1
|
Chen DTH, Huang SY, Liu TC, Chen YK. Novel compounds of Taiwanese green propolis induce apoptosis of human glioblastoma cells by daylight photodynamic action. Future Sci OA 2025; 11:2464491. [PMID: 39925210 PMCID: PMC11812390 DOI: 10.1080/20565623.2025.2464491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Glioblastoma, an aggressive brain cancer, has limited treatment options and poor prognosis. Taiwanese green propolis, known for its tumor-inhibitory properties, shows promise when combined with photodynamic therapy (PDT), a targeted, low-toxicity treatment. This study investigated a novel Taiwanese green propolis-based compound for inducing apoptosis in glioblastoma cells and its synergistic potential with daylight PDT. METHODS Ethanol extracts of green propolis, wheatgrass, and mulberry leaves were combined and analyzed using High-Performance Liquid Chromatography (HPLC). Apoptosis induction in U87 glioblastoma cells was assessed via the MTT assay following treatment with the compound alone and in combination with daylight PDT at 570 nm. RESULTS We identified Artepillin C as the main active component in the compound by HPLC, which significantly induced apoptosis in glioblastoma cells. Combined with daylight PDT, it demonstrated enhanced efficacy, with cell viability reduced from 95.2% at 0.25 µL to 11.3% at 8 µL of the compound extract. The EC50 decreased, indicating greater apoptotic activity compared to the extract alone. CONCLUSION This study provides the first in vitro evidence of synergistic anti-tumor effects of a Taiwanese green propolis-based compound daylight PDT (GPDT), highlighting a promising novel therapeutic approach that warrants further clinical investigation.
Collapse
Affiliation(s)
- Daniel Tzu-Hsuan Chen
- Nuffield Department of Primary Care Health Science, University of Oxford, Oxford, UK
| | | | - Ta-Chun Liu
- Department of Oncology, University of Oxford, Oxford, UK
| | - Yao-Kuan Chen
- Dr. Oxford Biotech Factory Co., Ltd, Taichung, Taiwan
| |
Collapse
|
2
|
Xi Z, Dai R, Ze Y, Jiang X, Liu M, Xu H. Traditional Chinese medicine in lung cancer treatment. Mol Cancer 2025; 24:57. [PMID: 40001110 PMCID: PMC11863959 DOI: 10.1186/s12943-025-02245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Lung cancer remains a major global health challenge and one of the leading causes of cancer-related deaths worldwide. Despite significant advancements in treatment, challenges such as drug resistance, side effects, metastasis and recurrence continue to impact patient outcomes and quality of life. In response, there is growing interest in complementary and integrative approaches to cancer care. Traditional Chinese medicine (TCM), with its long history, abundant clinical experience, holistic perspective and individualized approach, has garnered increasing attention for its role in lung cancer prevention and management. This review provides a comprehensive overview of the advances in TCM for lung cancer treatment, covering its theoretical foundation, treatment principles, clinical experiences and evidence supporting its efficacy. We also provide a systematic summary of the preclinical mechanisms, through which TCM impacts lung cancer, including the induction of cell death, reversal of drug resistance, inhibition of metastasis and modulation of immune responses. Additionally, future prospects for TCM in lung cancer treatment are discussed, offering insights into its expanded application and integration with modern medicine to address this challenging disease.
Collapse
Affiliation(s)
- Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| |
Collapse
|
3
|
Chang B, Hwang Y, Kim I, Park H, Kim Y, Kim S. Moracin M promotes hair regeneration through activation of the WNT/β-catenin pathway and angiogenesis. Arch Dermatol Res 2025; 317:304. [PMID: 39853610 DOI: 10.1007/s00403-024-03656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 12/08/2024] [Indexed: 01/30/2025]
Abstract
Hair follicle growth depends on the intricate interaction of cells within the follicle and its vascular supply. Current FDA-approved treatments like minoxidil have limitations, including side effects and the need for continuous use. Moracin M, a compound from Moraceae family, was investigated for its effects on hair growth and vascular regeneration. In our study, Moracin M significantly increased cell proliferation in human dermal papilla cells (hDPCs) during both the anagen and catagen phases and promoted cell migration in human umbilical vein endothelial cells (HUVECs) without cytotoxicity at concentrations up to 50 µM. Mechanistic analysis revealed that moracin M enhanced Wnt3a, GSK-3β phosphorylation and increased non-phospho β-catenin levels, activating Wnt signaling and upregulating transcription factors LEF, TCF, and AXIN2. This resulted in elevated levels of growth factors VEGF, FGF2, KGF, HGF and MYC in hDPCs, effects comparable to those of minoxidil. Additionally, moracin M significantly increased protein and mRNA levels of VEGF, FGF2, and KGF in hDPCs under IFN-γ-induced inflammatory conditions. Moracin M treatments also resulted in notable wound width reductions in a dose-dependent manner. Further investigation showed that moracin M stimulated MMP-2 and MMP-9 expression. These findings indicate that moracin M significantly enhances hair growth through the promotion of cell proliferation and angiogenesis, particularly via the activation of the Wnt signaling pathway in dermal papilla cells, presenting it as a promising therapeutic alternative to current treatments.
Collapse
Affiliation(s)
- BoYoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea
| | - Yuri Hwang
- ForBioKorea Co., Ltd., 917, 14, Gasan digital 2-ro, Geumcheon-gu, Seoul, 08592, South Korea
- Department of Biological Sciences, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - In Kim
- Cellonix, 84, Gukgasikpum-ro, Wanggung-myeon, Iksan-si, Jeonbuk-do, Republic of Korea
| | - Hyungmin Park
- Cellonix, 84, Gukgasikpum-ro, Wanggung-myeon, Iksan-si, Jeonbuk-do, Republic of Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - SungYeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea.
| |
Collapse
|
4
|
Zeng X, Chen W, Yu N, Li Z, Li H, Chen Y, Gong F, Jiang X, Ji G. Trifluoperazine exerts anti-osteosarcoma effect by inducing mitochondria-dependent apoptosis via AKT/TXNIP signaling pathway. Toxicol Appl Pharmacol 2024; 492:117080. [PMID: 39216834 DOI: 10.1016/j.taap.2024.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The survival rates for patients with osteosarcoma (OS) have stagnated over the past few decades. It is essential to find new therapies and drugs. A licensed antipsychotic medication called trifluoperazine (TFP) significantly reduces the growth of several cancers. However, the exact molecular pathways of TFP in OS remain to be discovered. Our research revealed that TFP greatly reduced OS cell migration and growth and caused the arrest of G0/G1 cell cycle. Combined with RNA-Seq data and further research, we confirmed that TFP promoted reactive oxygen species (ROS) production by elevating thioredoxin binding protein (TXNIP) expression to induce mitochondria-dependent apoptosis. Interestingly, we first demonstrated that AKT was an upstream regulatory target of TXNIP in OS cells. Dephosphorylation of AKT led to an increase in TXNIP expression, further elucidating the anticancer mechanism of TFP. In vivo, TFP inhibited subcutaneous OS cell proliferation and induced OS cell apoptosis without noticeable side effects. In conclusion, our findings imply that TFP is a potential treatment for OS.
Collapse
Affiliation(s)
| | - Wenkai Chen
- School of Medicine, Xiamen University, Xiamen, China
| | - Naichun Yu
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zongguang Li
- Department of Orthopedic Surgery, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Hongyu Li
- School of Medicine, Xiamen University, Xiamen, China
| | - Yongjie Chen
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fengqing Gong
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xing Jiang
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guangrong Ji
- Department of Orthopedic Surgery, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China.
| |
Collapse
|
5
|
Wu F, Kong Z, Ge P, Sun D, Liu D, Dong Z, Chen G. Ecotoxicological evaluation and regeneration impairment of planarians by dibutyl phthalate. ENVIRONMENTAL RESEARCH 2024; 257:119403. [PMID: 38871274 DOI: 10.1016/j.envres.2024.119403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Commonly utilized as a plasticizer in the food and chemical sectors, Dibutyl phthalate (DBP) poses threats to the environment and human well-being as it seeps or moves into the surroundings. Nevertheless, research on the harmfulness of DBP to aquatic organisms is limited, and its impact on stem cells and tissue regeneration remains unidentified. Planarians, recognized for their robust regenerative capabilities and sensitivity to aquatic pollutants, are emerging animal models in toxicology. This study investigated the comprehensive toxicity effects of environmentally relevant levels of DBP on planarians. It revealed potential toxicity mechanisms through the use of immunofluorescence, chromatin dispersion assay, Western blot, quantitative real-time fluorescence quantitative PCR (qRT-PCR), chromatin behavioral and histological analyses, immunofluorescence, and terminal dUTP nickel-end labeling (TUNEL). Findings illustrated that DBP caused morphological and motor abnormalities, tissue damage, regenerative inhibition, and developmental neurotoxicity. Further research revealed increased apoptosis and suppressed stem cell proliferation and differentiation, disrupting a balance of cell proliferation and death, ultimately leading to morphological defects and functional abnormalities. This was attributed to oxidative stress and DNA damage caused by excessive release of reactive oxygen species (ROS). This exploration furnishes fresh perspectives on evaluating the toxicity peril posed by DBP in aquatic organisms.
Collapse
Affiliation(s)
- Fan Wu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Zhihong Kong
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Peng Ge
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
6
|
Napiórkowska M, Otto-Ślusarczyk D, Kurpios-Piec D, Stukan I, Gryzik M, Wojda U. BM7, a derivative of benzofuran, effectively fights cancer by promoting cancer cell apoptosis and impacting IL-6 levels. Eur J Pharmacol 2024; 978:176751. [PMID: 38897442 DOI: 10.1016/j.ejphar.2024.176751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
The BM7 compound, a bromo derivative of methyl 6-acetyl-5-hydroxy-2-methyl-1-benzofuran-3-carboxylate, was previously identified as cytotoxic to human leukaemia cells (K562 and HL60) and human cervical cancer (HeLa), while showing no toxicity to non-cancerous primary endothelial cells (HUVEC). In this study, we present the first demonstration of BM7's anticancer efficacy in vivo using a mouse chronic myeloid leukaemia xenograft model. Administered intraperitoneally in a mixture of 10% Solutol HS 15/10% ethanol, BM7 exhibited no visible toxicity and significantly reduced tumor weight, comparable to standard drugs imatinib and hydroxyurea. Further supporting its anticancer potential, a multi-model in vitro study involving seven human cancer cell lines revealed the most promising responses in colon cancer (SW480, SW620, HCT116), liver cancer (HEPG2), and breast adenocarcinoma (MDA-MB-231) cells. BM7 demonstrated multifaceted anticancer mechanisms, inducing apoptosis while elevating reactive oxygen species (ROS) levels and suppressing interleukin-6 (IL-6) release in these cell lines. These findings position BM7 as a candidate of significant interest for cancer therapy. Its ability to not only induce apoptosis but also modulate cellular processes such as ROS levels and immune responses, specifically IL-6 suppression, makes BM7 a versatile and promising agent for further exploration in the realm of cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Iga Stukan
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland; Department of General Pathology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 1 Rybacka Street, 70-204, Szczecin, Poland
| | - Marek Gryzik
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
7
|
Ye G, Sun X, Li J, Mai Y, Gao R, Zhang J. Secondary metabolites of mulberry leaves exert anti-lung cancer activity through regulating the PD-L1/PD-1 signaling pathway. J Pharm Anal 2024; 14:100926. [PMID: 38974523 PMCID: PMC11226898 DOI: 10.1016/j.jpha.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 07/09/2024] Open
Abstract
Lung cancer ranks the top of malignancies that cause cancer-related deaths worldwide. The leaves of Morus alba L are traditional Chinese medicine widely applied in respiratory diseases. Our previous work has demonstrated the anti-lung cancer effect of secondary metabolites of mulberry leaf, but their mechanism of action has still not fully elucidated. We synthesized Moracin N (MAN)-Probe conjugated with alkyne to label lung cancer cells and identified protein targets by chemical proteomic analysis. MAN and its probe exerted similar growth-inhibitory effect on human lung cancer cells. Chemical proteomic results showed that MAN targeted the programmed death ligand 1 (PD-L1) checkpoint pathway and T cell receptor (TCR) signaling pathway, indicating its immune-regulatory function. Cell-free surface plasmon resonance (SPR) results showed the direct interaction of MAN with PD-L1 protein. Molecular docking analysis demonstrated that MAN bound to E158 residue of PD-L1 protein. MAN downregulated the expression levels of PD-L1 in a time- and dose-dependent manner and disrupted the PD-L1/programmed death 1 (PD-1) binding, including other secondary metabolites of mulberry leaves Guangsangon E (GSE) and Chalcomoracin (CMR). Human peripheral blood mononuclear cells (PBMCs) co-cultured with MAN-treated A549 cells, resulting in the increase of CD8+ GZMB+ T cells and the decrease of CD8+ PD-1+ T cells. It suggested that MAN exerts anti-cancer effect through blocking the PD-L1/PD-1 signaling. In vivo, MAN combined with anti-PD-1 antibody significantly inhibited lung cancer development and metastasis, indicating their synergistic effect. Taken together, secondary metabolites of mulberry leaves target the PD-L1/PD-1 signaling, enhance T cell-mediated immunity and inhibit the tumorigenesis of lung cancer. Their modulatory effect on tumor microenvironment makes them able to enhance the therapeutic efficacy of immune checkpoint inhibitors in lung cancer.
Collapse
Affiliation(s)
- Guiqin Ye
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosisand Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Laboratory, Yuhuan City Hospital, Taizhou, Zhejiang, 317600, China
- Hangzhou Medical College, Hangzhou, 311300, China
| | - Xin Sun
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosisand Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Jiuzhou Li
- Department of Neurosurgery, Binzhou People's Hospital, Binzhou, Shandong, 256600, China
| | - Yuanyuan Mai
- Hangzhou Medical College, Hangzhou, 311300, China
| | - Ruilan Gao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
| | - Jianbin Zhang
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosisand Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| |
Collapse
|
8
|
Wang Y, Ai Q, Gu M, Guan H, Yang W, Zhang M, Mao J, Lin Z, Liu Q, Liu J. Comprehensive overview of different medicinal parts from Morus alba L.: chemical compositions and pharmacological activities. Front Pharmacol 2024; 15:1364948. [PMID: 38694910 PMCID: PMC11061381 DOI: 10.3389/fphar.2024.1364948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Morus alba L., a common traditional Chinese medicine (TCM) with a centuries-old medicinal history, owned various medicinal parts like Mori folium, Mori ramulus, Mori cortex and Mori fructus. Different medical parts exhibit distinct modern pharmacological effects. Mori folium exhibited analgesic, anti-inflammatory, hypoglycemic action and lipid-regulation effects. Mori ramulus owned anti-bacterial, anti-asthmatic and diuretic activities. Mori cortex showed counteraction action of pain, inflammatory, bacterial, and platelet aggregation. Mori fructus could decompose fat, lower blood lipids and prevent vascular sclerosis. The main chemical components in Morus alba L. covered flavonoids, phenolic compounds, alkaloids, and amino acids. This article comprehensively analyzed the recent literature related to chemical components and pharmacological actions of M. alba L., summarizing 198 of ingredients and described the modern activities of different extracts and the bioactive constituents in the four parts from M. alba L. These results fully demonstrated the medicinal value of M. alba L., provided valuable references for further comprehensive development, and layed the foundation for the utilization of M. alba L.
Collapse
Affiliation(s)
- Yumei Wang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Qing Ai
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Meiling Gu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Hong Guan
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Wenqin Yang
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Meng Zhang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jialin Mao
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhao Lin
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jicheng Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
9
|
Guo L, Dong Z, Zhang X, Yang Y, Hu X, Ji Y, Li C, Wan S, Xu J, Liu C, Zhang Y, Liu L, Shi Y, Wu Z, Liu Y, Cui H. Morusinol extracted from Morus alba induces cell cycle arrest and apoptosis via inhibition of DNA damage response in melanoma by CHK1 degradation through the ubiquitin-proteasome pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154765. [PMID: 37004403 DOI: 10.1016/j.phymed.2023.154765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUD Flavonoids have a variety of biological activities, such as anti-inflammation, anti-tumor, anti-thrombosis and so on. Morusinol, as a novel isoprene flavonoid extracted from Morus alba root barks, has the effects of anti-arterial thrombosis and anti-inflammatory in previous studies. However, the anti-cancer mechanism of morusinol remains unclear. PURPOSE In present study, we mainly studied the anti-tumor effect of morusinol and its mode of action in melanoma. METHODS The anti-cancer effect of morusinol on melanoma were evaluated by using the MTT, EdU, plate clone formation and soft agar assay. Flow cytometry was used for detecting cell cycle and apoptosis. The ɣ-H2AX immunofluorescence and the alkaline comet assay were used to detect DNA damage and the Western blotting analysis was used to investigate the expressions of DNA-damage related proteins. Ubiquitination and turnover of CHK1 were also detected by using the immunoprecipitation assay. The cell line-derived xenograft (CDX) mouse models were used in vivo to evaluate the effect of morusinol on tumorigenicity. RESULTS We demonstrated that morusinol not only had the ability to inhibit cell proliferation, but also induced cell cycle arrest at G0/G1 phase, caspase-dependent apoptosis and DNA damage in human melanoma cells. In addition, morusinol effectively inhibited the growth of melanoma xenografts in vivo. More strikingly, CHK1, which played an important role in maintaining the integrity of cell cycle, genomic stability and cell viability, was down-regulated in a dose- and time-dependent manner after morusinol treatment. Further research showed that CHK1 was degraded by the ubiquitin-proteasome pathway. Whereafter, morusinol-induced cell cycle arrest, apoptosis and DNA damage were partially salvaged by overexpressing CHK1 in melanoma cell lines. Herein, further experiments demonstrated that morusinol increased the sensitivity of dacarbazine (DTIC) to chemotherapy for melanoma in vitro and in vivo. CONCLUSION Morusinol induces CHK1 degradation through the ubiquitin-proteasome pathway, thereby inducing cell cycle arrest, apoptosis and DNA damage response in melanoma. Our study firstly provided a theoretical basis for morusinol to be a candidate drug for clinical treatment of cancer, such as melanoma, alone or combinated with dacarbazine.
Collapse
Affiliation(s)
- Leiyang Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China; State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Zhen Dong
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China; Hospital of Southwest University, Medical Research Institute, Southwest University, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Xiaolin Zhang
- Hospital of Southwest University, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Yuanmiao Yang
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Xiaosong Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Yacong Ji
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China
| | - Chongyang Li
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Sicheng Wan
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Jie Xu
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Chaolong Liu
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Yanli Zhang
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China
| | - Lichao Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China
| | - Yaqiong Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China
| | - Zonghui Wu
- Hospital of Southwest University, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050000, No.139 Ziqiang Road, Qiaoxi District, Shijiazhuang, Hebei 050051, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing 400716, China; Hospital of Southwest University, Medical Research Institute, Southwest University, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|
10
|
Abbas AA, Dawood KM. Anticancer therapeutic potential of benzofuran scaffolds. RSC Adv 2023; 13:11096-11120. [PMID: 37056966 PMCID: PMC10086673 DOI: 10.1039/d3ra01383a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Benzofuran moiety is the main component of many biologically active natural and synthetic heterocycles. These heterocycles have unique therapeutic potentials and are involved in various clinical drugs. The reported results confirmed the extraordinary inhibitory potency of such benzofurans against a panel of human cancer cell lines compared with a wide array of reference anticancer drugs. Several publications about the anticancer potencies of benzofuran-based heterocycles were encountered. The recent developments of anticancer activities of both natural and synthetic benzofuran scaffolds during 2019-2022 are thoroughly covered. Many of the described benzofurans are promising candidates for development as anticancer agents based on their outstanding inhibitory potency against a panel of human cancer cells compared with reference anticancer drugs. These findings encourage medicinal chemists to explore new areas to improve human health and reduce suffering.
Collapse
Affiliation(s)
- Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| |
Collapse
|
11
|
Wei Z, Chen J, Zuo F, Guo J, Sun X, Liu D, Liu C. Traditional Chinese Medicine has great potential as candidate drugs for lung cancer: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115748. [PMID: 36162545 DOI: 10.1016/j.jep.2022.115748] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM. AIM OF THE REVIEW In this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC. MATERIALS AND METHODS We collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were "lung cancer," "traditional Chinese medicine," "pharmacology," and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers. RESULTS Based on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients. CONCLUSIONS TCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC.
Collapse
Affiliation(s)
- Zhicheng Wei
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China.
| | - Jing Chen
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China
| | - Fang Zuo
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Julie Guo
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China
| | - Xiaodong Sun
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China
| | - Deming Liu
- Chongqing Clinical Research Center for Dermatology, Chongqing Key Laboratory of Integrative Dermatology Research, Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, PR China.
| | - Conghai Liu
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China.
| |
Collapse
|
12
|
Cui XY, Park SH, Park WH. Anti-Cancer Effects of Auranofin in Human Lung Cancer Cells by Increasing Intracellular ROS Levels and Depleting GSH Levels. Molecules 2022; 27:molecules27165207. [PMID: 36014444 PMCID: PMC9412977 DOI: 10.3390/molecules27165207] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
Auranofin, as a thioredoxin reductase (TrxR) inhibitor, has promising anti-cancer activity in several cancer types. However, little is known about the inhibitory effect of auranofin on lung cancer cell growth. We, therefore, investigated the antigrowth effects of auranofin in various lung cancer cells with respect to cell death, reactive oxygen species (ROS), and glutathione (GSH) levels. Treatment with 0~5 µM auranofin decreased cell proliferation and induced cell death in Calu-6, A549, SK-LU-1, NCI-H460, and NCI-H1299 lung cancer cells at 24 h. In addition, 0~5 µM auranofin increased ROS levels, including O2•−, and depleted GSH levels in these cells. N-acetyl cysteine (NAC) prevented growth inhibition and mitochondrial membrane potential (MMP, ∆Ψm) loss in 3 and 5 µM auranofin-treated Calu-6 and A549 cells at 24 h, respectively, and decreased ROS levels and GSH depletion in these cells. In contrast, L-buthionine sulfoximine (BSO) enhanced cell death, MMP (∆Ψm) loss, ROS levels, and GSH depletion in auranofin-treated Calu-6 and A549 cells. Treatment with 3 and 5 µM auranofin induced caspase-3 activation and poly (ADP ribose) polymerase (PARP) cleavage in Calu-6 and A549 cells, respectively. Both were prevented by NAC, but enhanced by BSO. Moreover, TrxR activity was reduced in auranofin-treated Calu-6 and A549 cells. That activity was decreased by BSO, but increased by NAC. In conclusion, these findings demonstrate that auranofin-induced cell death is closely related to oxidative stress resulted from increased ROS levels and GSH depletion in lung cancer cells.
Collapse
|
13
|
Ki YS, Chung KS, Lee HW, Choi JH, Tapondjou LA, Jang E, Lee KT. Pennogenin-3-O-α-L-Rhamnopyranosyl-(1→2)-[α-L-Rhamnopyranosyl-(1→3)]-β-D-Glucopyranoside (Spiroconazol A) Isolated from Dioscorea bulbifera L. var. sativa Induces Autophagic Cell Death by p38 MAPK Activation in NSCLC Cells. Pharmaceuticals (Basel) 2022; 15:ph15070893. [PMID: 35890190 PMCID: PMC9319756 DOI: 10.3390/ph15070893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
In our previous study, we reported the isolation of pennogenin-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→3)]-β-D-glucopyranoside (spiroconazol A), a steroidal saponin, from the flowers of Dioscorea bulbifera L. var. sativa. In the present study, we aimed to investigate the effects of spiroconazol A on autophagy and its underlying mechanisms in A549 and NCI-H358 human non-small cell lung cancer (NSCLC) cells. Spiroconazol A inhibited the proliferation of NSCLC cells in a concentration- and time-dependent manner. To determine the type of programmed cell death induced by spiroconazol A, we performed a characterization of apoptosis in spiroconazol A-treated A549 cells. Our results showed that spiroconazol A significantly suppressed A549 cell viability but did not influence cell apoptosis because phosphatidylserine and caspase activation were not detected. Furthermore, spiroconazol A treatment upregulated the expression of LC3-II and autophagy-related Beclin-1 protein, suggesting that spiroconazol A induces autophagy in A549 cells. Moreover, spiroconazol A activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) but did not affect the phosphorylation of Janus kinase or ERK1/2. Notably, SB203580, a p38 MAPK inhibitor, had a significant inhibitory effect on spiroconazol A-induced autophagic cell death in A549 cells. Our results indicated that spiroconazol A-induced autophagy is dependent on p38 MAPK signaling and has potential as a therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yo Sook Ki
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
| | - Heon-Woo Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
| | - Jung-Hye Choi
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
| | - Léon Azefack Tapondjou
- Department of Chemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 183, Cameroon;
| | - Eungyeong Jang
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
- Department of Internal Medicine, Kyung Hee University Korean Medicine Hospital, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
- Correspondence: ; Tel.: +82-2-961-0860
| |
Collapse
|
14
|
Xiao Z, Huang X, Wu J, Liu T, Zhao L, Wang Q, Wang M, Shen M, Miao S, Guo D, Li H. The endocytosis of nano-Pt into non-small cell lung cancer H1299 cells and intravital therapeutic effect in vivo. Biochem Biophys Res Commun 2022; 606:80-86. [PMID: 35339756 DOI: 10.1016/j.bbrc.2022.03.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Lung cancer remains the most common fatal malignant disease, and the 5-year survival rate of patients with metastasis is merely 6%. In this research, the platinum nanocluster (short for nano-Pt) was used for optical imaging without the help of other fluorescent probes and possess targeted antitumor activity as well as low systemic toxicity. The endocytic pathway and distribution of nano-Pt in non-small cell lung cancer NSCLC H1299 cells was explored by the means of quantitative and qualitative tests. Furthermore, the targeting capability and antitumor efficiency of nano-Pt was detected by intravital imaging experiment and antitumor experiment. The research implies that nano-Pt entered H1299 cells dominatingly through macropinocytosis and clathrin-dependent endocytosis pathway, and has significant antitumor efficiency, targeting properties and reliable safety for mouse tumor, indicating this nano-Pt has great potential for clinical diagnosis and therapy of NSCLC H1299 cells.
Collapse
Affiliation(s)
- Zhongqing Xiao
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Huang
- Department of Light Chemical Engineering, School of Textiles, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Jie Wu
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ting Liu
- The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710002, China
| | - Lingyun Zhao
- Department of Endocrinology of People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450008, China
| | - Qi Wang
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Minyu Wang
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Meng Shen
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shaoyi Miao
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Di Guo
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongyun Li
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
15
|
Liu S, Zhong Z, Sun Z, Tian J, Sulaiman K, Shawky E, Fu H, Zhu W. De novo Transcriptome Analysis Revealed the Putative Pathway Genes Involved in Biosynthesis of Moracins in Morus alba L. ACS OMEGA 2022; 7:11343-11352. [PMID: 35415355 PMCID: PMC8992258 DOI: 10.1021/acsomega.2c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Moracins, a kind of 2-phenyl-benzofuran compound from Moraceae, serve as phytoalexins with antimicrobial, anti-inflammatory, antitumor, and antidiabetes activities and respond to biotic and abiotic stresses, while their biosynthetic pathway and regulatory mechanism remain unclear. Here, we report a de novo transcriptome sequencing for different tissues of seedlings, as well as leaves under different stresses, in M. alba L. A total of 88 282 unigenes were assembled with an average length of 937 bp, and 82.2% of them were annotated. On the basis of the differential expression analysis and enzymatic activity assays in vitro, moracins were traced to the phenylpropanoid pathway, and a putative biosynthetic pathway of moracins was proposed. Unigenes coding key enzymes in the pathway were identified and their expression levels were verified by real-time quantitative reverse transcription PCR (qRT-PCR). Particularly, a p-coumaroyl CoA 2'-hydroxylase was presumed to be involved in the biosynthesis of stilbenes and deoxychalcones in mulberry. Additionally, the transcription factors that might participate in the regulation of moracin biosynthesis were obtained by coexpression analysis. These results shed light on the putative biosynthetic pathway of moracins, providing a basis for further investigation in functional characterization and transcriptional regulation of moracin biosynthesis in mulberry.
Collapse
Affiliation(s)
- Shengzhi Liu
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhuoheng Zhong
- College
of Life Sciences and Medicine, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Zijian Sun
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jingkui Tian
- The
Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang
Cancer Hospital), Institute of Basic Medicine
and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| | - Kaisa Sulaiman
- The
Xinjiang Uygur Autonomous Region National Institute of Traditional
Chinese Medicine, Urumchi, Xinjiang 830092, China
| | - Eman Shawky
- Department
of Pharmacognosy, Faculty of Pharmacy, Alexandria
University, Alexandria 21521, Egypt
| | - Hongwei Fu
- College
of Life Sciences and Medicine, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Wei Zhu
- The
Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang
Cancer Hospital), Institute of Basic Medicine
and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| |
Collapse
|
16
|
Attri S, Kaur P, Singh D, Kaur H, Rashid F, Kumar A, Singh B, Bedi N, Arora S. Induction of apoptosis in A431 cells via ROS generation and p53-mediated pathway by chloroform fraction of Argemone mexicana (Pepaveraceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17189-17208. [PMID: 34664164 DOI: 10.1007/s11356-021-16696-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Argemone mexicana(Pepaveraceae) is an important medicinal plant commonly known as 'maxican prickly poppy' and is traditionally used to treat skin diseases. In the present study, the extract/fractions of aerial parts of A. mexicana after carrying out the organoleptic characteristics were sequentially extracted with the solvents of increasing polarities. Total fractions were examined for their radical scavenging activities in DPPH and DNA nicking assays. Among all, maximum antioxidant activity was shown by chloroform fraction (AmC) in DPPH assay with IC50 of 26.12 μg/ml, and DNA nicking assay showed 80.91% protective potential. The AmC fraction was analyzed for its antibacterial, cytotoxic potential, cell cycle analysis, mitochondrial membrane potential (MMP) and accumulation of reactive oxygen species (ROS) using A431 cell line. The AmC fraction exhibited remarkable antibacterial activity against bacterial strains in the order Klebsiella pneumoniae> Bacillussubtilis> Salmonella typhi> Staphylococcus epidermidis. The cytotoxic potential of the AmC fraction was analyzed in skin epidermoid carcinoma (A431) cells, osteosarcoma (MG-63) and cervical (HeLa) cell lines with a GI50 value of 47.04 μg/ml, 91.46 μg/ml and 102.90 μg/ml, respectively. The AmC fraction was extended further to explore its role in cell death using A431 cell line. Phase contrast and scanning electron microscopic studies on A431 cells exhibited all the characteristics indicative of apoptosis, viz., viability loss, cell shrinkage, cell rounding-off, DNA fragmentation and formation of apoptotic bodies. Flow cytometric analysis revealed enhanced ROS level, decreased MMP and arrest cell cycle at the G0/G1 phase further strengthened cell death by apoptosis. Increased expressions of apoptotic markers (p53, PUMA, cyt c, Fas and Apaf-1) were confirmed by RT-qPCR analysis. Furthermore, the AmC fraction was subjected to ultra-high-performance liquid chromatography, which revealed the presence of different polyphenols in the order: caffeic acid> epicatechin> kaempferol> chlorogenic acid> gallic acid> catechin> ellagic acid >umbeliferone> quercetin> coumaric acid. A critical analysis of results revealed that the AmC fraction induced cell death in epidermoid carcinoma cells via ROS and p53-mediated apoptotic pathway which may be ascribed to the presence of polyphenols in it.
Collapse
Affiliation(s)
- Shivani Attri
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhjot Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Davinder Singh
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harneetpal Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Farhana Rashid
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Avinash Kumar
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| | - Saroj Arora
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
17
|
Shu Y, Sun X, Ye G, Xu M, Wu Z, Wu C, Li S, Tian J, Han H, Zhang J. DHOK Exerts Anti-Cancer Effect Through Autophagy Inhibition in Colorectal Cancer. Front Cell Dev Biol 2021; 9:760022. [PMID: 34977014 PMCID: PMC8719673 DOI: 10.3389/fcell.2021.760022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
DHOK (14,15β-dihydroxyklaineanone) is a novel diterpene isolated from roots of Eurycoma longifolia Jack, a traditional herb widely applied in Southeast Asia. It is reported that DHOK has cytotoxic effect on cancer cells, but its anti-cancer mechanism has still been not clear. In our study, we first observed that DHOK inhibits cell proliferation of colorectal cancer cells in a time- and dose-dependent manner. Next, we performed transcriptome sequencing to identify the targets of DHOK and found that autophagy-related signaling pathways are involved under DHOK treatment. Indeed, in DHOK-treated cells, the level of autophagosome marker LC3 and the formation of GFP-LC3 puncta were decreased, indicating the reduction of autophagy. Moreover, confocal microscopy results revealed the lysosomal activity and the formation of autolysosomes are also inhibited. Our western blotting results demonstrated the activation of mammalian target of rapamycin (mTOR) signaling pathway by DHOK, which may be attributed to the enhancement of ERK and AKT activity. Functionally, activation of autophagy attenuated DHOK-caused cell death, indicating that autophagy serves as cell survival. In xenograft mouse model, our results also showed that DHOK activates the mTOR signaling pathway, decreases autophagy level and inhibits the tumorigenesis of colon cancer. Taken together, we revealed the molecular mechanism of DHOK against cancer and our results also demonstrate great potential of DHOK in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yuhan Shu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Department of Oncology, Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xin Sun
- Department of Oncology, Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Guiqin Ye
- Hangzhou Medical College, Hangzhou, China
| | - Mengting Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Zhipan Wu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Caixia Wu
- Department of Oncology, Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shouxin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jingkui Tian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Haote Han
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Jianbin Zhang, ; Haote Han,
| | - Jianbin Zhang
- Department of Oncology, Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Jianbin Zhang, ; Haote Han,
| |
Collapse
|
18
|
Eldehna WM, Salem R, Elsayed ZM, Al-Warhi T, Knany HR, Ayyad RR, Traiki TB, Abdulla MH, Ahmad R, Abdel-Aziz HA, El-Haggar R. Development of novel benzofuran-isatin conjugates as potential antiproliferative agents with apoptosis inducing mechanism in Colon cancer. J Enzyme Inhib Med Chem 2021; 36:1424-1435. [PMID: 34176414 PMCID: PMC8245078 DOI: 10.1080/14756366.2021.1944127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
In the current work, a new set of carbohydrazide linked benzofuran-isatin conjugates (5a-e and 7a-i) was designed and synthesised. The anticancer activity for compounds (5b-d, 7a, 7b, 7d and 7g) was measured against NCI-55 human cancer cell lines. Compound 5d was the most efficient, and thus subjected to the five-dose screen where it showed excellent broad activity against almost all tested cancer subpanels. Furthermore, all conjugates (5a-e and 7a-i) showed a good anti-proliferative activity towards colorectal cancer SW-620 and HT-29 cell lines, with an excellent inhibitory effect for compounds 5a and 5d (IC50 = 8.7 and 9.4 µM (5a), and 6.5 and 9.8 µM for (5d), respectively). Both compounds displayed selective cytotoxicity with good safety profile. In addition, both compounds provoked apoptosis in a dose dependent manner in SW-620 cells. Also, they significantly inhibited the anti-apoptotic Bcl2 protein expression and increased the cleaved PARP level that resulted in SW-620 cells apoptosis.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Zainab M. Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hamada R. Knany
- Department of Pharmacognosy, College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rezk R. Ayyad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Thamer Bin Traiki
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Maha-Hamadien Abdulla
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Khalid University Hospital, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, Egypt
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
19
|
Al-Sanea MM, Al-Ansary GH, Elsayed ZM, Maklad RM, Elkaeed EB, Abdelgawad MA, Bukhari SNA, Abdel-Aziz MM, Suliman H, Eldehna WM. Development of 3-methyl/3-(morpholinomethyl)benzofuran derivatives as novel antitumor agents towards non-small cell lung cancer cells. J Enzyme Inhib Med Chem 2021; 36:987-999. [PMID: 33985397 PMCID: PMC8128204 DOI: 10.1080/14756366.2021.1915302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the most lethal malignancies, lung cancer is considered to account for approximately one-fifth of all malignant tumours-related deaths worldwide. This study reports the synthesis and in vitro biological assessment of two sets of 3-methylbenzofurans (4a-d, 6a-c, 8a-c and 11) and 3-(morpholinomethyl)benzofurans (15a-c, 16a-b, 17a-b and 18) as potential anticancer agents towards non-small cell lung carcinoma A549 and NCI-H23 cell lines, with VEGFR-2 inhibitory activity. The target benzofuran-based derivatives efficiently inhibited the growth of both A549 and NCI-H23 cell lines with IC50 spanning in ranges 1.48-47.02 and 0.49-68.9 µM, respectively. The three most active benzofurans (4b, 15a and 16a) were further investigated for their effects on the cell cycle progression and apoptosis in A549 (for 4b) and NCI-H23 (for 15a and 16a) cell lines. Furthermore, benzofurans 4b, 15a and 16a displayed good VEGFR-2 inhibitory activity with IC50 equal 77.97, 132.5 and 45.4 nM, respectively.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ghada H. Al-Ansary
- Department of Pharmaceutical Chemistry, Pharmacy Program, Batterejee Medical College, Jeddah, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Zainab M. Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Raed M. Maklad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- Institute of Drug Discovery and Development, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Marwa M. Abdel-Aziz
- The Regional Center for Mycology & Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Howayda Suliman
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
20
|
Gil HS, Lee JH, Farag AK, Hassan AHE, Chung KS, Choi JH, Roh EJ, Lee KT. AKF-D52, a Synthetic Phenoxypyrimidine-Urea Derivative, Triggers Extrinsic/Intrinsic Apoptosis and Cytoprotective Autophagy in Human Non-Small Cell Lung Cancer Cells. Cancers (Basel) 2021; 13:cancers13225849. [PMID: 34831003 PMCID: PMC8616202 DOI: 10.3390/cancers13225849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary We previously reported the antiproliferative effects of a phenoxypyridine urea derivative. In this study, we aimed to investigate the antiproliferative effects of 1-(3,5-dimethoxyphenyl)-3-(4-(3-methoxyphenoxy)-2-((4-morpholinophenyl)amino)pyrimidin-5-yl)urea (AKF-D52) in non-small cell lung cancer cells. We found that (i) AKF-D52 induces apoptosis in caspase-dependent and caspase-independent pathways; (ii) AKF-D52-induced apoptosis is caused by the clustering of a death-inducing signaling complex and mitochondrial-dependent signaling; (iii) AKF-D52 induces cytoprotective autophagy, and pre-treatment with an autophagy inhibitor enhances the apoptotic effect of AKF-D52; and (iv) AKF-D52-induced apoptosis and autophagy are attenuated by the reactive oxygen species (ROS) scavenger α-tocopherol. Furthermore, AKF-D52 suppressed tumor growth in a xenograft mouse model. Collectively, our findings regarding the efficacy and molecular mechanisms of AKF-D52 identify this compound as a potential therapeutic agent for the treatment of lung cancer. Abstract Previously, we discovered that 1-(3,5-dimethoxyphenyl)-3-(4-(3-methoxyphenoxy)-2-((4-morpholinophenyl)amino)pyrimidin-5-yl)urea (AKF-D52), a synthetic phenoxypyrimidine urea derivative, acts as a growth inhibitor of various cancer cell types. In this study, we elucidated the antiproliferative properties of AFK-D52 and underlying mechanisms in non-small cell lung cancer (NSCLC) cells and an A549 xenograft animal model. AKF-D52 was found to induce both caspase-dependent and -independent apoptotic cell death. Furthermore, the mitochondrial component of the AKF-D52-induced apoptosis mechanism involves a reduction in mitochondrial membrane potential and regulation in B cell lymphoma-2 family protein expression. Moreover, AKF-D52 activates the extrinsic pathway through up-regulated expression of death receptor 3 and Fas and then the formation of a death-inducing signaling complex. AKF-D52 also induced autophagy by increasing acidic vesicular organelle formation and microtubule-associated protein 1A/1B-light chain 3-II levels and reducing p62 levels. Notably, pretreatment with autophagy inhibitors enhanced AKF-D52-induced cell death, indicating that the induced autophagy is cytoprotective. AKF-D52 treatment also triggered reactive oxygen species (ROS) production in NSCLC cells, whereas the antioxidant α-tocopherol abolished AKF-D52-induced cell death. In a xenograft lung cancer mouse model, AKF-D52 administration attenuated tumor growth by inducing apoptosis and autophagy in tumor tissues. Collectively, our data indicate that AKF-D52-induced ROS production plays a role in mediating apoptosis and cytoprotective autophagy in NSCLC.
Collapse
Affiliation(s)
- Hyo-Sun Gil
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (H.-S.G.); (J.-H.L.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
| | - Jeong-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (H.-S.G.); (J.-H.L.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
| | - Ahmed K. Farag
- Manufacturing Department, Curachem, Inc., Cheongju-si 28161, Chungcheongbuk-do, Korea;
| | - Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (H.-S.G.); (J.-H.L.); (K.-S.C.)
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea
| | - Eun-Joo Roh
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Seoul 02792, Korea;
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (H.-S.G.); (J.-H.L.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-9610860; Fax: +82-2-9619580
| |
Collapse
|
21
|
Wang J, Wu Q, Ding L, Song S, Li Y, Shi L, Wang T, Zhao D, Wang Z, Li X. Therapeutic Effects and Molecular Mechanisms of Bioactive Compounds Against Respiratory Diseases: Traditional Chinese Medicine Theory and High-Frequency Use. Front Pharmacol 2021; 12:734450. [PMID: 34512360 PMCID: PMC8429615 DOI: 10.3389/fphar.2021.734450] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
Respiratory diseases, especially the pandemic of respiratory infectious diseases and refractory chronic lung diseases, remain a key clinical issue and research hot spot due to their high prevalence rates and poor prognosis. In this review, we aimed to summarize the recent advances in the therapeutic effects and molecular mechanisms of key common bioactive compounds from Chinese herbal medicine. Based on the theories of traditional Chinese medicine related to lung diseases, we searched several electronic databases to determine the high-frequency Chinese medicines in clinical application. The active compounds and metabolites from the selected medicines were identified using the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) by analyzing oral bioavailability and drug similarity index. Then, the pharmacological effects and molecular mechanisms of the selected bioactive compounds in the viral and bacterial infections, inflammation, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, and lung cancer were summarized. We found that 31 bioactive compounds from the selected 10 common Chinese herbs, such as epigallocatechin-3-gallate (EGCG), kaempferol, isorhamnetin, quercetin, and β-sitosterol, can mainly regulate NF-κB, Nrf2/HO-1, NLRP3, TGF-β/Smad, MAPK, and PI3K/Akt/mTOR pathways to inhibit infection, inflammation, extracellular matrix deposition, and tumor growth in a series of lung-related diseases. This review provides novel perspectives on the preclinical study and clinical application of Chinese herbal medicines and their bioactive compounds against respiratory diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Ding
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yaxin Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Li Shi
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Tan Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
22
|
Yin YZ, Yao SH, Li CG, Ma YS, Kang ZJ, Zhang JJ, Jia CY, Hou LK, Qin SS, Fan X, Zhang H, Yang MD, Zhang DD, Lu GX, Wang HM, Gu LP, Tian LL, Wang PY, Cao PS, Wu W, Cao ZY, Lv ZW, Shi BW, Wu CY, Jiang GX, Fu D, Yu F. Systematic analysis using a bioinformatics strategy identifies SFTA1P and LINC00519 as potential prognostic biomarkers for lung squamous cell carcinoma. Am J Transl Res 2021; 13:168-182. [PMID: 33527016 PMCID: PMC7847518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Lung cancer has high incidence and mortality rates, in which lung squamous cell carcinoma (LUSC) is a primary type of non-small cell lung carcinoma (NSCLC). The aim of our study was to discover long non-coding RNAs (lncRNAs) associated with diagnose and prognosis for LUSC. RNA sequencing data obtained from LUSC samples were extracted from The Cancer Genome Atlas database (TCGA). Two prognosis-associated lncRNAs (including SFTA1P and LINC00519) were selected from LUSC samples, and the expression levels were also verified to be associated abnormal in LUSC clinical samples. Our findings demonstrate that lncRNAs SFTA1P and LINC00519 exert important functions in human LUSC and may serve as new targets for LUSC diagnosis and therapy.
Collapse
Affiliation(s)
- Yu-Zhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
- Shanghai Clinical College, Anhui Medical UniversityHefei 230032, China
| | - Shi-Hua Yao
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai HospitalShanghai 200433, China
| | - Chun-Guang Li
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai HospitalShanghai 200433, China
| | - Yu-Shui Ma
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
- Pancreatic Cancer Institute, Fudan UniversityShanghai 200032, China
- Department of Pancreatic and Hepatobiliary Surgery, Cancer Hospital, Fudan University Shanghai Cancer CenterShanghai 200032, China
| | - Zhou-Jun Kang
- Department of Emergency, Navy Military Medical University Affiliated Changhai HospitalShanghai 200433, China
| | - Jia-Jia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Li-Kun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai 200433, China
| | - Shan-Shan Qin
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Meng-Die Yang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Li-Peng Gu
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Lin-Lin Tian
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Ping-Sheng Cao
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Wei Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai 200433, China
| | - Zi-Yang Cao
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai 200433, China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Bo-Wen Shi
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai HospitalShanghai 200433, China
| | - Chun-Yan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai 200433, China
| | - Geng-Xi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai HospitalShanghai 200433, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
- Shanghai Clinical College, Anhui Medical UniversityHefei 230032, China
| |
Collapse
|
23
|
Zhang JJ, Hong J, Ma YS, Shi Y, Zhang DD, Yang XL, Jia CY, Yin YZ, Jiang GX, Fu D, Yu F. Identified GNGT1 and NMU as Combined Diagnosis Biomarker of Non-Small-Cell Lung Cancer Utilizing Bioinformatics and Logistic Regression. DISEASE MARKERS 2021; 2021:6696198. [PMID: 33505535 PMCID: PMC7806402 DOI: 10.1155/2021/6696198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most devastating diseases worldwide. The study is aimed at identifying reliable prognostic biomarkers and to improve understanding of cancer initiation and progression mechanisms. RNA-Seq data were downloaded from The Cancer Genome Atlas (TCGA) database. Subsequently, comprehensive bioinformatics analysis incorporating gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the protein-protein interaction (PPI) network was conducted to identify differentially expressed genes (DEGs) closely associated with NSCLC. Eight hub genes were screened out using Molecular Complex Detection (MCODE) and cytoHubba. The prognostic and diagnostic values of the hub genes were further confirmed by survival analysis and receiver operating characteristic (ROC) curve analysis. Hub genes were validated by other datasets, such as the Oncomine, Human Protein Atlas, and cBioPortal databases. Ultimately, logistic regression analysis was conducted to evaluate the diagnostic potential of the two identified biomarkers. Screening removed 1,411 DEGs, including 1,362 upregulated and 49 downregulated genes. Pathway enrichment analysis of the DEGs examined the Ras signaling pathway, alcoholism, and other factors. Ultimately, eight prioritized genes (GNGT1, GNG4, NMU, GCG, TAC1, GAST, GCGR1, and NPSR1) were identified as hub genes. High hub gene expression was significantly associated with worse overall survival in patients with NSCLC. The ROC curves showed that these hub genes had diagnostic value. The mRNA expressions of GNGT1 and NMU were low in the Oncomine database. Their protein expressions and genetic alterations were also revealed. Finally, logistic regression analysis indicated that combining the two biomarkers substantially improved the ability to discriminate NSCLC. GNGT1 and NMU identified in the current study may empower further discovery of the molecular mechanisms underlying NSCLC's initiation and progression.
Collapse
Affiliation(s)
- Jia-Jia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiang Hong
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai 200433, China
| | - Yu-Shui Ma
- Department of Pancreatic and Hepatobiliary Surgery, Cancer Hospital, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Shi
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu-Zhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Geng-Xi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai 200433, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|