric cancer deaths. Despite the availability of some treatments, including the use of very toxic cytotoxic chemotherapeutic agents, high-risk (HR)-NB patients still have a poor prognosis and a survival rate below 50%. For these reasons, new pharmacological options are urgently needed. This review focuses on synthetic heterocyclic compounds published in the last five years, which showed at least some activity on this severe disease and act as kinase inhibitors. The specific mechanism of action, selectivity, and biological activity of these drug candidates are described, when established. Moreover, the most remarkable clinical trials are reported. Importantly, kinase inhibitors approved for other diseases have shown to be active and endowed with lower toxicity compared to conventional cytotoxic agents. The data collected in this article can be particularly useful for the researchers working in this area.
Collapse
|
16
|
Liu SQ, Ren C, Yao RQ, Wu Y, Luan YY, Dong N, Yao YM. TNF-α-induced protein 8-like 2 negatively regulates the immune function of dendritic cells by suppressing autophagy via the TAK1/JNK pathway in septic mice. Cell Death Dis 2021; 12:1032. [PMID: 34718337 PMCID: PMC8557212 DOI: 10.1038/s41419-021-04327-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF)-α-induced protein 8-like 2 (TIPE2) is a newly discovered negative immunoregulatory protein that is involved in various cellular immune responses to infections. However, the underlying mechanism by which TIPE2 affects the immune function of dendritic cells (DCs) is not yet understood. This study aimed to determine the correlations among DCs TIPE2 expression, autophagic activity and immune function in the context of sepsis. In addition, the signaling pathway by which TIPE2 regulates autophagy in DCs was investigated. We reported for the first time that TIPE2 overexpression (knock-in, KI) exerted an inhibitory effect on autophagy in DCs and markedly suppressed the immune function of DCs upon septic challenge both in vitro and in vivo. In addition, TIPE2 knockout (KO) in DCs significantly enhanced autophagy and improved the immune response of DCs in sepsis. Of note, we found that the transforming growth factor-β (TGF-β)-activated kinase-1 (TAK1)/c-Jun N-terminal kinase (JNK) pathway was inhibited by TIPE2 in DCs, resulting in downregulated autophagic activity. Collectively, these results suggest that TIPE2 can suppress the autophagic activity of DCs by inhibiting the TAK1/JNK signaling pathway and further negatively regulate the immune function of DCs in the development of septic complications.
Collapse
Affiliation(s)
- Shuang-Qing Liu
- Department of Emergency, the Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Chao Ren
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, People's Republic of China
| | - Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Ying-Yi Luan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China.
| |
Collapse
|
17
|
Pezeshki PS, Moeinafshar A, Ghaemdoust F, Razi S, Keshavarz-Fathi M, Rezaei N. Advances in pharmacotherapy for neuroblastoma. Expert Opin Pharmacother 2021; 22:2383-2404. [PMID: 34254549 DOI: 10.1080/14656566.2021.1953470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Neuroblastoma is the most prevalent cancer type diagnosed within the first year after birth and accounts for 15% of deaths from pediatric cancer. Despite the improvements in survival rates of patients with neuroblastoma, the incidence of the disease has increased over the last decade. Neuroblastoma tumor cells harbor a vast range of variable and heterogeneous histochemical and genetic alterations which calls for the need to administer individualized and targeted therapies to induce tumor regression in each patient. AREAS COVERED This paper provides reviews the recent clinical trials which used chemotherapeutic and/or targeted agents as either monotherapies or in combination to improve the response rate in patients with neuroblastoma, and especially high-risk neuroblastoma. It also reviews some of the prominent preclinical studies which can provide the rationale for future clinical trials. EXPERT OPINION Although some distinguished advances in pharmacotherapy have been made to improve the survival rate and reduce adverse events in patients with neuroblastoma, a more comprehensive understanding of the mechanisms of tumorigenesis, resistance to therapies or relapse, identifying biomarkers of response to each specific drug, and developing predictive preclinical models of the tumor can lead to further breakthroughs in the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Parmida Sadat Pezeshki
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Ghaemdoust
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
18
|
Al Abo M, Hyslop T, Qin X, Owzar K, George DJ, Patierno SR, Freedman JA. Differential alternative RNA splicing and transcription events between tumors from African American and White patients in The Cancer Genome Atlas. Genomics 2021; 113:1234-1246. [PMID: 33705884 DOI: 10.1016/j.ygeno.2021.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
Individuals of African ancestry suffer disproportionally from higher incidence, aggressiveness, and mortality for particular cancers. This disparity likely results from an interplay among differences in multiple determinants of health, including differences in tumor biology. We used The Cancer Genome Atlas (TCGA) SpliceSeq and TCGA aggregate expression datasets and identified differential alternative RNA splicing and transcription events (ARS/T) in cancers between self-identified African American (AA) and White (W) patients. We found that retained intron events were enriched among race-related ARS/T. In addition, on average, 12% of the most highly ranked race-related ARS/T overlapped between any two analyzed cancers. Moreover, the genes undergoing race-related ARS/T functioned in cancer-promoting pathways, and a number of race-related ARS/T were associated with patient survival. We built a web-application, CanSplice, to mine genomic datasets by self-identified race. The race-related targets have the potential to aid in the development of new biomarkers and therapeutics to mitigate cancer disparity.
Collapse
Affiliation(s)
- Muthana Al Abo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Terry Hyslop
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xiaodi Qin
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Daniel J George
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven R Patierno
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jennifer A Freedman
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
19
|
Liu R, Shi P, Wang Z, Yuan C, Cui H. Molecular Mechanisms of MYCN Dysregulation in Cancers. Front Oncol 2021; 10:625332. [PMID: 33614505 PMCID: PMC7886978 DOI: 10.3389/fonc.2020.625332] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
MYCN, a member of MYC proto-oncogene family, encodes a basic helix-loop-helix transcription factor N-MYC. Abnormal expression of N-MYC is correlated with high-risk cancers and poor prognosis. Initially identified as an amplified oncogene in neuroblastoma in 1983, the oncogenic effect of N-MYC is expanded to multiple neuronal and nonneuronal tumors. Direct targeting N-MYC remains challenge due to its "undruggable" features. Therefore, alternative therapeutic approaches for targeting MYCN-driven tumors have been focused on the disruption of transcription, translation, protein stability as well as synthetic lethality of MYCN. In this review, we summarize the latest advances in understanding the molecular mechanisms of MYCN dysregulation in cancers.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Zhongze Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chaoyu Yuan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| |
Collapse
|
20
|
Wu J, Zheng C, Wang Y, Yang Z, Li C, Fang W, Jin Y, Hou K, Cheng Y, Qi J, Qu X, Liu Y, Che X, Hu X. LncRNA APCDD1L-AS1 induces icotinib resistance by inhibition of EGFR autophagic degradation via the miR-1322/miR-1972/miR-324-3p-SIRT5 axis in lung adenocarcinoma. Biomark Res 2021; 9:9. [PMID: 33516270 PMCID: PMC7847171 DOI: 10.1186/s40364-021-00262-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptor-tyrosinase kinase inhibitor (EGFR-TKI) resistance is the major obstacle in the treatment of lung adenocarcinoma (LUAD) patients harboring EGFR-sensitive mutations. However, the long non-coding RNAs (lncRNAs) related to EGFR-TKIs resistance and their functional mechanisms are still largely unknown. This study aimed to investigate the role and regulatory mechanism of lncRNA APCDD1L-AS1 in icotinib resistance of lung cancer. METHODS Molecular approaches including qRT-PCR, MTT assay, colony formation, RNA interference and cell transfection, RNA immunoprecipitation (RIP), dual luciferase reporter assay, RNA fluorescence in situ hybridization, TUNEL assay, flow cytometry, immunoblotting, xenograft model and transcriptome sequencing were used to investigate the mechanism of APCDD1L-AS1 in icotinib resistance. RESULTS A novel lncRNA, APCDD1L-AS1 was identified as the most significantly upregulated lncRNA in icotinib-resistant LUAD cells by the transcriptome sequencing and differential lncRNA expression analysis. We found that APCDD1L-AS1 not only promoted icotinib resistance, but also upregulated the protein expression level of EGFR. Mechanistically, APCDD1L-AS1 promoted icotinib resistance and EGFR upregulation by sponging with miR-1322/miR-1972/miR-324-3p to remove the transcription inhibition of SIRT5. Furthermore, SIRT5 elevated EGFR expression and activation by inhibiting the autophagic degradation of EGFR, finally promoting icotinib resistance. Consistently, the autophagy initiator rapamycin could decrease EGFR levels and increase the sensitivity of icotinib-resistant LUAD cells to icotinib. CONCLUSION APCDD1L-AS1 could promote icotinib resistance by inhibiting autophagic degradation of EGFR via the miR-1322/miR-1972/miR-324-3p-SIRT5 axis. The combination of autophagy initiator and EGFR-TKIs might serve as a potential new strategy for overcoming EGFR-TKIs resistance in LUAD patients.
Collapse
Affiliation(s)
- Jie Wu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Chunlei Zheng
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Yizhe Wang
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Zichang Yang
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Wanxia Fang
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Yue Jin
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Yang Cheng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Jianfei Qi
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, 110001, Liaoning, China.
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|