1
|
Cruz-Antonio L, Sánchez-Mendoza ME, García-Machorro J, López-Lorenzo Y, Arrieta J. Study of the Effect of Methyl Eugenol on Gastric Damage Produced by Spinal Cord Injury Model in the Rat. Molecules 2024; 30:86. [PMID: 39795143 PMCID: PMC11721453 DOI: 10.3390/molecules30010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Traumatic spinal cord injury (SCI) is a serious medical condition that places patients at high risk of developing gastric ulceration and gastrointestinal bleeding. One preventative strategy involves the use of omeprazole; however, its chronic use is associated with adverse effects, highlighting the need for alternative therapies. This study evaluated the protective effects of methyl eugenol (ME) on gastric mucosal damage in a rat model of SCI. ME was administered orally at doses of 30, 100, and 177 mg/kg in SCI induced at the T9 level, alongside diclofenac or ketorolac (30 mg/kg each). The enzymatic activity of superoxide dismutase, catalase, and glutathione peroxidase was assessed, and the levels of total glutathione and malondialdehyde were determined using biochemical kits. Additionally, stomach histological sections were analyzed. ME exhibited dose-dependent gastroprotective effects, with maximal protection observed at 177 mg/kg in the presence of diclofenac (9.78 ± 2.16 mm2) or ketorolac (12.49 ± 2.17 mm2). A histological analysis confirmed these findings. In conclusion, methyl eugenol protects the gastric mucosa from SCI-induced damage, with glutathione peroxidase and catalase playing key roles in its mechanism of gastroprotection.
Collapse
Affiliation(s)
- Leticia Cruz-Antonio
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Av. Guelatao No. 66, Colonia Ejército de Oriente, Iztapalapa, Ciudad de México 09230, Mexico;
| | - María Elena Sánchez-Mendoza
- Laboratorio de Farmacología de Plantas Medicinales Mexicanas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (M.E.S.-M.); (Y.L.-L.)
| | - Jazmín García-Machorro
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico;
| | - Yaraset López-Lorenzo
- Laboratorio de Farmacología de Plantas Medicinales Mexicanas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (M.E.S.-M.); (Y.L.-L.)
| | - Jesús Arrieta
- Laboratorio de Farmacología de Plantas Medicinales Mexicanas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; (M.E.S.-M.); (Y.L.-L.)
| |
Collapse
|
2
|
Mineto AR, de Matos SP, Bordignon IM, Ribeiro R, Apel MA, da Veiga-Junior VF, Koester LS. Development by design of experiment and validation of a HPLC-UV method for simultaneous quantification of 1-nitro-2-phenylethane and methyleugenol: Application to nail permeation/retention studies. J Pharm Biomed Anal 2024; 239:115889. [PMID: 38056286 DOI: 10.1016/j.jpba.2023.115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Aniba canelilla (Kunth) Mez is an aromatic tree from Amazon region whose essential oil presents 1-nitro-2-phenylethane (NP) and methyleugenol (ME) as major compounds. Several properties are attributed to Aniba canelilla essential oil (ACEO), such as antifungal. Onychomycoses are fungal nail infections that require novel therapeutic alternatives, especially topical ones. However, to ensure the success of topical therapy, the active compound should be able to penetrate/permeate the nail plate, which is challenging due to the highly keratinized composition of this structure. Thus, the aims of this article were to develop, validate and apply a high-performance liquid chromatography method (HPLC-UV) to quantify NP and ME in porcine hoof extract (PHE) and receptor fluid (RF) during in vitro permeation/retention studies in nail model, for which porcine hoof membranes were used. For method development, two Designs of Experiment (DoE) were adopted: 23 Full Factorial and Box-Behnken. Retention times of 5.65 and 7.49 min were achieved for NP and ME, respectively. The method was full validated for NP and ME quantification in receptor fluid, in accordance with the recommended parameters by ICH Q2(R1) Guideline. In addition, the method was full validated for NP and ME quantification in porcine hoof extract, considering the parameters and criteria of ICH M10 Guideline. In vitro permeation/retention studies were carried out in nail model, and promising results were obtained. NP reached the receptor fluid in the order of 441.1 ± 92.1 µg/cm2 at 72 h. The amount of NP and ME retained into porcine hoof membrane was 1272.6 ± 225.7 µg/cm2 and 84.7 ± 20.4 µg/cm2, respectively, at 72 h. Our findings open perspective to develop topical formulations containing ACEO as active compound aiming the management of onychomycosis.
Collapse
Affiliation(s)
- Alexandre Rolim Mineto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, Santana 2752, Zip code 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sheila Porto de Matos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, Santana 2752, Zip code 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Isabella Morel Bordignon
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, Santana 2752, Zip code 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rayssa Ribeiro
- Programa de Pós-Graduacão em Química, Instituto Militar de Engenharia, Praça General Tibúrcio Urca 80, Zip code 22290-270, Rio de Janeiro, Brazil
| | - Miriam Anders Apel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, Santana 2752, Zip code 90610-000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Valdir Florêncio da Veiga-Junior
- Programa de Pós-Graduacão em Química, Instituto Militar de Engenharia, Praça General Tibúrcio Urca 80, Zip code 22290-270, Rio de Janeiro, Brazil
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, Santana 2752, Zip code 90610-000, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
da Cruz EDNS, Barros LDSP, Guimarães BDA, Mourão RHV, Maia JGS, Setzer WN, da Silva JKDR, Figueiredo PLB. Seasonal Variation in Essential Oil Composition and Antioxidant Capacity of Aniba canelilla (Lauraceae): A Reliable Source of 1-Nitro-2-phenylethane. Molecules 2023; 28:7573. [PMID: 38005295 PMCID: PMC10674907 DOI: 10.3390/molecules28227573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Aniba canelilla (Kunth) Mez essential oil has many biological activities due to its main compound 1-nitro-2-phenylethane (1N2F), followed by methyleugenol, a carcinogenic agent. This study analyzed the influence of seasonality on yields, antioxidant capacity, and 1N2F content of A. canelilla leaf and twig essential oils. Essential oils (EOs) were extracted with hydrodistillation and analyzed with gas chromatography coupled to mass spectrometry and a flame ionization detector. Antioxidant capacity was measured using the free radical scavenging method (DPPH). Chemometric analyses were carried out to verify the influence of climatic factors on the production and composition of EOs. 1-Nitro-2-phenylethane was the major constituent in A. canelilla EOs throughout the seasonal period (68.0-89.9%); methyleugenol was not detected. Essential oil yields and the 1N2F average did not show a statistically significant difference between the dry and rainy seasons in leaves and twigs. Moderate and significant correlations between major compounds and climate factor were observed. The twig oils (36.0 ± 5.9%) a showed greater antioxidant capacity than the leaf oils (20.4 ± 5.0%). The PCA and HCA analyses showed no statistical differences between the oil samples from the dry and rainy seasons. The absence of methyleugenolin in all months of study, described for the first time, makes this specimen a reliable source of 1N2F.
Collapse
Affiliation(s)
- Ellen de Nazaré S. da Cruz
- Programa Institucional de Bolsas de Iniciação Científica, Universidade Federal do Pará, Belem 66075-900, Brazil;
- Laboratório de Química dos Produtos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belem 66087-662, Brazil (B.d.A.G.)
| | - Luana de Sousa P. Barros
- Laboratório de Química dos Produtos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belem 66087-662, Brazil (B.d.A.G.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belem 66075-900, Brazil;
| | - Bruna de A. Guimarães
- Laboratório de Química dos Produtos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belem 66087-662, Brazil (B.d.A.G.)
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belem 66075-900, Brazil
| | - Rosa Helena V. Mourão
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, Santarem 68035-110, Brazil
| | - José Guilherme S. Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belem 66075-900, Brazil;
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belem 66075-900, Brazil
| | - William N. Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA;
| | - Joyce Kelly do R. da Silva
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belem 66075-900, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belem 66075-900, Brazil
| | - Pablo Luis B. Figueiredo
- Laboratório de Química dos Produtos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belem 66087-662, Brazil (B.d.A.G.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belem 66075-900, Brazil;
| |
Collapse
|
4
|
Hazarika S, Borah P, Deb PK, Venugopala KN, Hemalatha S. Icacinaceae Plant Family: A Recapitulation of the Ethnobotanical, Phytochemical, Pharmacological, and Biotechnological Aspects. Curr Pharm Des 2023; 29:1193-1217. [PMID: 37132105 DOI: 10.2174/1381612829666230502164605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
Icacinaceae, an Angiospermic family comprising 35 genera and 212 accepted species, including trees, shrubs, and lianas with pantropical distribution, is one of the most outshining yet least explored plant families, which despite its vital role as a source of pharmaceuticals and nutraceuticals has received a meagre amount of attraction from the scientific community. Interestingly, Icacinaceae is considered a potential alternative resource for camptothecin and its derivatives, which are used in treating ovarian and metastatic colorectal cancer. However, the concept of this family has been revised many times, but further recognition is still needed. The prime objective of this review is to compile the available information on this family in order to popularize it in the scientific community and the general population and promote extensive exploration of these taxa. The phytochemical preparations or isolated compounds from the Icacinaceae family have been centrally amalgamated to draw diverse future prospects from this inclusive plant species. The ethnopharmacological activities and the associated endophytes and cell culture techniques are also depicted. Nevertheless, the methodical evaluation of the Icacinaceae family is the only means to preserve and corroborate the folkloristic remedial effects and provide scientific recognition of its potencies before they are lost under the blanket of modernization.
Collapse
Affiliation(s)
- Sangeeta Hazarika
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Pobitra Borah
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002, Uttarakhand, India
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, PO Box 1, Amman, 19392, Jordan
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, 4001, South Africa
| | - Siva Hemalatha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
5
|
de Campos DL, Queiroz LY, Fontes-Junior EA, Pinheiro BG, da Silva JKR, Maia CSF, Maia JGS. Aniba canelilla (Kunth) Mez essential oil and its primary constituent, 1-nitro-2-phenylethane, inhibits acetylcholinesterase and reverse memory impairment in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116036. [PMID: 36493997 DOI: 10.1016/j.jep.2022.116036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aniba canelilla, distributed in the Amazon region, stands out for its diverse economic and medicinal applications. Studies of the A. canelilla essential oil and its primary constituent, 1-nitro-2-phenylethane, have confirmed its anti-inflammatory, antinociceptive, anti-hypertensive potential, and anticholinesterase, among other therapeutic activities. AIM OF THE STUDY In addition, the present work aims to evaluate the potential of oil and NPE in the learning and memory of rodents. MATERIAL AND METHODS The oil was hydrodistilled and analyzed by GC and GC-MS. The learning and memory action in mice was evaluated through the scopolamine-induced cognitive deficit model, followed by behavioral analysis using Morris's water maze paradigm. RESULTS Oil provided a yield of 0.5%, and in its chemical composition, 1-nitro-2-phenylethane (NPE) (76.2%) and methyleugenol (19.6%) were identified as primary constituents. Oil fractionation furnished NPE with 99.4%, which was used to evaluate its effects in animal models. Wistar rats were submitted to the mnemonic impairment-scopolamine-induced protocol for 7 days. The oil, NPE, and the positive control donepezil were administered from the 8th to 12th days. Morris water maze results demonstrated that oil and NPE reversed spatial learning and long-term memory similarly induced by muscarinic antagonist scopolamine to donepezil, the positive control. CONCLUSION These beneficial effects have led the work to further investigations of the oil and NPE to elucidate their pharmacological mechanism, focusing on the cholinergic pathway of the central nervous system and opening up to the knowledge of other adjacent mechanisms, whose results are still under analysis.
Collapse
Affiliation(s)
- Daniele L de Campos
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil.
| | - Letícia Y Queiroz
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil.
| | - Enéas A Fontes-Junior
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil.
| | - Bruno G Pinheiro
- Centro de Ciências Biológicas, Universidade do Estado do Pará, 66087-662, Belém, PA, Brazil.
| | - Joyce Kelly R da Silva
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil.
| | - Cristiane Socorro F Maia
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil.
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, 65080-040, São Luís, MA, Brazil.
| |
Collapse
|
6
|
Prakash J. Secondary Metabolites From Plants for Cardiovascular Disease. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:155-171. [DOI: 10.4018/978-1-6684-6737-4.ch010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
One of the leading causes of mortality worldwide is cardiac vascular disease. According to the WHO report, CVDs affect 17.9 million people each year and will affect 22.2 million people by 2030. The plants include flavonoids, polyphenols, plant Sulphur compounds, and terpenoids, which are all active phytochemicals. Recent research has revealed that flavonoids are substances with strong biological effects that may help prevent chronic illnesses including cardiovascular disease. The prevention of low-density lipoprotein oxidation, which encourages vasodilatation, is a common flavonoid mode of action. Due to the rising frequency of CVD, numerous plants have been identified to contain a number of physiologically active chemicals with known biological effects; however, proper CVD preventive and treatment approaches are still needed. This study aims to emphasize the cardiovascular risk factors, in addition to explaining the processes through which naturally occurring bioactive chemicals exhibit their cardiovascular preventive effects.
Collapse
Affiliation(s)
- Jose Prakash
- B.S. Abdur Rahman Crescent Insititute of Science and Technology, India
| |
Collapse
|
7
|
Aniba canelilla (Kunth) Mez (Lauraceae) Essential Oil: Effects on Oxidative Stress and Vascular Permeability. Antioxidants (Basel) 2022; 11:antiox11101903. [PMID: 36290626 PMCID: PMC9598933 DOI: 10.3390/antiox11101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to investigate the antioxidant activity of Aniba canelilla (kunth) Mez (Lauraceae) essential oil (AcEO), exploring its potential for prevention and/or treatment of oxidative stress and associated inflammatory process. With this aim, Wistar rats (n = 6/group) were pre-treated intraperitoneally with saline (0.9%) or AcEO (2 or 5 mg/kg) for 5 days. One hour after the last dose, inflammation and oxidative stress were induced by carrageenan (0.3 mg/kg; ip.) administration. Total antioxidant capacity, reduced glutathione (GSH) and lipid peroxidation levels, protein concentration, and leukocyte migration were evaluated in peritoneal fluid. Lipid peroxidation was also evaluated in plasma. Carrageenan strongly reduced the peritoneal antioxidant capacity and GSH concentration, increasing peritoneal and plasma lipid peroxidation. It also promoted increased plasma leakage and leukocyte migration. Treatment with AcEO (2 and 5 mg/kg), whose major constituent was 1-nitro-2-phenylethane (77.5%), increased the peritoneal antioxidant capacity and GSH concentrations, and reduced lipid peroxidation, both peritoneal and plasma, thus inhibiting the carrageenan-induced oxidative imbalance. AcEO also reduced the carrageenan-induced plasma leakage and leukocyte migration. These data demonstrate the AcEO antioxidant activity and its ability to modulate plasma leakage and leukocyte migration, confirming its potential for treating diseases associated with inflammation and oxidative stress.
Collapse
|
8
|
Bachheti RK, Worku LA, Gonfa YH, Zebeaman M, Deepti, Pandey DP, Bachheti A. Prevention and Treatment of Cardiovascular Diseases with Plant Phytochemicals: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5741198. [PMID: 35832515 PMCID: PMC9273387 DOI: 10.1155/2022/5741198] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are the world's leading killers, accounting for 30% deaths. According to the WHO report, CVDs kill 17.9 million people per year, and there will be 22.2 million deaths from CVD in 2030. The death rates rise as people get older. Regarding gender, the death rate of women by CVD (51%) is higher than that of men (42%). To decrease and prevent CVD, most people rely on traditional medicine originating from the plant (phytochemicals) in addition to or in preference to commercially available drugs to recover from their illness. The CVD therapy efficacy of 92 plants, including 15 terrestrial plants, is examined. Some medicinal plants well known to treat CVD are, Daucus carota, Nerium oleander, Amaranthus Viridis, Ginkgo biloba, Terminalia arjuna, Picrorhiza kurroa, Salvia miltiorrhiza, Tinospora cordifolia, Mucuna pruriens, Hydrocotyle asiatica, Bombax ceiba, and Andrographis paniculate. The active phytochemicals found in these plants are flavonoids, polyphenols, plant sterol, plant sulphur compounds, and terpenoids. A general flavonoid mechanism of action is to prevent low-density lipoprotein oxidation, which promotes vasodilatation. Plant sterols prevent CVD by decreasing cholesterol absorption in the blood. Plant sulphur compound also prevent CVD by activation of nuclear factor-erythroid factor 2-related factor 2 (Nrf2) and inhibition of cholesterol synthesis. Quinone decreases the risk of CVD by increasing ATP production in mitochondria while terpenoids by decreasing atherosclerotic lesion in the aortic valve. Although several physiologically active compounds with recognized biological effects have been found in various plants because of the increased prevalence of CVD, appropriate CVD prevention and treatment measures are required. More research is needed to understand the mechanism and specific plants' phytochemicals responsible for treating CVD.
Collapse
Affiliation(s)
- Rakesh Kumar Bachheti
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Limenew Abate Worku
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Yilma Hunde Gonfa
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Chemistry, Faculty of Natural and Computational Science, Ambo University, Ambo, Ethiopia
| | - Meseret Zebeaman
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Deepti
- Department of Environment Science, Graphic Era University, Dehradun-248002, Uttarakhand, India
| | - D. P. Pandey
- Department of Chemistry, Government P. G. College, Uttarkashi, India
| | - Archana Bachheti
- Department of Environment Science, Graphic Era University, Dehradun-248002, Uttarakhand, India
| |
Collapse
|
9
|
Bioherbicide and anesthetic potential of Aniba canelilla essential oil, a contribution to the demands of the agricultural sector. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Ordoñez ME, Borges VS, Souza AC, Ferreira LR, Costa FM, Melo FP, Vale JK, Borges RS. Molecular modifications on β-nitro-styrene derivatives increase their antioxidant capacities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Xavier JKAM, Maia L, Figueiredo PLB, Folador A, Ramos AR, Andrade EH, Maia JGS, Setzer WN, da Silva JKR. Essential Oil Composition and DNA Barcode and Identification of Aniba species (Lauraceae) Growing in the Amazon Region. Molecules 2021; 26:1914. [PMID: 33805452 PMCID: PMC8036375 DOI: 10.3390/molecules26071914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Lauraceae species are widely represented in the Amazon, presenting a significant essential oil yield, large chemical variability, various biological applications, and high economic potential. Its taxonomic classification is difficult due to the accentuated morphological uniformity, even among taxa from a different genus. For this reason, the present work aimed to find chemical and molecular markers to discriminate Aniba species collected in the Pará State (Brazil). The chemical composition of the essential oils from Aniba canelilla, A. parviflora, A. rosaeodora, and A. terminalis were grouped by multivariate statistical analysis. The major compounds were rich in benzenoids and terpenoids such as 1-nitro-2-phenylethane (88.34-70.85%), linalool (15.2-75.3%), α-phellandrene (36.0-51.8%), and β-phellandrene (11.6-25.6%). DNA barcodes were developed using the internal transcribed spacer (ITS) nuclear region, and the matK, psbA-trnH, rbcL, and ycf1 plastid regions. The markers psbA-trnH and ITS showed the best discrimination for the species, and the phylogenic analysis in the three- (rbcL + matK + trnH - psbA and rbcL + matK + ITS) and four-locus (rbcL + matK + trnH - psbA + ITS) combination formed clades with groups strongly supported by the Bayesian inference (BI) (PP:1.00) and maximum likelihood (ML) (BS ≥ 97%). Therefore, based on statistical multivariate and phylogenetic analysis, the results showed a significant correlation between volatile chemical classes and genetic characteristics of Aniba species.
Collapse
Affiliation(s)
- Júlia Karla A. M. Xavier
- Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA 66075-900, Brazil; (J.K.A.M.X.); (L.M.)
| | - Leonardo Maia
- Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA 66075-900, Brazil; (J.K.A.M.X.); (L.M.)
| | - Pablo Luis B. Figueiredo
- Departamento de Ciências Naturais, Centro de Ciências Sociais e Educação, Universidade do Estado do Pará, Belém, PA 66050-540, Brazil;
| | - Adriana Folador
- Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém, PA 66075-900, Brazil;
| | - Alessandra R. Ramos
- Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA 68507-590, Brazil;
| | - Eloísa H. Andrade
- Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém, PA 66040-170, Brazil;
| | - José Guilherme S. Maia
- Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, São Luís, MA 64080-040, Brazil;
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA;
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA
| | - Joyce Kelly R. da Silva
- Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA 66075-900, Brazil; (J.K.A.M.X.); (L.M.)
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA
| |
Collapse
|
12
|
Gong X, Wang B, Yan L, Lu X, Zhao X. Linalool inhibits the growth of human T cell acute lymphoblastic leukemia cells with involvement of the MAPK signaling pathway. Oncol Lett 2020; 20:181. [PMID: 32934748 PMCID: PMC7471647 DOI: 10.3892/ol.2020.12042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Linalool can inhibit the malignant proliferation of numerous human malignant solid tumors, including hepatocellular carcinoma, breast cancer, small cell carcinoma and malignant melanoma. However, the role of linalool in T cell acute lymphoblastic leukaemia (T-ALL) remains unclear. In the present study, human T-ALL cell lines (Jurkat, H9, Molt-4 and Raji cells) and peripheral blood mononuclear cells (PBMCs) from healthy donors were treated with various concentrations of linalool (3.75, 7.50, 15.00, 30.00, 60.00 and 120.00 µM, respectively). A CCK-8 assay was used to analyse cell viability and it demonstrated that linalool inhibited the growth of T-ALL cells in a dose-dependent manner, but did not significantly affect normal PBMCs. Flow cytometry was used to detect the cell cycle and apoptosis and demonstrated that linalool reduced the percentage of T-ALL cells at the G0/G1 phase, and induced the apoptosis of T-ALL cells. RNA sequencing was conducted on an Illumina HiSeq X Series 2500 before and after treatment with linalool followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. It was demonstrated that the mitogen-activated protein kinase (MAPK) pathway was involved in the effect of linalool on T-ALL cells. Real-time quantitative PCR and western blotting were performed to verify the mRNA and protein levels, respectively of the genes in the signaling pathway identified. In addition, it was found that linalool significantly inhibited phosphorylated (p)-ERK1/2 protein expression and enhanced p-JNK protein expression of T-ALL cells. In conclusion, the present study revealed that linalool inhibits T-ALL cell survival with involvement of the MAPK signaling pathway. JNK activation and ERK inhibition may play a functional role in apoptosis induction of T-ALL cells. Linalool may be developed as a novel anti T-ALL agent.
Collapse
Affiliation(s)
- Xubo Gong
- Department of Clinical Laboratory, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zheijang 310000, P.R. China
| | - Baiyong Wang
- Department of Intensive Care Unit, The First Hospital of Hangzhou Normal University, Hangzhou, Zheijang 310000, P.R. China
| | - Lijuan Yan
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zheijang 310000, P.R. China
| | - Xiaoya Lu
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zheijang 310000, P.R. China
| | - Xiaoying Zhao
- Department of Hematology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zheijang 310000, P.R. China
| |
Collapse
|