1
|
Rox K, Medina E. Aerosolized delivery of ESKAPE pathogens for murine pneumonia models. Sci Rep 2024; 14:2558. [PMID: 38297183 PMCID: PMC10830452 DOI: 10.1038/s41598-024-52958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Murine pneumonia models for ESKAPE pathogens serve to evaluate novel antibacterials or to investigate immunological responses. The majority of published models uses intranasal or to a limited extent the intratracheal instillation to challenge animals. In this study, we propose the aerosol delivery of pathogens using a nebulizer. Aerosol delivery typically results in homogeneous distribution of the inoculum in the lungs because of lower particle size. This is of particular importance when compounds are assessed for their pharmacokinetic and pharmacodynamic (PK/PD) relationships as it allows to conduct several analysis with the same sample material. Moreover, aerosol delivery has the advantage that it mimics the 'natural route' of respiratory infection. In this short and concise study, we show that aerosol delivery of pathogens resulted in a sustained bacterial burden in the neutropenic lung infection model for five pathogens tested, whereas it gave a similar result in immunocompetent mice for three out of five pathogens. Moreover, a substantial bacterial burden in the lungs was already achieved 2 h post inhalation. Hence, this study constitutes a viable alternative for intranasal administration and a refinement of murine pneumonia models for PK/PD assessments of novel antibacterial compounds allowing to study multiple readouts with the same sample material.
Collapse
Affiliation(s)
- Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124, Braunschweig, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany.
| | - Eva Medina
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
- Infection Immunology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124, Braunschweig, Germany
| |
Collapse
|
2
|
Edirisinghe HS, Rajapaksa AE, Royce SG, Sourial M, Bischof RJ, Anderson J, Sarila G, Nguyen CD, Mulholland K, Do LAH, Licciardi PV. Aerosol Delivery of Palivizumab in a Neonatal Lamb Model of Respiratory Syncytial Virus Infection. Viruses 2023; 15:2276. [PMID: 38005952 PMCID: PMC10675108 DOI: 10.3390/v15112276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Palivizumab has been an approved preventative monoclonal antibody for respiratory syncytial virus (RSV) infection for over two decades. However, due to its high cost and requirement for multiple intramuscular injections, its use has been limited mostly to high-income countries. Following our previous study showing the successful lung deposition of aerosolised palivizumab in lambs, this current study evaluated the "proof-of-principle" effect of aerosolised palivizumab delivered as a therapeutic to neonatal lambs following RSV infection. (2) Methods: Neonatal lambs were intranasally inoculated with RSV-A2 on day 0 (day 3 post-birth) and treated with aerosolised palivizumab 3 days later (day 3 post-inoculation). Clinical symptoms, RSV viral load and inflammatory response were measured post-inoculation. (3) Results: Aerosolised therapeutic delivery of palivizumab did not reduce RSV viral loads in the nasopharynx nor the bronchoalveolar lavage fluid, but resulted in a modest reduction in inflammatory response at day 6 post-inoculation compared with untreated lambs. (4) Conclusions: This proof-of-principle study shows some evidence of aerosolised palivizumab reducing RSV inflammation, but further studies using optimized protocols are needed in order to validate these findings.
Collapse
Affiliation(s)
- Hasindu S. Edirisinghe
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Anushi E. Rajapaksa
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
- Royal Children’s Hospital, Melbourne 3052, Australia
- Royal Women’s Hospital, Melbourne 3052, Australia
| | - Simon G. Royce
- Monash Biomedicine Discovery Institute, Monash University, Melbourne 3168, Australia;
| | - Magdy Sourial
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Royal Children’s Hospital, Melbourne 3052, Australia
| | - Robert J. Bischof
- Institute of Innovation, Science and Sustainability, Federation University, Melbourne 3806, Australia;
| | - Jeremy Anderson
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Gulcan Sarila
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Cattram D. Nguyen
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
| | - Kim Mulholland
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Lien Anh Ha Do
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Paul V. Licciardi
- Murdoch Children’s Research Institute, Melbourne 3052, Australia; (H.S.E.); (M.S.); (J.A.); (G.S.); (C.D.N.); (K.M.); (L.A.H.D.)
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
3
|
Komalla V, Wong CYJ, Sibum I, Muellinger B, Nijdam W, Chaugule V, Soria J, Ong HX, Buchmann NA, Traini D. Advances in soft mist inhalers. Expert Opin Drug Deliv 2023; 20:1055-1070. [PMID: 37385962 DOI: 10.1080/17425247.2023.2231850] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Soft mist inhalers (SMIs) are propellant-free inhalers that utilize mechanical power to deliver single or multiple doses of inhalable drug aerosols in the form of a slow mist to patients. Compared to traditional inhalers, SMIs allow for a longer and slower release of aerosol with a smaller ballistic effect, leading to a limited loss in the oropharyngeal area, whilst requiring little coordination of actuation and inhalation by patients. Currently, the Respimat® is the only commercially available SMI, with several others in different stages of preclinical and clinical development. AREAS COVERED The primary purpose of this review is to critically assess recent advances in SMIs for the delivery of inhaled therapeutics. EXPERT OPINION Advanced particle formulations, such as nanoparticles which target specific areas of the lung, Biologics, such as vaccines, proteins, and antibodies (which are sensitive to aerosolization), are expected to be generally delivered by SMIs. Furthermore, repurposed drugs are expected to constitute a large share of future formulations to be delivered by SMIs. SMIs can also be employed for the delivery of formulations that target systemic diseases. Finally, digitalizing SMIs would improve patient adherence and provide clinicians with fundamental insights into patients' treatment progress.
Collapse
Affiliation(s)
- Varsha Komalla
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
| | - Chun Yuen Jerry Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Macquarie Medical School, Department of Biological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | | | | | | | - Vishal Chaugule
- Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Julio Soria
- Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Macquarie Medical School, Department of Biological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | | | - D Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Macquarie Medical School, Department of Biological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
4
|
Diethelm-Varela B, Soto JA, Riedel CA, Bueno SM, Kalergis AM. New Developments and Challenges in Antibody-Based Therapies for the Respiratory Syncytial Virus. Infect Drug Resist 2023; 16:2061-2074. [PMID: 37063935 PMCID: PMC10094422 DOI: 10.2147/idr.s379660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023] Open
Abstract
Since the discovery of the human respiratory syncytial virus (hRSV), multiple research efforts have been conducted to develop vaccines and treatments capable of reducing the risk of severe disease, hospitalization, long-term sequelae, and death from this pathogen in susceptible populations. In this sense, therapies specifically directed against hRSV are mainly based on monoclonal and polyclonal antibodies such as intravenous IgG (IVIG)-RSV and the monoclonal antibody palivizumab. However, these therapies are associated with significant limitations, including the need for the recruitment of a high number of convalescent volunteers who donate blood to procure IVIG-RSV and the costs associated with the need for repeated administrations of palivizumab. These limitations render this product not cost-effective for populations other than high-risk patients. These problems have underscored that it is still necessary to identify new safe and effective therapies for human use. However, these new therapies must benefit from a comparatively cheap production cost and the opportunity to be available to the high-risk population and anyone who requires treatment. Here, we review the different antibodies used to prevent the pathology caused by hRSV infection, highlighting therapies currently approved for human use and their clinical value. Also, the new, most promising candidates based on preclinical studies and clinical trial results are revised.
Collapse
Affiliation(s)
- Benjamín Diethelm-Varela
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Jeon T, Luther DC, Goswami R, Bell C, Nagaraj H, Anil Cicek Y, Huang R, Mas-Rosario JA, Elia JL, Im J, Lee YW, Liu Y, Scaletti F, Farkas ME, Mager J, Rotello VM. Engineered Polymer-siRNA Polyplexes Provide Effective Treatment of Lung Inflammation. ACS NANO 2023; 17:4315-4326. [PMID: 36802503 PMCID: PMC10627429 DOI: 10.1021/acsnano.2c08690] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Uncontrolled inflammation is responsible for acute and chronic diseases in the lung. Regulating expression of pro-inflammatory genes in pulmonary tissue using small interfering RNA (siRNA) is a promising approach to combatting respiratory diseases. However, siRNA therapeutics are generally hindered at the cellular level by endosomal entrapment of delivered cargo and at the organismal level by inefficient localization in pulmonary tissue. Here we report efficient anti-inflammatory activity in vitro and in vivo using polyplexes of siRNA and an engineered cationic polymer (PONI-Guan). PONI-Guan/siRNA polyplexes efficiently deliver siRNA cargo to the cytosol for highly efficient gene knockdown. Significantly, these polyplexes exhibit inherent targeting to inflamed lung tissue following intravenous administration in vivo. This strategy achieved effective (>70%) knockdown of gene expression in vitro and efficient (>80%) silencing of TNF-α expression in lipopolysaccharide (LPS)-challenged mice using a low (0.28 mg/kg) siRNA dosage.
Collapse
Affiliation(s)
- Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - David C. Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Charlotte Bell
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Javier A. Mas-Rosario
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
| | - James L. Elia
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jungkyun Im
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
- Department of Chemical Engineering, and Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyangro, Asan, 31538, Republic of Korea
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Federica Scaletti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Michelle E. Farkas
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Vincent M. Rotello
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
6
|
Soto JA, Galvez NMS, Rivera DB, Díaz FE, Riedel CA, Bueno SM, Kalergis AM. From animal studies into clinical trials: the relevance of animal models to develop vaccines and therapies to reduce disease severity and prevent hRSV infection. Expert Opin Drug Discov 2022; 17:1237-1259. [PMID: 36093605 DOI: 10.1080/17460441.2022.2123468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (hRSV) is an important cause of lower respiratory tract infections in the pediatric and the geriatric population worldwide. There is a substantial economic burden resulting from hRSV disease during winter. Although no vaccines have been approved for human use, prophylactic therapies are available for high-risk populations. Choosing the proper animal models to evaluate different vaccine prototypes or pharmacological treatments is essential for developing efficient therapies against hRSV. AREAS COVERED This article describes the relevance of using different animal models to evaluate the effect of antiviral drugs, pharmacological molecules, vaccine prototypes, and antibodies in the protection against hRSV. The animal models covered are rodents, mustelids, bovines, and nonhuman primates. Animals included were chosen based on the available literature and their role in the development of the drugs discussed in this manuscript. EXPERT OPINION Choosing the correct animal model is critical for exploring and testing treatments that could decrease the impact of hRSV in high-risk populations. Mice will continue to be the most used preclinical model to evaluate this. However, researchers must also explore the use of other models such as nonhuman primates, as they are more similar to humans, prior to escalating into clinical trials.
Collapse
Affiliation(s)
- J A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - N M S Galvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D B Rivera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - S M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Cortez-Jugo C, Masoumi S, Chan PPY, Friend J, Yeo L. Nebulization of siRNA for inhalation therapy based on a microfluidic surface acoustic wave platform. ULTRASONICS SONOCHEMISTRY 2022; 88:106088. [PMID: 35797825 PMCID: PMC9263997 DOI: 10.1016/j.ultsonch.2022.106088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 05/14/2023]
Abstract
The local delivery of therapeutic small interfering RNA or siRNA to the lungs has the potential to improve the prognosis for patients suffering debilitating lung diseases. Recent advances in materials science have been aimed at addressing delivery challenges including biodistribution, bioavailability and cell internalization, but an equally important challenge to overcome is the development of an inhalation device that can deliver the siRNA effectively to the lung, without degrading the therapeutic itself. Here, we report the nebulization of siRNA, either naked siRNA or complexed with polyethyleneimine (PEI) or a commercial transfection agent, using a miniaturizable acoustomicrofluidic nebulization device. The siRNA solution could be nebulised without significant degradation into an aerosol mist with tunable mean aerodynamic diameters of approximately 3 µm, which is appropriate for deep lung deposition via inhalation. The nebulized siRNA was tested for its stability, as well as its toxicity and gene silencing properties using the mammalian lung carcinoma cell line A549, which demonstrated that the gene silencing capability of siRNA is retained after nebulization. This highlights the potential application of the acoustomicrofluidic device for the delivery of efficacious siRNA via inhalation, either for systemic delivery via the alveolar epithelium or local therapeutic delivery to the lung.
Collapse
Affiliation(s)
- Christina Cortez-Jugo
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria 3168, Australia.
| | - Sarah Masoumi
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, Victoria 3001, Australia
| | - Peggy P Y Chan
- School of Software and Electrical Engineering, Swinburne University, Hawthorn, Victoria 3122, Australia; Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - James Friend
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, Victoria 3001, Australia; Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Leslie Yeo
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
8
|
Huang A, Connacher W, Stambaugh M, Zhang N, Zhang S, Mei J, Jain A, Alluri S, Leung V, Rajapaksa AE, Friend J. Practical microcircuits for handheld acoustofluidics. LAB ON A CHIP 2021; 21:1352-1363. [PMID: 33565534 DOI: 10.1039/d0lc01008a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Acoustofluidics has promised to enable lab-on-a-chip and point-of-care devices in ways difficult to achieve using other methods. Piezoelectric ultrasonic transducers-as small as the chips they actuate-provide rapid fluid and suspended object transport. Acoustofluidic lab-on-chip devices offer a vast range of benefits in early disease identification and noninvasive drug delivery. However, their potential has long been undermined by the need for benchtop or rack-mount electronics. The piezoelectric ultrasonic transducers within require these equipment and thus acoustofluidic device implementation in a bedside setting has been limited. Here we detail a general process to enable the reader to produce battery or mains-powered microcircuits ideal for driving 1-300 MHz acoustic devices. We include the general design strategy for the circuit, the blocks that collectively define it, and suitable, specific choices for components to produce these blocks. We furthermore illustrate how to incorporate automated resonance finding and tracking, sensing and feedback, and built-in adjustability to accommodate devices' vastly different operating frequencies and powers in a single driver, including examples of fluid and particle manipulation typical of the needs in our discipline. With this in hand, the many groups active in lab-on-a-chip acoustofluidics can now finally deliver on the promise of handheld, point-of-care technologies.
Collapse
Affiliation(s)
- An Huang
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. http://friend.ucsd.edu
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|