1
|
Guillen E, Terrones H, de Terrones TC, Simirgiotis MJ, Hájek J, Cheel J, Sepulveda B, Areche C. Microwave-Assisted Extraction of Secondary Metabolites Using Ethyl Lactate Green Solvent from Ambrosia arborescens: LC/ESI-MS/MS and Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1213. [PMID: 38732429 PMCID: PMC11085450 DOI: 10.3390/plants13091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Alternative solvents are being tested as green solvents to replace the traditional organic solvents used in both academy and industry. Some of these are already available, such as ethyl lactate, cyrene, limonene, glycerol, and others. This alternative explores eco-friendly processes for extracting secondary metabolites from nature, thus increasing the number of unconventional extraction methods with lower environmental impact over conventional methods. In this context, the Peruvian Ambrosia arborescens was our model while exploring a microwave-assisted extraction (MAE) approach over maceration. The objective of this study was to perform a phytochemical study including UHPLC-ESI-MS/MS and the antioxidant activity of Ambrosia arborescens, using sustainable strategies by mixing both microwaves and ethyl lactate as a green solvent. The results showed that ethyl lactate/MAE (15.07%) achieved a higher extraction yield than methanol/maceration (12.6%). In the case of the isolation of psilostachyin, it was similar to ethyl lactate (0.44%) when compared to methanol (0.40%). Regarding UHPLC-ESI-MS/MS studies, the results were similar. Twenty-eight compounds were identified in the ethyl lactate/MAE and methanol/maceration extracts, except for the tentative identification of two additional amino acids (peaks 4 and 6) in the MeOH extract. In relation to the antioxidant assay, the activity of the ethyl lactate extract was a little higher than the methanol extract in terms of ORAC (715.38 ± 3.2) and DPPH (263.04 ± 2.8). This study on A. arborescens demonstrated that the unconventional techniques, such as MAE related to ethyl lactate, could replace maceration/MeOH for the extraction and isolation of metabolites from diverse sources. This finding showed the potential of unconventional methods with green solvents to provide eco-friendly methods based on green chemistry.
Collapse
Affiliation(s)
- Evelyn Guillen
- Departamento de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín, Arequipa 68513, Peru; (E.G.); (H.T.); (T.C.d.T.)
| | - Hector Terrones
- Departamento de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín, Arequipa 68513, Peru; (E.G.); (H.T.); (T.C.d.T.)
| | - Teresa Cano de Terrones
- Departamento de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín, Arequipa 68513, Peru; (E.G.); (H.T.); (T.C.d.T.)
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Campus Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Jan Hájek
- Laboratory of Algal Biotechnology, Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (J.H.); (J.C.)
| | - José Cheel
- Laboratory of Algal Biotechnology, Centre ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; (J.H.); (J.C.)
| | - Beatriz Sepulveda
- Departamento de Ciencias Químicas, Universidad Andrés Bello, Campus Viña del Mar, Quillota 980, Viña del Mar 2520000, Chile;
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nuñoa, Santiago 8320000, Chile
| |
Collapse
|
2
|
Rakotonirina FMV, Donno D, Razafindrakoto ZR, Tombozara N, Rafanomezantsoa RM, Andrianjara C, Ramanitrahasimbola D, Beccaro GL. Quali-Quantitative Fingerprinting of the Fruit Extract of Uapaca bojeri Bail. ( Euphorbiaceae) and Its Antioxidant, Analgesic, Anti-Inflammatory, and Antihyperglycemic Effects: An Example of Biodiversity Conservation and Sustainable Use of Natural Resources in Madagascar. PLANTS (BASEL, SWITZERLAND) 2023; 12:475. [PMID: 36771558 PMCID: PMC9921778 DOI: 10.3390/plants12030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Antioxidants are important supplements for the human body for their roles in human life for the maintenance of homeostasis. Tapia fruits (Uapaca bojeri) are used by the riverain population of the Tapia forests in Madagascar as complementary foods. This study aims to quantify the main antioxidants in the U. bojeri fruits to verify their contribution to the enhancement of their anti-inflammatory and antihyperglycemic effects. Standard phytochemical screening was used for qualitative analysis, while spectrophotometric (TPC, TAC, and TFC) and chromatographic analyses (HPLC) were used to quantify several phytochemicals in U. bojeri fruits. The antioxidant activity was evaluated using DPPH and FRAP assays. The writhing test was used for the analgesic effects, the carrageenan-induced paw edema was used for the anti-inflammatory activity, and OGTT was used to test the anti-hyperglycemia property of the MEUB in mice. Several phytocompounds were detected and quantified in the fruits, including succinic acid (67.73%) as the main quantified compound. Fruits exerted a good antioxidant capacity and showed analgesic, anti-inflammatory, and antihyperglycemic activities in mice. Isolation of the bioactive compounds should be carried out to confirm these pharmacological properties and develop health-promoting food products or medicinal applications derived from this species.
Collapse
Affiliation(s)
- Finiavana Mihary Valisoa Rakotonirina
- Centre Hospitalier Universitaire Andrainjato Fianarantsoa, Faculté de Médecine, Université de Fianarantsoa, Antananarivo 101, Madagascar
- Ecole Doctorale de Geochimie et Chimie Médicinale, Université de Fianarantsoa, Antananarivo 101, Madagascar
| | - Dario Donno
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco, Italy
| | | | | | | | | | - David Ramanitrahasimbola
- Institut Malgache de Recherches Appliquées, Antananarivo 101, Madagascar
- Mention Pharmacie, Faculté de Médecine, Université d’Antananarivo, Antananarivo 101, Madagascar
| | - Gabriele Loris Beccaro
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco, Italy
| |
Collapse
|
3
|
Salam HS, Tawfik MM, Elnagar MR, Mohammed HA, Zarka MA, Awad NS. Potential Apoptotic Activities of Hylocereus undatus Peel and Pulp Extracts in MCF-7 and Caco-2 Cancer Cell Lines. PLANTS 2022; 11:plants11172192. [PMID: 36079573 PMCID: PMC9459728 DOI: 10.3390/plants11172192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
There is a huge demand for novel anticancer agents with fewer side effects compared to current therapies. Pitaya, or dragon fruit, is a reservoir of potent anticancer compounds. This research aimed to analyze the phytochemical components of Hylocereus undatus pulp and peel extracts using LC-MS and GC-MS, and to investigate the in vitro effects of both extracts against cancer (breast, MCF-7, and colon, Caco-2) and normal (lung; WI-38 and breast; MCF-10A) cell proliferation using the MTT assay. The apoptosis potential of the anticancer effects was also evaluated using flow cytometry, RT-PCR, and Western blot. The total phenolic and flavonoid contents in the peel extract were significantly higher than those in the pulp extract. Compared to the flavonoid and phenolic acid standards, the LC-MS analysis revealed the presence of nine compounds, which were represented as 84.32 and 5.29 µg/g of the flavonoids and 686.11 and 148.72 µg/g of the phenolic acids in the peel and pulp extracts, respectively. Among the identified compounds, chlorogenic acid, caffeic acid, ferulic acid, and rutin were found at the highest concentration in both plant extracts. Both extracts displayed cytotoxic activity against MCF-7 and Caco-2 cancer cells after 48 h of treatment at IC50 values ranging from 14 to 53 μg/mL with high selective indices against normal WI-38 and MCF-10A cell lines. The increase in apoptosis was revealed by the overexpression of p53, BAX, and caspase-9 and the downregulation of antiapoptotic Bcl-2 mRNA and protein expressions. The results indicate that H. undatus extracts can be a plant source for cancer therapy.
Collapse
Affiliation(s)
- Hanin S. Salam
- College of Biotechnology, Misr University for Science and Technology, Giza 12563, Egypt
| | - Mohamed M. Tawfik
- Zoology Department, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt
- Department of Pharmacology, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
- Correspondence: (M.R.E.); (H.A.M.)
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt
- Correspondence: (M.R.E.); (H.A.M.)
| | - Mohamed A. Zarka
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October City, Giza 12563, Egypt
- Department of Pharmacognosy, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Nabil S. Awad
- College of Biotechnology, Misr University for Science and Technology, Giza 12563, Egypt
- Department of Genetics, Faculty of Agriculture and Natural Resources, Aswan University, Aswan 81528, Egypt
| |
Collapse
|
4
|
Cao S, Hu M, Yang L, Li M, Shi Z, Cheng W, Zhang Y, Chen F, Wang S, Zhang Q. Chemical Constituent Analysis of Ranunculus Sceleratus L. Using Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole-Orbitrap High-Resolution Mass Spectrometry. Molecules 2022; 27:molecules27103299. [PMID: 35630779 PMCID: PMC9145087 DOI: 10.3390/molecules27103299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Ranunculus sceleratus L.(RS) has shown various pharmacological effects in traditional Chinese medicine. In our previous study, the positive therapeutic effect on α-naphthylisothiocyanate induced intrahepatic cholestasis in rats was obtained using TianJiu treatment with fresh RS. However, the chemical profile of RS has not been clearly clarified, which impedes the research progress on the therapeutic effect of RS. Herein, an ultra-high performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) method was developed to rapidly separate and identify multiple constituents in the 80% methanol extract of RS. A total of sixty-nine compounds (19 flavonoids, 22 organic acids, 6 coumarins, 4 lignans, 14 nitrogenous compounds, and 4 anthraquinones) were successfully characterized. A total of 12 of these compounds were unambiguously identified by standard samples. Their mass spectrometric fragmentation pathways were investigated. It is worth noting that flavonoids and lignans were identified for the first time in RS. In this study, we successfully provide the first comprehensive report on identifying major chemical constituents in RS by UHPLC-Q-Orbitrap HRMS. The obtained results enrich the RS chemical profile, paving the way for further phytochemical study, quality control, and pharmacological investigation of RS.
Collapse
Affiliation(s)
- Shanshan Cao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
| | - Min Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
| | - Lingli Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
| | - Meiqin Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
| | - Zhen Shi
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
| | - Wenming Cheng
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
- Correspondence: (W.C.); (Q.Z.)
| | - Yazhong Zhang
- Anhui Institute for Food and Drug Control, Hefei 230051, China;
| | - Fei Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
| | - Sheng Wang
- The Center for Scientific Research of Anhui Medical University, Hefei 230032, China;
| | - Qunlin Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.C.); (M.H.); (L.Y.); (M.L.); (Z.S.); (F.C.)
- Correspondence: (W.C.); (Q.Z.)
| |
Collapse
|
5
|
Torres TMS, Guedes JAC, de Brito ES, Mazzutti S, Ferreira SRS. High-pressure biorefining of ora-pro-nobis (Pereskia aculeata). J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Analysis of Carotenoids in Haloarchaea Species from Atacama Saline Lakes by High Resolution UHPLC-Q-Orbitrap-Mass Spectrometry: Antioxidant Potential and Biological Effect on Cell Viability. Antioxidants (Basel) 2021; 10:antiox10081230. [PMID: 34439478 PMCID: PMC8389013 DOI: 10.3390/antiox10081230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
Haloarchaea are extreme halophilic microorganisms belonging to the domain Archaea, phylum Euryarchaeota, and are producers of interesting antioxidant carotenoid compounds. In this study, four new strains of Haloarcula sp., isolated from saline lakes of the Atacama Desert, are reported and studied by high-resolution mass spectrometry (UHPLC-Q-Orbitrap-MS/MS) for the first time. In addition, determination of the carotenoid pigment profile from the new strains of Haloarcula sp., plus two strains of Halorubrum tebenquichense, and their antioxidant activity by means of several methods is reported. The effect of biomass on cellular viability in skin cell lines was also evaluated by MTT assay. The cholinesterase inhibition capacity of six haloarchaea (Haloarcula sp. ALT-23; Haloarcula sp. TeSe-41; Haloarcula sp. TeSe-51; Haloarcula sp. Te Se-89 and Halorubrum tebenquichense strains TeSe-85 and Te Se-86) is also reported for the first time. AChE inhibition IC50 was 2.96 ± 0.08 μg/mL and BuChE inhibition IC50 was 2.39 ± 0.09 μg/mL for the most active strain, Halorubrum tebenquichense Te Se-85, respectively, which is more active in BuCHe than that of the standard galantamine. Docking calculation showed that carotenoids can exert their inhibitory activity fitting into the enzyme pocket by their halves, in the presence of cholinesterase dimers.
Collapse
|
7
|
Larrazábal-Fuentes MJ, Fernández-Galleguillos C, Palma-Ramírez J, Romero-Parra J, Sepúlveda K, Galetovic A, González J, Paredes A, Bórquez J, Simirgiotis MJ, Echeverría J. Chemical Profiling, Antioxidant, Anticholinesterase, and Antiprotozoal Potentials of Artemisia copa Phil. (Asteraceae). Front Pharmacol 2020; 11:594174. [PMID: 33343365 PMCID: PMC7746865 DOI: 10.3389/fphar.2020.594174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Artemisia copa Phil. (Asteraceae) (known as copa-copa) is a native species of Chile used as an infusion in traditional medicine by Atacameños people in the Altiplano, highlands of northern Chile. In this research, we have investigated for the first time the cholinesterase inhibition potential against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the chemical profiling of the infusions prepared from the aerial parts of A. copa by high resolution spectrometry. In addition, total phenolic, total flavonoid content, antioxidant (DPPH, FRAP, and ORAC) and antiprozoal activity were tested. Artemisia copa showed good inhibitory activity against AChE and BChE (3.92 ± 0.08 µg/ml and 44.13 ± 0.10 µg/ml). The infusion displayed a total phenolics content of 155.6 ± 2.9 mg of gallic acid equivalents/g and total flavonoid content of 5.5 ± 0.2 mg quercetin equivalents/g. Additionally, trypanocidal activity against Trypanosoma cruzi was found (LD50 of 131.8 µg/ml). Forty-seven metabolites were detected in the infusion of A. copa including several phenolic acids and flavonoids which were rapidly identified using ultrahigh performance liquid chromatography orbitrap mass spectrometry analysis (UHPLC-Orbitrap-MS) for chemical profiling. The major compounds identified in the infusions were studied by molecular docking against AChE and BChE. The UHPLC-MS fingerprints generated can be also used for the authentication of these endemic species. These findings reveal that A. copa infusions can be used as beverages with protective effects.
Collapse
Affiliation(s)
- María José Larrazábal-Fuentes
- Unidad Alimentos, Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | | | - Jenifer Palma-Ramírez
- Unidad Alimentos, Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Javier Romero-Parra
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Kevin Sepúlveda
- Unidad de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | | | - Jorge González
- Unidad de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Adrián Paredes
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Jorge Bórquez
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Mario J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
8
|
Barrientos RE, Ahmed S, Cortés C, Fernández-Galleguillos C, Romero-Parra J, Simirgiotis MJ, Echeverría J. Chemical Fingerprinting and Biological Evaluation of the Endemic Chilean Fruit Greigia sphacelata (Ruiz and Pav.) Regel (Bromeliaceae) by UHPLC-PDA-Orbitrap-Mass Spectrometry. Molecules 2020; 25:E3750. [PMID: 32824604 PMCID: PMC7464012 DOI: 10.3390/molecules25163750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
Greigia sphacelata (Ruiz and Pav.) Regel (Bromeliaceae) is a Chilean endemic plant popularly known as "quiscal" and produces an edible fruit consumed by the local Mapuche communities named as "chupón". In this study, several metabolites including phenolic acids, organic acids, sugar derivatives, catechins, proanthocyanidins, fatty acids, iridoids, coumarins, benzophenone, flavonoids, and terpenes were identified in G. sphacelata fruits using ultrahigh performance liquid chromatography-photodiode array detection coupled with a Orbitrap mass spectrometry (UHPLC-PDA-Orbitrap-MS) analysis for the first time. The fruits showed moderate antioxidant capacities (i.e., 487.11 ± 26.22 μmol TE/g dry weight) in the stable radical DPPH assay, 169.08 ± 9.81 TE/g dry weight in the ferric reducing power assay, 190.32 ± 6.23 TE/g dry weight in the ABTS assay, and 76.46 ± 3.18% inhibition in the superoxide anion scavenging assay. The cholinesterase inhibitory potential was evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). From the findings, promising results were observed for pulp and seeds. Our findings suggest that G. sphacelata fruits are a rich source of diverse secondary metabolites with antioxidant capacities. In addition, the inhibitory effects against AChE and BChE suggest that natural products or food supplements derived from G. sphacelata fruits are of interest for their neuroprotective potential.
Collapse
Affiliation(s)
- Ruth E. Barrientos
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (R.E.B.); (S.A.); (C.C.); (C.F.-G.)
| | - Shakeel Ahmed
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (R.E.B.); (S.A.); (C.C.); (C.F.-G.)
| | - Carmen Cortés
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (R.E.B.); (S.A.); (C.C.); (C.F.-G.)
| | - Carlos Fernández-Galleguillos
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (R.E.B.); (S.A.); (C.C.); (C.F.-G.)
| | - Javier Romero-Parra
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, Casilla 233, Santiago 8380544, Chile;
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (R.E.B.); (S.A.); (C.C.); (C.F.-G.)
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170002, Chile
| |
Collapse
|