1
|
Arjmandi K, Salahshourifar I, Irani S, Ameli F, Esfandbod M. Association study of TYMS gene expression with TYMS and ENOSF1 genetic variants in neoadjuvant chemotherapy response of gastric cancer. J Pathol Transl Med 2025; 59:105-114. [PMID: 40195828 PMCID: PMC12010872 DOI: 10.4132/jptm.2024.11.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND The present research was designed to study the associations between genetic variants of TYMS and ENOSF1 genes with TYMS and ENOSF1 gene expression in neoadjuvant chemotherapy response among patients with gastric cancer. METHODS Formalin-embedded and paraffin-fixed matched tumor and normal gastric cancer tissue samples from patients who received neoadjuvant 5-fluorouracil (5-FU) treatment were obtained. DNA and RNA were extracted for all samples. A 28-bp variable number tandem repeat (VNTR) at the 5' untranslated region of TYMS gene and rs2612091 and rs2741171 variants in the ENOSF1 gene were genotyped for normal tissue samples. The real-time polymerase chain reaction method was used to study the expression of ENOSF1 and TYMS genes in both normal and tumor tissues. Data were analyzed using REST 2000 and SPSS ver. 26.0 software programs. RESULTS A significant association between TYMS 2R3R VNTR genotypes and 5-FU therapy was found (p = .032). The 3R3R and 2R2R genotypes were significantly associated with increased and decreased survival time, respectively (p = .003). The 3R3R genotype was significantly associated with TYMS overexpression (p < .001). Moreover, a significant association was found between the rs2612091 genotype and treatment outcome (p = .017). CONCLUSIONS This study highlights the impact of TYMS and ENOSF1 genes as predictive indicators for survival and response to 5-FU-based neoadjuvant chemotherapy in gastric cancer patients.
Collapse
Affiliation(s)
- Khadijeh Arjmandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Iman Salahshourifar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fereshteh Ameli
- Pathology Department, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Esfandbod
- Department of Hematology and Oncology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Brinkman MT, Crofts S, Green H. The use of nutrigenomics and nutritional biomarkers with standard care of long-term recurrent metastatic rectal cancer: a case report. Front Oncol 2024; 14:1451675. [PMID: 39687889 PMCID: PMC11646835 DOI: 10.3389/fonc.2024.1451675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Distant metastases following standard treatment for locally advanced rectal cancer (LARC) are typically associated with poor disease-free survival. We report on a 52-year-old Australian male of Dutch ancestry with no family history of colorectal cancer or significant medical history who experienced bleeding per rectum for several months prior to a colonoscopy in July 2010. He was subsequently diagnosed with Stage IIb LARC. Case presentation Despite treatment with curative intent, a distant recurrence to his left lung was detected in May 2012, upstaging him to Stage IV rectal cancer. He had repeated distant metastatic recurrences over the next 8 years, and treatment included multiple surgeries, chemotherapies, radiation treatments, a "watch and wait" period of 20 months, and personalised dietary management. Genetic and nutrigenomic testing identified that the case had KRAS and MTHFR mutations. As part of his dietary management, the case also had his levels of folate, vitamin B12, and vitamin D regularly monitored because of his genetic predisposition and history of deficiency for these key nutrients. Apart from changes in his CEA levels, sudden increases in the patient's folate levels, inconsistent with dietary exposures preceded detection of each new distant recurrence, with significant decreases in the levels at the next follow-up measurement. Conclusion A multimodal approach to this patient's management appeared to contribute to his long-term survival of nearly 10 years from the initial diagnosis. Multidisciplinary management, including the use of additional biomarkers, may enhance survival rates in other similar cases with advanced disease resistant to differing therapies, and with potentially poor prognosis.
Collapse
Affiliation(s)
- Maree T. Brinkman
- Department of Clinical Studies and Nutritional Epidemiology, Nutrition Biomed Research Institute, Melbourne, VIC, Australia
| | | | | |
Collapse
|
3
|
Meyfarth SRS, Ramirez I, Silva-Sousa AC, Proff P, Gabardo MCL, Sousa-Neto MD, Baratto-Filho F, Küchler EC, Antunes LS, Kirschneck C. Investigation of genetic polymorphisms in genes encoding growth factors and dental pulp calcification in orthodontic patients. J Oral Biol Craniofac Res 2024; 14:712-719. [PMID: 39416879 PMCID: PMC11480232 DOI: 10.1016/j.jobcr.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Background and objectives Pulp calcification is associated with many factors and triggers, including individual genetic predisposition and orthodontic forces. This study aimed to investigate whether genetic polymorphisms in epidermal growth factor (EGF), epidermal growth factor receptor (EGFR1), transforming growth factor-beta 1 (TGFβ1), and transforming growth factor-beta receptor 2 (TGFβR2) are associated with a risk of dental pulp calcifications in orthodontic patients. Materials and methods Digital orthopantomography (OPG) and genomic DNA from 132 patients were analyzed in this cross-sectional study. Pulp calcification was observed in the maxillary and mandibular first molars. Genomic DNA extracted from saliva cells was used to genotype eight genetic polymorphisms using real-time polymerase chain reaction: EGF (rs2237051 and rs4444903), EGFR (rs2227983 and rs763317), TGFβ1 (rs1800469 and rs4803455), and TGFβR2 (rs3087465 and rs764522). The association between pulp calcification and genetic polymorphisms was analyzed using allelic and genotypic distributions, and haplotype frequencies (P < 0.05). Results The prevalence of pulp calcification was 42.4 % in 490 molars. Genotypic analysis and allelic distribution showed no statistically significant association between the evaluated growth factors and molar calcification (P > 0.05). No haplotype combinations showed a statistically significant difference (P > 0.05). Conclusion The genetic polymorphisms investigated were not associated with dental pulp calcification in orthodontic patients. Further studies should investigate other polymorphisms in genes encoding growth factors.
Collapse
Affiliation(s)
| | - Iago Ramirez
- School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Peter Proff
- Department of Orthodontics, University of Regensburg, Regensburg, Germany
| | | | | | - Flares Baratto-Filho
- School of Dentistry, Tuiuti University from Paraná, Curitiba, PR, Brazil
- Department of Dentistry, University of Joinville Region (Univille), Joinville, SC, Brazil
| | - Erika Calvano Küchler
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Leonardo Santos Antunes
- Postgraduation Program, School of Dentistry, Fluminense Federal University, Niterói, RJ, Brazil
- Department of Specific Formation, Fluminense Federal University, Niterói, RJ, Brazil
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| |
Collapse
|
4
|
Tang Y, Fan Y. Combined KRAS and TP53 mutation in patients with colorectal cancer enhance chemoresistance to promote postoperative recurrence and metastasis. BMC Cancer 2024; 24:1155. [PMID: 39289671 PMCID: PMC11409552 DOI: 10.1186/s12885-024-12776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
The response of patients with colorectal cancer to chemotherapy is tightly correlated with their genomic variation. Among these, APC, TP53, KRAS, PIK3CA are the most frequently mutated genes in advanced colorectal cancer patients. However, the precise correlation between these mutations and the therapeutic effects of chemotherapy remains elusive. Here, we conducted genome sequencing to identify commonly mutated genes in colorectal cancer patients and comprehensively assessed their sensitivity to chemotherapy drugs by monitoring computer tomography (CT) scans and carcinoembryonic antigen (CEA) levels. Surprisingly, we discovered that the objective response rate to the standard first-line chemotherapy among patients harboring combined KRAS and TP53 mutations is dismal, and these patients are predisposed to recurrence and metastasis. Furthermore, advanced-stage patients with concurrent KRAS and TP53 mutations are susceptible to developing cancer-associated cachexia due to chemotherapy resistance or forced cessation of treatment. Our findings underscore the urgent need for the development of innovative and novel chemotherapeutic strategies to effectively manage colorectal cancer patients harboring combined KRAS and TP53 mutations.
Collapse
Affiliation(s)
- YiMeng Tang
- Department of General Surgery, The Third Hospital of MianYang, Sichuan Mental Health Center, MianYang, 621000, China
| | - Yao Fan
- Department of General Surgery, The Third Hospital of MianYang, Sichuan Mental Health Center, MianYang, 621000, China.
| |
Collapse
|
5
|
Milan N, Navarria F, Cecchin E, De Mattia E. Somatic pharmacogenomics in the treatment prognosis of locally advanced rectal cancer patients: a narrative review of the literature. Expert Rev Clin Pharmacol 2024; 17:683-719. [PMID: 39046146 DOI: 10.1080/17512433.2024.2375449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Standard treatment for patients with locally advanced rectal cancer (LARC) includes neoadjuvant chemoradiotherapy (nCRT) with fluoropyrimidines, followed by surgical excision. The newly introduced therapeutic strategies propose intensified regimens or more conservative approaches based on risk stratification algorithms that currently include clinicoradiological criteria but not molecular variables. How to better stratify patients is a burning clinical question, and pharmacogenomics may prove useful in identifying new genetic markers that could be incorporated into clinical algorithms to personalize nCRT. An emerging area could be the evaluation of somatic mutations as potential genetic markers that correlate with patient prognosis. Tumor mutations in the RAS/BRAF genes, as well as microsatellite instability (MSI) status, are currently used in treatment selection for colorectal cancer (CRC); however, their clinical value in LARC is still unclear. AREA COVERED This literature review discusses the relevant findings on the prognostic role of mutations in the key oncogenes RAS, KRAS, BRAF, PIK3CA, SMAD4 and TP53, including MSI status in LARC patients treated with nCRT. EXPERT OPINION KRAS proved to be the most promising marker, consistently associated with poorer disease-free survival and overall survival. Therefore, KRAS could be a good candidate for integration into the risk stratification algorithm to develop a personalized treatment.
Collapse
Affiliation(s)
- Noemi Milan
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Federico Navarria
- Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Erika Cecchin
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Elena De Mattia
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
6
|
Paddenberg-Schubert E, Küchler E, Bitencourt Reis CL, Silva-Sousa AC, Kirschneck C. New insights into the genetics of mandibular retrognathism: novel candidate genes. J Orofac Orthop 2024:10.1007/s00056-023-00512-z. [PMID: 38296908 DOI: 10.1007/s00056-023-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
PURPOSE Mandibular retrognathism (MR) is a common skeletal malocclusion in humans with a strong genetic component. Single nucleotide polymorphisms (SNPs) in genes encoding epidermal growth factor (EGF) and EGF receptor (EGFR) could be involved in the etiology of mandibular retrognathism. Therefore, in this study, we investigated whether SNPs in the genes encoding for EGF and EGFR are associated with MR in German teenagers. METHODS This nested case-control study evaluated German orthodontic patients, aged 10-18 years. DNA, which was isolated from buccal epithelial cells using two cytobrushes, was used for genotyping analysis and digital pretreatment lateral cephalograms were examined to calculate SNB and ANB. Patients with a retrognathic mandible (SNB < 78°) were included as cases, while patients with an orthognathic mandible (SNB = 78-82°) were included as controls. Four SNPs in the genes encoding for EGF and EGFR were chosen and genotyped using real-time PCR. Allele, genotype, and haplotype frequency were compared across groups (α = 5%). RESULTS Finally, 119 patients were included in this study (45 orthognathic mandible, 74 retrognathic mandible). The minor allele G in rs4444903 (EGF) was statistically more frequent in individuals with an orthognathic mandible (p = 0.008). The haplotype formed by the mutant alleles for rs4444903|rs2237051 (EGF; G|A) was statistically more frequent in the orthognathic mandible group (p = 0.007). The SNPs rs4444903 and rs2237051 in EGF, and rs2227983 in EGFR were statistically associated with a decreasing risk of developing a retrognathic mandible according to univariate and multivariate statistical analysis (p < 0.05). CONCLUSION SNPs in EGF (rs4444903 and rs2237051) and EGFR (rs2227983) were associated with MR in our German sample and could be genetic biomarkers for early and individualized diagnostic identification of retrognathic mandibular development by means of genetic screening tests.
Collapse
Affiliation(s)
- Eva Paddenberg-Schubert
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Erika Küchler
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Caio Luiz Bitencourt Reis
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alice Corrêa Silva-Sousa
- Restorative Dentistry Department, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| |
Collapse
|
7
|
Stanojevic A, Spasic J, Marinkovic M, Stojanovic-Rundic S, Jankovic R, Djuric A, Zoidakis J, Fijneman RJA, Castellvi-Bel S, Cavic M. Methylenetetrahydrofolate reductase polymorphic variants C677T and A1298C in rectal cancer in Slavic population: significance for cancer risk and response to chemoradiotherapy. Front Genet 2024; 14:1299599. [PMID: 38288161 PMCID: PMC10822895 DOI: 10.3389/fgene.2023.1299599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/31/2023] [Indexed: 01/31/2024] Open
Abstract
Background: Methylenetetrahydrofolate reductase (MTHFR) single nucleotide polymorphisms (SNPs) have been suggested as risk, prognostic, and predictive factors for colorectal cancer in various populations, but have not been validated so far. The aim of this study was to examine the association of MTHFR C677T (rs1801133) and A1298C (rs1801131) single nucleotide polymorphisms with the risk of rectal cancer as well as the response to neoadjuvant chemoradiotherapy (nCRT) based on 5-Fluorouracil (5-FU)/leucovorin (LV) in the locally advanced setting. Patients and methods: This case-control study included 119 healthy controls and 97 patients with locally advanced rectal cancer (LARC). For MTHFR genotyping, restriction fragment length polymorphism analysis (PCR-RFLP) was employed. Results: In silico analysis highlighted that SNPs C677T and A1298T correlate with MTHFR gene expression, and that gene expression profile correlates with cancer risk and stage. Using dominant and recessive models, it was found that the MTHFR 677CC vs. 677CT+677TT have increased risk of cancer development (odds ratio (OR): 2.27; 95% confidence interval (CI): 1.30-3.95, p = 0.002) as well as 677CC+677CT compared to 677TT (OR: 4.18, 95% CI: 1.16-14.99, p = 0.014). MTHFR 1298AA also shown increased risk for cancer development compared to 1298AC+1298CC (OR:2.0, 95% CI: 1.20-3.59, p = 0.035) Statistical analysis of combined genotypes highlighted the protective role of CT/AC combined genotype (OR: 3.15 95% CI: 1.576-6.279, p = 0.002) while the CC/AA genotype showed an increased risk for rectal cancer development (OR: 2.499, 95% CI: 1.246-5.081, p = 0.016) The carriers of the 677C/1298A haplotype had the highest risk for developing rectal cancer (OR: 1.74; 95% CI: 1.198-2.530, p = 0.002) while the 677T/1298C haplotype seems to provide a protective effect. (OR: 0.44; 95%CI 0.248-0.795, p = 0.003). No significant association with response to chemoradiotherapy was found. Conclusion: Our data point to MTHFR 667C allele and 1298A alleles as low-penetrance risk factors for rectal cancer in our population. To the best of our knowledge, this is the first study of this type performed on the Slavic population in the Western Balkan, as various population-based factors might also be significant our findings can be used for future meta-analyses and the construction of genetic cancer risk prediction panels.
Collapse
Affiliation(s)
- Aleksandra Stanojevic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Jelena Spasic
- Clinic for Medical Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Mladen Marinkovic
- Clinic for Radiation Oncology and Diagnostics, Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Suzana Stojanovic-Rundic
- Clinic for Radiation Oncology and Diagnostics, Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Radmila Jankovic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ana Djuric
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Remond J A Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sergi Castellvi-Bel
- Gastroenterology Department, Fundació Recerca Clínic Barcelona-Institutd'Investigacions Biomèdiques August Pi iSunyer, Centro de Investigación Biomédicaen Red de Enfermedades Hepáticas y Digestivas, Clínic Barcelona, University of Barcelona, Barcelona, Spain
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| |
Collapse
|
8
|
Predictive and Prognostic Value of Oncogene Mutations and Microsatellite Instability in Locally-Advanced Rectal Cancer Treated with Neoadjuvant Radiation-Based Therapy: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:cancers15051469. [PMID: 36900260 PMCID: PMC10001009 DOI: 10.3390/cancers15051469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Markers of pathological complete response (pCR) to preoperative radiation-based therapy in locally advanced rectal cancer (LARC) are strongly needed. This meta-analysis aimed at elucidating the predictive/prognostic role of tumor markers in LARC. We systematically reviewed the impact of RAS, TP53, BRAF, PIK3CA, and SMAD4 mutations and MSI status on response (pCR, downstaging) and prognosis (risk of recurrence, survival) in LARC according to PRISMA guidelines and the PICO model. PubMed, Cochrane Library, and Web of Science Core Collection were systematically searched to identify relevant studies published before October 2022. KRAS mutations were significantly associated with the risk of not achieving pCR after preoperative treatment (summary OR = 1.80, 95% CI: 1.23-2.64). This association was even more significant in patients not receiving cetuximab (summary OR = 2.17, 95% CI: 1.41-3.33) than in patients receiving cetuximab (summary OR = 0.89, 95% CI: 0.39-20.05). MSI status was not associated with pCR (summary OR = 0.80, 95% CI: 0.41-1.57). No effect of KRAS mutation or MSI status on downstaging was detected. Meta-analysis of survival outcomes was not possible due to the large heterogeneity among studies in endpoint assessment. The minimum number of eligible studies to assess the predictive/prognostic role of TP53, BRAF, PIK3CA, and SMAD4 mutations was not reached. KRAS mutation, but not MSI status, proved to be a detrimental marker for response to preoperative radiation-based therapy in LARC. Translating this finding into the clinic could improve the management of LARC patients. More data are needed to clarify the clinical impact of TP53, BRAF, PIK3CA, and SMAD4 mutations.
Collapse
|
9
|
Krebs MG, Malapelle U, André F, Paz-Ares L, Schuler M, Thomas DM, Vainer G, Yoshino T, Rolfo C. Practical Considerations for the Use of Circulating Tumor DNA in the Treatment of Patients With Cancer: A Narrative Review. JAMA Oncol 2022; 8:1830-1839. [PMID: 36264554 DOI: 10.1001/jamaoncol.2022.4457] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Personalized medicine based on tumor profiling and identification of actionable genomic alterations is pivotal in cancer management. Although tissue biopsy is still preferred for diagnosis, liquid biopsy of blood-based tumor analytes, such as circulating tumor DNA, is a rapidly emerging technology for tumor profiling. Observations This review presents a practical overview for clinicians and allied health care professionals for selection of the most appropriate liquid biopsy assay, specifically focusing on circulating tumor DNA and how it may affect patient treatment and case management across multiple tumor types. Multiple factors influence the analytical validity, clinical validity, and clinical utility of testing. This review provides recommendations and practical guidance for best practice. Current methodologies include polymerase chain reaction-based approaches and those that use next-generation sequencing (eg, capture-based profiling, whole exome, or genome sequencing). Factors that may influence utility include sensitivity and specificity, quantity of circulating tumor DNA, detection of a small vs a large panel of genes, and clonal hematopoiesis of indeterminate potential. Currently, liquid biopsy appears useful in patients unable to undergo biopsy or where mutations detected may be more representative of the predominant tumor burden than for tissue-based assays. Other potential applications may include screening, primary diagnosis, residual disease, local recurrence, therapy selection, or early therapy response and resistance monitoring. Conclusions and Relevance This review found that liquid biopsy is increasingly being used clinically in advanced lung cancer, and ongoing research is identifying applications of circulating tumor DNA-based testing that complement tissue analysis across a broad range of clinical settings. Circulating tumor DNA technologies are advancing quickly and are demonstrating potential benefits for patients, health care practitioners, health care systems, and researchers, at many stages of the patient oncologic journey.
Collapse
Affiliation(s)
- Matthew G Krebs
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | | | | | - Martin Schuler
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, Essen, Germany
| | - David M Thomas
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | | | | | - Christian Rolfo
- Center for Thoracic Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
10
|
Pape K, Lößner AJ, William D, Czempiel T, Beyreuther E, Klimova A, Lehmann C, Schmäche T, Merker SR, Naumann M, Ada AM, Baenke F, Seidlitz T, Bütof R, Dietrich A, Krause M, Weitz J, Klink B, von Neubeck C, Stange DE. Sensitization of Patient-Derived Colorectal Cancer Organoids to Photon and Proton Radiation by Targeting DNA Damage Response Mechanisms. Cancers (Basel) 2022; 14:4984. [PMID: 36291768 PMCID: PMC9599341 DOI: 10.3390/cancers14204984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 12/04/2022] Open
Abstract
Pathological complete response (pCR) has been correlated with overall survival in several cancer entities including colorectal cancer. Novel total neoadjuvant treatment (TNT) in rectal cancer has achieved pathological complete response in one-third of the patients. To define better treatment options for nonresponding patients, we used patient-derived organoids (PDOs) as avatars of the patient's tumor to apply both photon- and proton-based irradiation as well as single and combined chemo(radio)therapeutic treatments. While response to photon and proton therapy was similar, PDOs revealed heterogeneous responses to irradiation and different chemotherapeutic drugs. Radiotherapeutic response of the PDOs was significantly correlated with their ability to repair irradiation-induced DNA damage. The classical combination of 5-FU and irradiation could not sensitize radioresistant tumor cells. Ataxia-telangiectasia mutated (ATM) kinase was activated upon radiation, and by inhibition of this central sensor of DNA damage, radioresistant PDOs were resensitized. The study underlined the capability of PDOs to define nonresponders to irradiation and could delineate therapeutic approaches for radioresistant patients.
Collapse
Affiliation(s)
- Kristin Pape
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Anna J. Lößner
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Doreen William
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Hereditary Cancer Syndrome Center Dresden, ERN-GENTURIS, Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tabea Czempiel
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Hereditary Cancer Syndrome Center Dresden, ERN-GENTURIS, Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Elke Beyreuther
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, 01307 Dresden, Germany
| | - Anna Klimova
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Claudia Lehmann
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Tim Schmäche
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Sebastian R. Merker
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Max Naumann
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
| | - Anne-Marlen Ada
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Franziska Baenke
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Therese Seidlitz
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Rebecca Bütof
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Antje Dietrich
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
| | - Mechthild Krause
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Barbara Klink
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Hereditary Cancer Syndrome Center Dresden, ERN-GENTURIS, Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center of Genetics (NCG), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
| | - Cläre von Neubeck
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Daniel E. Stange
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| |
Collapse
|
11
|
Arjmandi K, Ameli F, Salahshourifar I, Esfandbod M, Irani S. Evaluation of TS and ENOSF1 Variants as a Biomarker in Response to Neoadjuvant Chemotherapy based on 5FU in Gastric Cancer Patients. Asian Pac J Cancer Prev 2022; 23:2983-2989. [PMID: 36172660 PMCID: PMC9810307 DOI: 10.31557/apjcp.2022.23.9.2983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/25/2022] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Neoadjuvant chemotherapy with 5-fluorouracil (5FU) is one of the most effective treatment options for gastric cancer patients. However, treatment response varies significantly between patients based on their genetic profile. The purpose of this study was to determine the association between thymidylate synthase (TS) and enolase superfamily member 1 (ENOSF1) polymorphisms, treatment response, and overall survival in patients with gastric cancer. METHODS The TS and ENOSF1 variants were analyzed in formalin-fixed paraffin-embedded (FFPE) tissue from 100 gastric cancer patients receiving neoadjuvant 5FU-based chemotherapy. Polymerase chain reaction (PCR) amplification and restriction fragment length polymorphism (RFLP) were used to determine TS polymorphisms' genotypes, and the Tetra Arms PCR method was used to identify ENOSF1 polymorphisms. Patients were followed for up to five years, and the association between variants, treatment response, and overall survival (OS) was examined. RESULTS There was a significant association between the TS 5' UTR polymorphism and response to treatment in patients with gastric cancer who received neoadjuvant 5FU therapy (P=0.032). Patients with the 2R3R genotype responded better to treatment, whereas those with the 3R3R genotype did not respond to treatment. Patients with the 2R2R and 3R3R genotypes had the longest and shortest median survival times, respectively, and the observed differences were significant (p=0.003). There was a statistically significant relationship between rs2612091 and chemotherapy response (P=0.017). Patients with genotype AG did not respond to treatment. CONCLUSION This study established that the TS 5' UTR and ENOSF1 rs2612091 polymorphisms could be used to predict treatment response and overall survival in patients with gastric cancer who received neoadjuvant chemotherapy based on 5FU.
Collapse
Affiliation(s)
- Khadijeh Arjmandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Fereshteh Ameli
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Iman Salahshourifar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mohsen Esfandbod
- Department of Hematology and Oncology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences TUMS, Tehran, Iran.
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
12
|
Quintanilha JC, Wang J, Sibley AB, Xu W, Espin-Garcia O, Jiang C, Etheridge AS, Ratain MJ, Lenz HJ, Bertagnolli M, Kindler HL, Dickler MN, Venook A, Liu G, Owzar K, Lin D, Innocenti F. Genome-wide association studies of survival in 1520 cancer patients treated with bevacizumab-containing regimens. Int J Cancer 2022; 150:279-289. [PMID: 34528705 PMCID: PMC8627468 DOI: 10.1002/ijc.33810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 01/17/2023]
Abstract
Germline variants might predict cancer progression. Bevacizumab improves overall survival (OS) in patients with advanced cancers. No biomarkers are available to identify patients that benefit from bevacizumab. A meta-analysis of genome-wide association studies (GWAS) was conducted in 1,520 patients from Phase III trials (CALGB 80303, 40503, 80405 and ICON7), where bevacizumab was randomized to treatment without bevacizumab. We aimed to identify genes and single nucleotide polymorphisms (SNPs) associated with survival independently of bevacizumab treatment or through interaction with bevacizumab. A cause-specific Cox model was used to test the SNP-OS association in both arms combined (prognostic), and the effect of SNPs-bevacizumab interaction on OS (predictive) in each study. The SNP effects across studies were combined using inverse variance. Findings were tested for replication in advanced colorectal and ovarian cancer patients from The Cancer Genome Atlas (TGCA). In the GWAS meta-analysis, patients with rs680949 in PRUNE2 experienced shorter OS compared to patients without it (P = 1.02 × 10-7 , hazard ratio [HR] = 1.57, 95% confidence interval [CI] 1.33-1.86), as well as in TCGA (P = .0219, HR = 1.58, 95% CI 1.07-2.35). In the GWAS meta-analysis, patients with rs16852804 in BARD1 experienced shorter OS compared to patients without it (P = 1.40 × 10-5 , HR = 1.51, 95% CI 1.25-1.82) as well as in TCGA (P = 1.39 × 10-4 , HR = 3.09, 95% CI 1.73-5.51). Patients with rs3795897 in AGAP1 experienced shorter OS in the bevacizumab arm compared to the nonbevacizumab arm (P = 1.43 × 10-5 ). The largest GWAS meta-analysis of bevacizumab treated patients identified PRUNE2 and BARD1 (tumor suppressor genes) as prognostic genes of colorectal and ovarian cancer, respectively, and AGAP1 as a potentially predictive gene that interacts with bevacizumab with respect to patient survival.
Collapse
Affiliation(s)
- Julia C.F. Quintanilha
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jin Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexander B. Sibley
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network and Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Osvaldo Espin-Garcia
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network and Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Chen Jiang
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Amy S. Etheridge
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark J. Ratain
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Hedy L. Kindler
- University of Chicago Comprehensive Cancer Center, Chicago, Illinois, USA
| | | | - Alan Venook
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, USA
| | - Geoffrey Liu
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Kouros Owzar
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA,Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
| | - Danyu Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Federico Innocenti
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Correspondence: Federico Innocenti, MD, PhD. University of North Carolina at Chapel Hill, UNC Eshelman School of Pharmacy, Genetic Medicine Bldg. 120 Mason Farm Rd, Campus Box 7361, Chapel Hill, NC 27599-7361, Tel 919-966-9422 Fax 919-966-5863,
| |
Collapse
|
13
|
Wong OGW, Li J, Cheung ANY. Targeting DNA Damage Response Pathway in Ovarian Clear Cell Carcinoma. Front Oncol 2021; 11:666815. [PMID: 34737943 PMCID: PMC8560708 DOI: 10.3389/fonc.2021.666815] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is one of the major types of ovarian cancer and is of higher relative prevalence in Asians. It also shows higher possibility of resistance to cisplatin-based chemotherapy leading to poor prognosis. This may be attributed to the relative lack of mutations and aberrations in homologous recombination-associated genes, which are crucial in DNA damage response (DDR), such as BRCA1, BRCA2, p53, RAD51, and genes in the Fanconi anemia pathway. On the other hand, OCCC is characterized by a number of genetic defects rendering it vulnerable to DDR-targeting therapy, which is emerging as a potent treatment strategy for various cancer types. Mutations of ARID1A, PIK3CA, PTEN, and catenin beta 1 (CTNNB1), as well as overexpression of transcription factor hepatocyte nuclear factor-1β (HNF-1β), and microsatellite instability are common in OCCC. Of particular note is the loss-of-function mutations in ARID1A, which is found in approximately 50% of OCCC. ARID1A is crucial for processing of DNA double-strand break (DSB) and for sustaining DNA damage signaling, rendering ARID1A-deficient cells prone to impaired DNA damage checkpoint regulation and hence sensitive to poly ADP ribose polymerase (PARP) inhibitors. However, while preclinical studies have demonstrated the possibility to exploit DDR deficiency in OCCC for therapeutic purpose, progress in clinical application is lagging. In this review, we will recapitulate the preclinical studies supporting the potential of DDR targeting in OCCC treatment, with emphasis on the role of ARID1A in DDR. Companion diagnostic tests (CDx) for predicting susceptibility to PARP inhibitors are rapidly being developed for solid tumors including ovarian cancers and may readily be applicable on OCCC. The potential of various available DDR-targeting drugs for treating OCCC by drawing analogies with other solid tumors sharing similar genetic characteristics with OCCC will also be discussed.
Collapse
|