1
|
Tu L, Zou Z, Yang Y, Wang S, Xing B, Feng J, Jin Y, Cheng M. Targeted drug delivery systems for atherosclerosis. J Nanobiotechnology 2025; 23:306. [PMID: 40269931 PMCID: PMC12016489 DOI: 10.1186/s12951-025-03384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Atherosclerosis is a complex cardiovascular disease driven by multiple factors, including aging, inflammation, oxidative stress, and plaque rupture. The progression of this disease is often covert, emphasizing the need for early biomarkers and effective intervention measures. In recent years, advancements in therapeutic strategies have highlighted the potential of targeting specific processes in atherosclerosis, such as plaque localization, macrophage activity, and key enzymes. Based on this, this review discusses the potential role of targeted drugs in the treatment of atherosclerosis. It also focuses on their clinical efficacy in anti-atherosclerosis treatment and their ability to provide more precise therapeutic approaches. The findings underscore that future research can concentrate on exploring newer drug delivery systems and biomarkers to further refine clinical treatment strategies and enhance the long-term dynamic management of atherosclerosis.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Ye Yang
- Wenzhou Yining Geriatric Hospital, Wenzhou, 325041, P.R. China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
- Guangxi University of Chinese Medicine, Nanning, 530200, P.R. China
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China.
| |
Collapse
|
2
|
Huang Q, Shan Q, Ma F, Li S, Sun P. Chlorogenic acid mitigates heat stress-induced oxidative damage in bovine mammary epithelial cells by inhibiting NF-κB-mediated NLRP3 inflammasome activation via upregulating the Nrf2 signaling pathway. Int J Biol Macromol 2025; 301:140133. [PMID: 39842566 DOI: 10.1016/j.ijbiomac.2025.140133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Chlorogenic acid (CGA), a polyphenolic bioactive molecule derived from medicinal plants, is known for its strong antioxidant and anti-inflammatory properties. Previous studies have demonstrated that dietary supplementation with Lonicera japonica extract, rich in CGA, effectively enhances the production performance of lactating dairy cows under heat stress (HS) conditions. However, the molecular mechanisms underlying CGA's protective effects remain unclear. This study aims to elucidate the mechanisms by which CGA alleviates HS-induced oxidative damage in bovine mammary epithelial cells (bMECs), focusing on its pharmacological activity and potential application as a natural therapeutic agent for bovine mammary disorders. The results demonstrated that HS activates the NF-κB and NLRP3 signaling pathways by increasing ROS generation, leading to oxidative stress and inflammatory response in bMECs. CGA mitigates these effects by scavenging intracellular ROS, activating the Nrf2 signaling pathway, and inhibiting key molecules in the NF-κB and NLRP3 signaling pathways. This study provides new insights into the underlying molecular mechanisms of CGA's protective effects, highlighting its potential as a natural antioxidant for bovine mammary health and contributing to the broader application of polyphenolic compounds in managing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Qi Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiang Shan
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Sun G, Xu Y, Liang X, Wang L, Liu Y. Curcumin inhibits the progression of hyperlipidemia via OGT mediated O-GlcNAcylation modulation of APOC3. Int Immunopharmacol 2025; 144:113647. [PMID: 39579540 DOI: 10.1016/j.intimp.2024.113647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
The etiology of hyperlipidemia is complex, and our understanding of its underlying mechanisms is limited. Effective therapeutic strategies for hyperlipidemia remain elusive. This study aimed to confirm the effect of curcumin on hyperlipidemia treatment and elucidate the precise mechanism. A high-fat diet-induced hyperlipidemia model using C57BL/6J mice and HaCaT cells was established. Co-immunoprecipitation and immunofluorescence were performed to detect protein interactions, and immunoprecipitation coupled with Western blotting was used to assess protein succinylation. 40 μM of curcumin administration promoted cell viability, increased the levels of glutathione peroxidase, glutathione, catalase, and superoxide dismutase, while reducing reactive oxygen species activity and the levels of triglycerides and malondialdehyde. Additionally, curcumin attenuated the development of hyperlipidemia in vivo. Mechanistically, 100 mg/kg of curcumin promoted O-GlcNAcylation and increased the expression of O-linked N-acetylglucosamine transferase in HaCaT cells. Furthermore, apolipoprotein C3 was identified as a substrate of O-linked N-acetylglucosamine transferase, and O-GlcNAcylation of apolipoprotein C3 enhanced its stability. Rescue experiments further verified that curcumin exerts its effects by regulating apolipoprotein C3 expression. In conclusion, these findings provide novel insights into the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Guotong Sun
- Department of Cardiology, Hulunbuir Zhong Meng Hospital, Hulunbuir 021000, China; Department of Cardiology, Shouguang Hospital of T.C.M, Weifang 262700, China
| | - Yaowen Xu
- Department of Cardiology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266011, China
| | - Xiuwen Liang
- Department of Cardiology, Hulunbuir Zhong Meng Hospital, Hulunbuir 021000, China
| | - Lei Wang
- Department of Science and Education, Hulunbuir Zhong Meng Hospital, Hulunbuir 021000, China
| | - Yu Liu
- Department of Cardiology, Hulunbuir Zhong Meng Hospital, Hulunbuir 021000, China.
| |
Collapse
|
4
|
Yu X, Li M, Wang C, Guan X. Glycoprotein non-metastatic melanoma protein B (GPNMB): An attractive target in atherosclerosis. Biochem Biophys Res Commun 2024; 732:150386. [PMID: 39024681 DOI: 10.1016/j.bbrc.2024.150386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Atherosclerosis (AS), the leading cause of cardiovascular diseases, is heavily influenced by inflammation, lipid accumulation, autophagy, and aging. The expression of glycoprotein non-metastatic melanoma B (GPNMB) has been observed to correlate with lipid content, inflammation, and aging, progressively increasing as atherosclerosis advances through its various stages, from baseline to early and advanced phases. However, the interaction between GPNMB and AS is controversial. Knockout of GPNMB has been shown to increase atherosclerotic plaque burden in mice. Conversely, targeted elimination of GPNMB-positive cells reduced atherosclerotic burden. These seemingly contradictory findings underscore the complexity of the issue and highlight the need for further research to reconcile these discrepancies and to elucidate the precise role of GPNMB in the pathogenesis of AS.
Collapse
Affiliation(s)
- Xiaochen Yu
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Min Li
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Chao Wang
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Xiuru Guan
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China.
| |
Collapse
|
5
|
Wang WZ, Liu C, Luo JQ, Lei LJ, Chen MH, Zhang YY, Sheng R, Li YN, Wang L, Jiang XH, Xiao TM, Zhang YH, Li SW, Wu YX, Xu Y, Xu YN, Si SY. A novel small-molecule PCSK9 inhibitor E28362 ameliorates hyperlipidemia and atherosclerosis. Acta Pharmacol Sin 2024; 45:2119-2133. [PMID: 38811775 PMCID: PMC11420243 DOI: 10.1038/s41401-024-01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the epidermal growth factor precursor homologous domain A (EGF-A) of low-density lipoprotein receptor (LDLR) in the liver and triggers the degradation of LDLR via the lysosomal pathway, consequently leading to an elevation in plasma LDL-C levels. Inhibiting PCSK9 prolongs the lifespan of LDLR and maintains cholesterol homeostasis in the body. Thus, PCSK9 is an innovative pharmacological target for treating hypercholesterolemia and atherosclerosis. In this study, we discovered that E28362 was a novel small-molecule PCSK9 inhibitor by conducting a virtual screening of a library containing 40,000 compounds. E28362 (5, 10, 20 μM) dose-dependently increased the protein levels of LDLR in both total protein and the membrane fraction in both HepG2 and AML12 cells, and enhanced the uptake of DiI-LDL in AML12 cells. MTT assay showed that E28362 up to 80 μM had no obvious toxicity in HepG2, AML12, and HEK293a cells. The effects of E28362 on hyperlipidemia and atherosclerosis were evaluated in three different animal models. In high-fat diet-fed golden hamsters, administration of E28362 (6.7, 20, 60 mg·kg-1·d-1, i.g.) for 4 weeks significantly reduced plasma total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C) and PCSK9 levels, and reduced liver TC and TG contents. In Western diet-fed ApoE-/- mice (20, 60 mg·kg-1·d-1, i.g.) and human PCSK9 D374Y overexpression mice (60 mg·kg-1·d-1, i.g.), administration of E28362 for 12 weeks significantly decreased plasma LDL-C levels and the area of atherosclerotic lesions in en face aortas and aortic roots. Moreover, E28362 significantly increased the protein expression level of LDLR in the liver. We revealed that E28362 selectively bound to PCSK9 in HepG2 and AML12 cells, blocked the interaction between LDLR and PCSK9, and induced the degradation of PCSK9 through the ubiquitin-proteasome pathway, which finally resulted in increased LDLR protein levels. In conclusion, E28362 can block the interaction between PCSK9 and LDLR, induce the degradation of PCSK9, increase LDLR protein levels, and alleviate hyperlipidemia and atherosclerosis in three distinct animal models, suggesting that E28362 is a promising lead compound for the treatment of hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Wei-Zhi Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China.
| | - Jin-Que Luo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Li-Juan Lei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Ming-Hua Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
- Xinjiang Key Laboratory of Uighur Medicine, Xinjiang Institute of Materia Medica, Urumqi, 830002, China
| | - Yu-Yan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Ren Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Yi-Ning Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Li Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Xin-Hai Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Tong-Mei Xiao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Yu-Hao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Shun-Wang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Ye-Xiang Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Yang Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China
| | - Yan-Ni Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China.
| | - Shu-Yi Si
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100050, China.
| |
Collapse
|
6
|
Jiang X, Wang W, Lei L, Feng T, Hu Y, Liu P, Li Y, Sheng R, Zhang Y, Li S, Zhang J, Zhang Y, Jin ZG, Tian Z, Jiang J, Xu Y, Si S. Antirheumatic drug leflunomide attenuates atherosclerosis by regulating lipid metabolism and endothelial dysfunction via DHODH/AMPK signaling pathway. Int J Biol Sci 2024; 20:3725-3741. [PMID: 39113703 PMCID: PMC11302888 DOI: 10.7150/ijbs.93465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
The probability of cardiovascular events has been reported lower in rheumatoid arthritis (RA) patients treated with leflunomide. However, the anti-atherosclerotic and cardiovascular protective effects and metabolism of leflunomide are not explored. In this study, we assessed the potential benefits of leflunomide on atherosclerosis and revealed the underlying mechanism. ApoE-/- mice were fed a western diet (WD) alone or supplemented with leflunomide (20 mg/kg, oral gavage, once per day) for 12 weeks. Samples of the aorta, heart, liver, serum, and macrophages were collected. We found that leflunomide significantly reduced lesion size in both en-face aortas and aortic root in WD-fed ApoE-/- mice. Leflunomide also obviously improved dyslipidemia, reduced hepatic lipid content, and improved disorders of glucose and lipid metabolism in vivo. RNA-Seq results showed that leflunomide effectively regulated the genes' expression involved in the lipid metabolism pathway. Importantly, leflunomide significantly increased the phosphorylation levels of AMPKα and acetyl-CoA carboxylase (ACC) in vivo. Furthermore, leflunomide and its active metabolite teriflunomide suppressed lipid accumulation in free fatty acid (FFA)-induced AML12 cells and improved endothelial dysfunction in palmitic acid (PA)-induced HUVECs through activating AMPK signaling and inhibiting dihydroorotate dehydrogenase (DHODH) signaling pathway. We present evidence that leflunomide and teriflunomide ameliorate atherosclerosis by regulating lipid metabolism and endothelial dysfunction. Our findings suggest a promising use of antirheumatic small-molecule drugs leflunomide and teriflunomide for the treatment of atherosclerosis and related cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Xinhai Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Weizhi Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Lijuan Lei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Tingting Feng
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Yang Hu
- Pharmacy Department, Peking Union Medical College Hospital, PUMC & CAMS, Beijing, 100730, China
| | - Peng Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, USA
| | - Yining Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Ren Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Yuyan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Shunwang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Yuhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Zheng-gen Jin
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, USA
| | - Zhuang Tian
- Cardiology Department, Peking Union Medical College Hospital, PUMC & CAMS, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Yanni Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| | - Shuyi Si
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, NHC Key Laboratory of Biotechnology for Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), No.1 Tiantan Xili, Beijing, 100050, China
| |
Collapse
|
7
|
Luo Z, Yu X, Wang C, Zhao H, Wang X, Guan X. Trimethylamine N-oxide promotes oxidative stress and lipid accumulation in macrophage foam cells via the Nrf2/ABCA1 pathway. J Physiol Biochem 2024; 80:67-79. [PMID: 37932654 DOI: 10.1007/s13105-023-00984-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/04/2023] [Indexed: 11/08/2023]
Abstract
Recently, trimethylamine N-oxide (TMAO) has been considered a risk factor for cardiovascular disease and has a proatherogenic effect. Many studies have found that TMAO is involved in plaque oxidative stress and lipid metabolism, but the specific mechanism is still unclear. In our study, meta-analysis and bioinformatic analysis were firstly conducted in the database, and found that the effect of high plasma TMAO levels on promoting atherosclerotic plaque may be related to the expression of key antioxidant genes nuclear factor erytheroid-derived-2-like 2 (NFE2L2/Nrf2) decreased. Next, we assessed the role of Nrf2-mediated signaling pathway in TMAO-treated foam cells. Our results showed that TMAO can inhibit the expression of Nrf2 and its downstream antioxidant response element such as heme oxygenase-1 (HO-1) and glutathione peroxidase4 (GPX4), resulting in increased production of reactive oxygen species and decreased activity of superoxide dismutase, promoting oxidative stress. And TMAO can also promote lipid accumulation in foam cells by inhibiting cholesterol efflux protein expression. In addition, upregulation of Nrf2 expression partially rescues TMAO-induced oxidative stress and reduces ATP-binding cassette A1 (ABCA1)-mediated lipid accumulation. Therefore, TMAO promotes oxidative stress and lipid accumulation in macrophage foam cells through the Nrf2/ABCA1 pathway, which may provide a potential mechanism for the proatherogenic effect of TMAO.
Collapse
Affiliation(s)
- ZhiSheng Luo
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - XiaoChen Yu
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Chao Wang
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - HaiYan Zhao
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Xinming Wang
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China
| | - XiuRu Guan
- Department of Laboratory Diagnostics, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, Heilongjiang, 150001, People's Republic of China.
| |
Collapse
|
8
|
Sun JL, Ryu JH, Cho W, Oh H, Abd El-Aty AM, Özkal Eminoğlu D, Jeong JH, Jung TW. CTRP4 ameliorates inflammation, thereby attenuating the interaction between HUVECs and THP-1 monocytes through SIRT6/Nrf2 signaling. Biochem Biophys Res Commun 2024; 691:149293. [PMID: 38016337 DOI: 10.1016/j.bbrc.2023.149293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
CTRP4, identified as an adipokine, has demonstrated notable anti-inflammatory and anti-obesity effects in various disease models. Consequently, our research sought to explore the impact of CTRP4 on inflammation and the interaction between endothelial cells and monocytes in hyperlipidemic conditions. Using Western blotting, we assessed the expression levels of various proteins in HUVECs and THP-1 monocytes. Our study findings indicate that treatment with CTRP4 effectively mitigated the attachment of THP-1 monocytes to HUVECs. Furthermore, it reduced the expression of adhesion molecules and inflammation indicators in experimental cells exposed to hyperlipidemic conditions. Notably, CTRP4 treatment led to an increase in SIRT6 expression and the nuclear translocation of Nrf2. Interestingly, when SIRT6 or Nrf2 was silenced using siRNA, the positive effects of CTRP4 in HUVECs and THP-1 cells were nullified. Our results suggest that CTRP4 exhibits anti-inflammatory properties, thereby improving the interaction between endothelial cells and monocytes through the SIRT6/Nrf2-dependent pathway. This study provides insights into CTRP4 as a potential therapeutic target for mitigating obesity-related atherosclerosis.
Collapse
Affiliation(s)
- Jaw Long Sun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jae Hak Ryu
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| | - Didem Özkal Eminoğlu
- Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum 25240, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Liu S, Zhang Y, Zheng X, Wang Z, Wang P, Zhang M, Shen M, Bao Y, Li D. Sulforaphane Inhibits Foam Cell Formation and Atherosclerosis via Mechanisms Involving the Modulation of Macrophage Cholesterol Transport and the Related Phenotype. Nutrients 2023; 15:2117. [PMID: 37432260 DOI: 10.3390/nu15092117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 07/12/2023] Open
Abstract
Sulforaphane (SFN), an isothiocyanate, is one of the major dietary phytochemicals found in cruciferous vegetables. Many studies suggest that SFN can protect against cancer and cardiometabolic diseases. Despite the proposed systemic and local vascular protective mechanisms, SFN's potential to inhibit atherogenesis by targeting macrophages remains unknown. In this study, in high fat diet fed ApoE-deficient (ApoE-/-) mice, oral SFN treatment improved dyslipidemia and inhibited atherosclerotic plaque formation and the unstable phenotype, as demonstrated by reductions in the lesion areas in both the aortic sinus and whole aorta, percentages of necrotic cores, vascular macrophage infiltration and reactive oxygen species (ROS) generation. In THP-1-derived macrophages, preadministration SFN alleviated oxidized low-density lipoprotein (ox-LDL)-induced lipid accumulation, oxidative stress and mitochondrial injury. Moreover, a functional study revealed that peritoneal macrophages isolated from SFN-treated mice exhibited attenuated cholesterol influx and enhanced apolipoprotein A-I (apoA-I)- and high-density lipoprotein (HDL)-mediated cholesterol efflux. Mechanistic analysis revealed that SFN supplementation induced both intralesional and intraperitoneal macrophage phenotypic switching toward high expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and ATP-binding cassette subfamily A/G member 1 (ABCA1/G1) and low expression of peroxisome proliferator-activated receptor γ (PPARγ) and cluster of differentiation 36 (CD36), which was further validated by the aortic protein expression. These results suggest that the regulation of macrophages' cholesterol transport and accumulation may be mainly responsible for SFN's potential atheroprotective properties, and the regulatory mechanisms might involve upregulating ABCA1/G1 and downregulating CD36 via the modulation of PPARγ and Nrf2.
Collapse
Affiliation(s)
- Shiyan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Yuan Zhang
- Department of Geriatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xiangyu Zheng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Ziling Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Pan Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Mengdi Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Mengfan Shen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, Norfolk, UK
| | - Dan Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| |
Collapse
|
10
|
Yang XF, Liu X, Yan XY, Shang DJ. Effects of frog skin peptide temporin-1CEa and its analogs on ox-LDL induced macrophage-derived foam cells. Front Pharmacol 2023; 14:1139532. [PMID: 37021059 PMCID: PMC10067733 DOI: 10.3389/fphar.2023.1139532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Purpose: Atherosclerosis is one of the most important pathological foundations of cardiovascular and cerebrovascular diseases with high morbidity and mortality. Studies have shown that macrophages play important roles in lipid accumulation in the vascular wall and thrombosis formation in atherosclerotic plaques. This study aimed to explore the effect of frog skin antimicrobial peptides (AMPs) temporin-1CEa and its analogs on ox-LDL induced macrophage-derived foam cells.Methods: CCK-8, ORO staining, and intracellular cholesterol measurements were used to study cellular activity, lipid droplet formation and cholesterol levels, respectively. ELISA, real-time quantitative PCR, Western blotting and flow cytometry analysis were used to study the expression of inflammatory factors, mRNA and proteins associated with ox-LDL uptake and cholesterol efflux in macrophage-derived foam cells, respectively. Furthermore, the effects of AMPs on inflammation signaling pathways were studied.Results: Frog skin AMPs could significantly increase the cell viability of the ox-LDL-induced foaming macrophages and decrease the formation of intracellular lipid droplets and the levels of total cholesterol and cholesterol ester (CE). Frog skin AMPs inhibited foaming formation by reducing the protein expression of CD36, which regulates ox-LDL uptake but had no effect on the expression of efflux proteins ATP binding cassette subfamily A/G member 1 (ABCA1/ABCG1). Then, decreased mRNA expression of NF-κB and protein expression of p-NF-κB p65, p-IκB, p-JNK, p-ERK, p-p38 and the release of TNF-α and IL-6 occurred after exposure to the three frog skin AMPs.Conclusion: Frog skin peptide temporin-1CEa and its analogs can improve the ox-LDL induced formation of macrophage-derived foam cells, in addition, inhibit inflammatory cytokine release through inhibiting the NF-κB and MAPK signaling pathways, thereby inhibiting inflammatory responses in atherosclerosis.
Collapse
Affiliation(s)
- Xue-Feng Yang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- School of Basic Medical Sciences, Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Xin Liu
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Xiao-Yi Yan
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - De-Jing Shang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- *Correspondence: De-Jing Shang,
| |
Collapse
|
11
|
Wang J, Shi K, An N, Li S, Bai M, Wu X, Shen Y, Du R, Cheng J, Wu X, Xu Q. Direct Inhibition of GSDMD by PEITC Reduces Hepatocyte Pyroptosis and Alleviates Acute Liver Injury in Mice. Front Immunol 2022; 13:825428. [PMID: 35173734 PMCID: PMC8841757 DOI: 10.3389/fimmu.2022.825428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Acute liver injury (ALI), often caused by viruses, alcohol, drugs, etc., is one of the most common clinical liver diseases. Although pyroptosis plays an important role in ALI, there is still a lack of effective clinical drugs related to this mechanism. Here, we show that phenethyl isothiocyanate (PEITC), a natural compound present in cruciferous vegetables, can significantly alleviate concanavalin A (ConA)-induced inflammatory liver damage and carbon tetrachloride (CCl4)-induced chemical liver damage in a dose-dependent manner. PEITC dose-dependently reversed the ALI-induced increase in plasma levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), tumor necrosis factor (TNF)-α, and interferon (IFN)-γ and reduced the protein levels of hepatocyte pyroptosis markers such as Nod-like receptor family pyrin domain containing 3 (NLRP3), cleaved caspase-1, and cleaved gasdermin D (GSDMD). In vitro experiments have also verified the inhibitory effect of PEITC on hepatocyte pyroptosis. Furthermore, PEITC inhibits pyroptosis by interacting with cysteine 191 of GSDMD. In summary, our findings establish a role for PEITC in rescuing hepatocyte pyroptosis via direct inhibition of GSDMD, which may provide a new potential therapeutic strategy for ALI.
Collapse
|
12
|
Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, Sandoval-Rodriguez A, García-Bañuelos J, Santos A, Armendariz-Borunda J. The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors. Antioxidants (Basel) 2022; 11:235. [PMID: 35204118 PMCID: PMC8868420 DOI: 10.3390/antiox11020235] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The raising prevalence of obesity is associated with an increased risk for cardiovascular diseases (CVDs), particularly coronary artery disease (CAD), and heart failure, including atrial fibrillation, ventricular arrhythmias and sudden death. Obesity contributes directly to incident cardiovascular risk factors, including hyperglycemia or diabetes, dyslipidemia, and hypertension, which are involved in atherosclerosis, including structural and functional cardiac alterations, which lead to cardiac dysfunction. CVDs are the main cause of morbidity and mortality worldwide. In obesity, visceral and epicardial adipose tissue generate inflammatory cytokines and reactive oxygen species (ROS), which induce oxidative stress and contribute to the pathogenesis of CVDs. Nuclear factor erythroid 2-related factor 2 (NRF2; encoded by Nfe2l2 gene) protects against oxidative stress and electrophilic stress. NRF2 participates in the regulation of cell inflammatory responses and lipid metabolism, including the expression of over 1000 genes in the cell under normal and stressed environments. NRF2 is downregulated in diabetes, hypertension, and inflammation. Nfe2l2 knockout mice develop structural and functional cardiac alterations, and NRF2 deficiency in macrophages increases atherosclerosis. Given the endothelial and cardiac protective effects of NRF2 in experimental models, its activation using pharmacological or natural products is a promising therapeutic approach for obesity and CVDs. This review provides a comprehensive summary of the current knowledge on the role of NRF2 in obesity-associated cardiovascular risk factors.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Marina Galicia-Moreno
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Hugo Christian Monroy-Ramírez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Jesús García-Bañuelos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Arturo Santos
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, JAL, Mexico;
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, JAL, Mexico;
| |
Collapse
|
13
|
Caselli C, De Caterina R, Ragusa R, Liga R, Gimelli A, Scholte AJHA, Clerico A, Knuuti J, Neglia D. Association of Circulating Heme Oxygenase-1, Lipid Profile and Coronary Disease Phenotype in Patients with Chronic Coronary Syndrome. Antioxidants (Basel) 2021; 10:antiox10122002. [PMID: 34943105 PMCID: PMC8698632 DOI: 10.3390/antiox10122002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
Abstract
Background. The NF-E2–related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1) pathway has an emerging role in atherosclerosis. Activated by oxidative stress, it is deemed to exert athero-protective effects. We aimed at evaluating the relationships between plasma HO-1, clinical/molecular profiles and coronary disease patterns in patients with chronic coronary syndromes (CCS). Methods. HO-1 was measured in 526 patients (60 ± 9 years, 318 males) with CCS. Coronary computed tomography angiography (CTA) and stress imaging were used to assess the disease phenotype (coronary atherosclerosis and myocardial ischemia) in a subgroup of 347 patients. Results. In the overall population, HO-1 median value (25–75 percentile) was 5.195 (1.75–8.25) ng/mL. Patients with higher HO-1 were more frequently male, had a higher BMI and lower LVEF%, but otherwise similar risk factors than the other patients. Their bio-humoral profile was characterized by higher markers of endothelial/myocardial dysfunction, but lower levels of cholesterol lipoproteins. Coronary artery disease was characterized by more diffuse atherosclerosis, with mainly non-obstructive and calcified plaques, and a higher prevalence of functional ischemia. Conclusion: In patients with CCS, higher plasma HO-1 levels are associated with lower cholesterol and a more diffuse but mainly non-obstructive coronary atherosclerosis, confirming a potential role for the Nrf2/HO-1 pathway as a protective feedback.
Collapse
Affiliation(s)
- Chiara Caselli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Via Moruzzi, 1, 56124 Pisa, Italy;
- Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.G.); (A.C.); (D.N.)
- Correspondence: ; Tel.: +39-050-315-3551; Fax: 39-050-315-2166
| | - Raffaele De Caterina
- Institute of Cardiology, University of Pisa, 56124 Pisa, Italy; (R.D.C.); (R.L.)
| | - Rosetta Ragusa
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Via Moruzzi, 1, 56124 Pisa, Italy;
- Scuola Superiore Sant’Anna, 56124 Pisa, Italy
| | - Riccardo Liga
- Institute of Cardiology, University of Pisa, 56124 Pisa, Italy; (R.D.C.); (R.L.)
| | - Alessia Gimelli
- Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.G.); (A.C.); (D.N.)
| | | | - Aldo Clerico
- Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.G.); (A.C.); (D.N.)
- Scuola Superiore Sant’Anna, 56124 Pisa, Italy
| | - Juhani Knuuti
- Turku University Hospital, University of Turku, 20520 Turku, Finland;
| | - Danilo Neglia
- Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.G.); (A.C.); (D.N.)
- Scuola Superiore Sant’Anna, 56124 Pisa, Italy
| |
Collapse
|