1
|
de Sousa FA, Alves CS, Pinto AN, Meireles L, Rego ÂR. Pharmacological Treatment of Acute Unilateral Vestibulopathy: A Review. J Audiol Otol 2024; 28:18-28. [PMID: 37953517 PMCID: PMC10808386 DOI: 10.7874/jao.2023.00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 11/14/2023] Open
Abstract
There have been few investigations on the epidemiology, etiology, and medical management of acute unilateral vestibulopathy (AUV). Short-term pharmaceutical resolutions include vestibular symptomatic suppressants, anti-emetics, and some cause-based therapies. Anticholinergics, phenothiazines, antihistamines, antidopaminergics, benzodiazepines, and calcium channel antagonists are examples of vestibular suppressants. Some of these medications may show their effects through multiple mechanisms. In contrast, N-acetyl-L-leucine, Ginkgo biloba, and betahistine improve central vestibular compensation. Currently, AUV pathophysiology is poorly understood. Diverse hypotheses have previously been identified which have brought about some causal treatments presently used. According to some publications, acute administration of anti-inflammatory medications may have a deleterious impact on both post-lesional functional recovery and endogenous adaptive plasticity processes. Thus, some authors do not recommend the use of corticosteroids in AUV. Antivirals are even more contentious in the context of AUV treatment. Although vascular theories have been presented, no verified investigations employing anti-clotting or vasodilator medications have been conducted. There are no standardized treatment protocols for AUV to date, and the pharmacological treatment of AUV is still questionable. This review addresses the most current developments and controversies in AUV medical treatment.
Collapse
Affiliation(s)
- Francisco Alves de Sousa
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Clara Serdoura Alves
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ana Nóbrega Pinto
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luís Meireles
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ângela Reis Rego
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
2
|
Low JYK, Shi X, Anandalakshmi V, Neo D, Peh GSL, Koh SK, Zhou L, Abdul Rahim MK, Boo K, Lee J, Mohanram H, Alag R, Mu Y, Mehta JS, Pervushin K. Release of frustration drives corneal amyloid disaggregation by brain chaperone. Commun Biol 2023; 6:348. [PMID: 36997596 PMCID: PMC10063603 DOI: 10.1038/s42003-023-04725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
TGFBI-related corneal dystrophy (CD) is characterized by the accumulation of insoluble protein deposits in the corneal tissues, eventually leading to progressive corneal opacity. Here we show that ATP-independent amyloid-β chaperone L-PGDS can effectively disaggregate corneal amyloids in surgically excised human cornea of TGFBI-CD patients and release trapped amyloid hallmark proteins. Since the mechanism of amyloid disassembly by ATP-independent chaperones is unknown, we reconstructed atomic models of the amyloids self-assembled from TGFBIp-derived peptides and their complex with L-PGDS using cryo-EM and NMR. We show that L-PGDS specifically recognizes structurally frustrated regions in the amyloids and releases those frustrations. The released free energy increases the chaperone's binding affinity to amyloids, resulting in local restructuring and breakage of amyloids to protofibrils. Our mechanistic model provides insights into the alternative source of energy utilized by ATP-independent disaggregases and highlights the possibility of using these chaperones as treatment strategies for different types of amyloid-related diseases.
Collapse
Affiliation(s)
- Jia Yi Kimberly Low
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, 518172, Shenzhen, China
| | | | - Dawn Neo
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| | - Gary Swee Lim Peh
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| | - Siew Kwan Koh
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| | - Lei Zhou
- School of Optometry, Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - M K Abdul Rahim
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ketti Boo
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - JiaXuan Lee
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Harini Mohanram
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Reema Alag
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Jodhbir S Mehta
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore.
- Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore, 168751, Singapore.
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
3
|
Low KJY, Venkatraman A, Mehta JS, Pervushin K. Molecular mechanisms of amyloid disaggregation. J Adv Res 2022; 36:113-132. [PMID: 35127169 PMCID: PMC8799873 DOI: 10.1016/j.jare.2021.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/13/2021] [Accepted: 05/16/2021] [Indexed: 12/17/2022] Open
Abstract
Importance of disaggregation mechanism and innate disaggregation in living systems. Different types and mechanism of disaggregation reported in literature. Structural details of the interactions and the disaggregation mechanisms. Amyloid disaggregation in protein aggregation disorders as a potential treatment. Proposed amyloid disaggregation mechanism of an ATP-independent chaperone (L-PGDS).
Introduction Protein aggregation and deposition of uniformly arranged amyloid fibrils in the form of plaques or amorphous aggregates is characteristic of amyloid diseases. The accumulation and deposition of proteins result in toxicity and cause deleterious effects on affected individuals known as amyloidosis. There are about fifty different proteins and peptides involved in amyloidosis including neurodegenerative diseases and diseases affecting vital organs. Despite the strenuous effort to find a suitable treatment option for these amyloid disorders, very few compounds had made it to unsuccessful clinical trials. It has become a compelling challenge to understand and manage amyloidosis with the increased life expectancy and ageing population. Objective While most of the currently available literature and knowledge base focus on the amyloid inhibitory mechanism as a treatment option, it is equally important to organize and understand amyloid disaggregation strategies. Disaggregation strategies are important and crucial as they are present innately functional in many living systems and dissolution of preformed amyloids may provide a direct benefit in many pathological conditions. In this review, we have compiled the known amyloid disaggregation mechanism, interactions, and possibilities of using disaggregases as a treatment option for amyloidosis. Methods We have provided the structural details using protein-ligand docking models to visualize the interaction between these disaggregases with amyloid fibrils and their respective proposed amyloid disaggregation mechanisms. Results After reviewing and comparing the different amyloid disaggregase systems and their proposed mechanisms, we presented two different hypotheses for ATP independent disaggregases using L-PGDS as a model. Conclusion Finally, we have highlighted the importance of understanding the underlying disaggregation mechanisms used by these chaperones and organic compounds before the implementation of these disaggregases as a potential treatment option for amyloidosis.
Collapse
|
4
|
Urade Y. Biochemical and Structural Characteristics, Gene Regulation, Physiological, Pathological and Clinical Features of Lipocalin-Type Prostaglandin D 2 Synthase as a Multifunctional Lipocalin. Front Physiol 2021; 12:718002. [PMID: 34744762 PMCID: PMC8569824 DOI: 10.3389/fphys.2021.718002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Lipocalin-type prostaglandin (PG) D2 synthase (L-PGDS) catalyzes the isomerization of PGH2, a common precursor of the two series of PGs, to produce PGD2. PGD2 stimulates three distinct types of G protein-coupled receptors: (1) D type of prostanoid (DP) receptors involved in the regulation of sleep, pain, food intake, and others; (2) chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) receptors, in myelination of peripheral nervous system, adipocyte differentiation, inhibition of hair follicle neogenesis, and others; and (3) F type of prostanoid (FP) receptors, in dexamethasone-induced cardioprotection. L-PGDS is the same protein as β-trace, a major protein in human cerebrospinal fluid (CSF). L-PGDS exists in the central nervous system and male genital organs of various mammals, and human heart; and is secreted into the CSF, seminal plasma, and plasma, respectively. L-PGDS binds retinoic acids and retinal with high affinities (Kd < 100 nM) and diverse small lipophilic substances, such as thyroids, gangliosides, bilirubin and biliverdin, heme, NAD(P)H, and PGD2, acting as an extracellular carrier of these substances. L-PGDS also binds amyloid β peptides, prevents their fibril formation, and disaggregates amyloid β fibrils, acting as a major amyloid β chaperone in human CSF. Here, I summarize the recent progress of the research on PGD2 and L-PGDS, in terms of its “molecular properties,” “cell culture studies,” “animal experiments,” and “clinical studies,” all of which should help to understand the pathophysiological role of L-PGDS and inspire the future research of this multifunctional lipocalin.
Collapse
Affiliation(s)
- Yoshihiro Urade
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy, Fukuoka, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|