1
|
Guo JW, Lin GQ, Tang XY, Yao JY, Feng CG, Zuo JP, He SJ. Therapeutic potential and pharmacological mechanisms of Traditional Chinese Medicine in gout treatment. Acta Pharmacol Sin 2025; 46:1156-1176. [PMID: 39825190 PMCID: PMC12032366 DOI: 10.1038/s41401-024-01459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025]
Abstract
Gout is a systemic metabolic disorder caused by elevated uric acid (UA) levels, affecting over 1% of the population. The most common complication of gout is gouty arthritis (GA), characterized by swelling, pain or tenderness in peripheral joints or bursae, which can lead to the formation of tophi. At present, western medicines like colchicine, febuxostat and allopurinol are the primary treatment strategy to alleviate pain and prevent flare-ups in patients with GA, but they have significant side effects and increased mortality risks. Traditional Chinese medicine (TCM) has been utilized for thousands of years for the prevention and treatment of GA, demonstrating effective control over serum UA (SUA) levels with fewer side effects. Herein we summarized a total of 541 studies published from 2000 to 2023 in sources including PubMed, Web of Science, the Cochrane Library and Embase, highlighting the therapeutic potential of TCM in treating gout and GA, particularly in combination with modern medical strategies. This review focuses on TCM formulas, Chinese herbal extracts, and active compounds derived from TCM, providing an overview of recent clinical application and the pharmacological research based on animal models and cellular systems. Particularly, the current review categorized the clinical and experimental evidence into the strategies for improving hyperuricemia, decreasing the sudden onset of acute GA and retarding chronic GA progression, supplied further coherent reference and enlightenment for clinicians, investigators of natural product chemistry, researchers in TCM and pharmacology. We hope this article will inspire the development of novel formulas and molecular entities for the treatment of gout and GA.
Collapse
Affiliation(s)
- Jing-Wen Guo
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guo-Qiang Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin-Yi Tang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Ying Yao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen-Guo Feng
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jian-Ping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Shi-Jun He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Yin W, Wang JH, Liang YM, Liu KH, Chen Y, Chen Y. Neferine Targeted the NLRC5/NLRP3 Pathway to Inhibit M1-type Polarization and Pyroptosis of Macrophages to Improve Hyperuricemic Nephropathy. Curr Mol Med 2025; 25:90-111. [PMID: 38549521 DOI: 10.2174/0115665240272051240122074511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 02/19/2025]
Abstract
BACKGROUND Neferine (Nef) has a renal protective effect. This research intended to explore the impact of Nef on hyperuricemic nephropathy (HN). METHODS Adenine and potassium oxonate were administered to SD rats to induce the HN model. Bone marrow macrophages (BMDM) and NRK-52E were used to construct a transwell co-culture system. The polarization of BMDM and apoptosis levels were detected using immunofluorescence and flow cytometry. Renal pathological changes were detected using hematoxylin-eosin (HE) and Masson staining. Biochemical methods were adopted to detect serum in rats. CCK-8 and EDU staining were used to assess cell activity and proliferation. RT-qPCR and western blot were adopted to detect NLRC5, NLRP3, pyroptosis, proliferation, and apoptosis-related factor levels. RESULTS After Nef treatment, renal injury and fibrosis in HN rats were inhibited, and UA concentration, urinary protein, BUN, and CRE levels were decreased. After Nef intervention, M1 markers, pyroptosis-related factors, and NLRC5 levels in BMDM stimulated with uric acid (UA) treatment were decreased. Meanwhile, the proliferation level of NRK-52E cells co-cultured with UA-treated BMDM was increased, but the apoptosis level was decreased. After NLRC5 overexpression, Nef-induced regulation was reversed, accompanied by increased NLRP3 levels. After NLRP3 was knocked down, the levels of M1-type markers and pyroptosis-related factors were reduced in BMDM. CONCLUSION Nef improved HN by inhibiting macrophages polarized to M1-type and pyroptosis by targeting the NLRC5/NLRP3 pathway. This research provides a scientific theoretical basis for the treatment of HN.
Collapse
Affiliation(s)
- Wei Yin
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410002, China
| | - Jin-Hua Wang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410002, China
| | - Yu-Mei Liang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410002, China
| | - Kang-Han Liu
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410002, China
| | - Ying Chen
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410002, China
| | - Yusa Chen
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410002, China
| |
Collapse
|
3
|
Liu Y, Zheng K, Wang H, Liu H, Zheng K, Zhang J, Han L, Tu S, Wang Y. Natural Bioactive Compounds: Emerging Therapies for Hyperuricemia. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1863-1885. [PMID: 39558557 DOI: 10.1142/s0192415x24500733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Hyperuricemia is a crucial feature of metabolic syndrome, characterized by elevated uric acid that causes urate crystal deposits in joints, kidneys, and subcutaneous tissues, resulting in gout and hyperuricemic nephropathy. The primary causes of uric acid metabolism disorder include overproduction and reduced excretion. The majority of uric acid in human body is derived from the breakdown of purine nucleotides. Overproduction of uric acid can result from increased concentration or activity of xanthine oxidase, the key enzyme responsible for uric acid synthesis. Alterations in the activity of proteins responsible for uric acid reabsorption and excretion can also affect serum uric acid. Many bioactive compounds derived from natural plants have been shown to inhibit xanthine oxidase activity to reduce uric acid production, modulate the activity of transport proteins to promote uric acid excretion, or alleviate oxidative stress and inflammation through various signaling pathways. These properties have garnered significant attention from researchers. In this paper, we first introduce the pathophysiological mechanisms of hyperuricemia, then summarize bioactive compounds with urate-lowering effects, and discuss their potential applications in treating hyperuricemia and its complications.
Collapse
Affiliation(s)
- Yafei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Kaifeng Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
- Application Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Huanhuan Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Hong Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Kunyang Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Junjun Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. China
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. China
| | - Yaoxian Wang
- Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
4
|
Nie S, Zhang S, Wu R, Zhao Y, Wang Y, Wang X, Zhu M, Huang P. Scutellarin: pharmacological effects and therapeutic mechanisms in chronic diseases. Front Pharmacol 2024; 15:1470879. [PMID: 39575387 PMCID: PMC11578714 DOI: 10.3389/fphar.2024.1470879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
Scutellarin (SCU), a flavonoid glucuronide derived from Scutellaria barbata and Erigeron breviscapus, exhibits broad pharmacological effects with promising therapeutic potential in treating various chronic diseases. It has demonstrated efficacy in modulating multiple biological pathways, including antioxidant, anti-inflammatory, anti-apoptotic, and vasodilatory mechanisms. These protective roles make SCU a valuable compound in treating chronic diseases such as cerebrovascular diseases, cardiovascular diseases, neurodegenerative disorders, and metabolic diseases. Despite its multi-targeted effects, SCU faces challenges such as low bioavailability and limited clinical data, which hinder its widespread therapeutic application. Current research supports its potential to prevent oxidative stress, reduce inflammatory responses, and enhance cell survival in cells and rats. However, more comprehensive studies are required to clarify its molecular mechanisms and to develop strategies that enhance its bioavailability for clinical use. SCU could emerge as a potent therapeutic agent for the treatment of chronic diseases with complex pathophysiological mechanisms. This review examines the current literature on Scutellarin to provide a comprehensive understanding of its pharmacological activity, mechanisms of action, and therapeutic potential in treating chronic diseases.
Collapse
Affiliation(s)
- Shanshan Nie
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shan Zhang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruipeng Wu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuhang Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongxia Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinlu Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mingjun Zhu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
5
|
Zhou Y, Gu C, Zhu Y, Zhu Y, Chen Y, Shi L, Yang Y, Lu X, Pang H. Pharmacological effects and the related mechanism of scutellarin on inflammation-related diseases: a review. Front Pharmacol 2024; 15:1463140. [PMID: 39188946 PMCID: PMC11345237 DOI: 10.3389/fphar.2024.1463140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
Inflammation is a biological response of multicellular organisms caused by injuries, pathogens or irritants. An excessive inflammatory response can lead to tissue damage and various chronic diseases. Chronic inflammation is a common feature of many diseases, making the search for drugs to treat inflammation-related diseases urgent. Scutellarin, a natural flavonoid metabolite, is widely used in the treatment of various inflammation-related diseases for its anti-inflammatory, anti-oxidant and anti-cancer activities. Scutellarin can inhibit key inflammatory pathways (PI3K/Akt, MAPK, and NF-κB, etc.) and activate the anti-oxidant related pathways (Nrf2, ARE, ect.), thereby protecting tissues from inflammation and oxidative stress. Modern extraction technologies, such as microwave-assisted, ultrasound assisted, and supercritical fluid extraction, have been utilized to extract scutellarin from Scutellaria and Erigeron genera. These technologies improve efficiency and retain biological activity, making scutellarin suitable for large-scale production. Scutellarin has significant therapeutic effects in treating osteoarthritis, pulmonary fibrosis, kidney injury, and cardiovascular diseases. However, due to its low bioavailability and short half-life, its clinical application is limited. Researchers are exploring innovative formulations (β-cyclodextrin polymers, triglyceride mimetic active ingredients, and liposome precursors, etc.) to improve stability and absorption rates. Despite these challenges, the potential of scutellarin in anti-inflammatory, anti-oxidant, and anti-cancer applications remains enormous. By optimizing formulations, exploring combination therapies, and conducting in-depth mechanistic research, scutellarin can play an important role in treating various inflammatory diseases, providing patients with more and effective treatment options.
Collapse
Affiliation(s)
- Yang Zhou
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Chenlin Gu
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yan Zhu
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yuting Zhu
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yutong Chen
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Li Shi
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Yang Yang
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Xin Lu
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Hanqing Pang
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Deng G, Zheng B, Dou M, Gao Y, Zhang X, Niu Z, Wei T, Han F, Ding C, Tian P. Scutellarin alleviates renal ischemia-reperfusion injury by inhibiting the MAPK pathway and pro-inflammatory macrophage polarization. FASEB J 2024; 38:e23769. [PMID: 38958951 DOI: 10.1096/fj.202302243r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Renal ischemia-reperfusion injury (IRI) is an integral process in renal transplantation, which results in compromised graft survival. Macrophages play an important role in both the early inflammatory period and late fibrotic period in response to IRI. In this study, we investigated whether scutellarin (SCU) could protect against renal IRI by regulating macrophage polarization. Mice were given SCU (5-50 mg/kg) by gavage 1 h earlier, followed by a unilateral renal IRI. Renal function and pathological injury were assessed 24 h after reperfusion. The results showed that administration of 50 mg/kg SCU significantly improved renal function and renal pathology in IRI mice. In addition, SCU alleviated IRI-induced apoptosis. Meanwhile, it reduced macrophage infiltration and inhibited pro-inflammatory macrophage polarization. Moreover, in RAW 264.7 cells and primary bone marrow-derived macrophages (BMDMs) exposed to SCU, we found that 150 μM SCU inhibited these cells to polarize to an inflammatory phenotype induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ). However, SCU has no influence on anti-inflammatory macrophage polarization in vivo and in vitro induced by in interleukin-4 (IL-4). Finally, we explored the effect of SCU on the activation of the mitogen-activated protein kinase (MAPK) pathway both in vivo and in vitro. We found that SCU suppressed the activation of the MAPK pathway, including the extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38. Our results demonstrated that SCU protects the kidney against IRI by inhibiting macrophage infiltration and polarization toward pro-inflammatory phenotype via the MAPK pathway, suggesting that SCU may be therapeutically important in treatment of IRI.
Collapse
Affiliation(s)
- Ge Deng
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bingxuan Zheng
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Dou
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Gao
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingzhe Zhang
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zejiaxin Niu
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tian Wei
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Han
- Department of Burn and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Chenguang Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Puxun Tian
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Zheng Y, Chen Z, Yang J, Zheng J, Shui X, Yan Y, Huang S, Liang Z, Lei W, He Y. The Role of Hyperuricemia in Cardiac Diseases: Evidence, Controversies, and Therapeutic Strategies. Biomolecules 2024; 14:753. [PMID: 39062467 PMCID: PMC11274514 DOI: 10.3390/biom14070753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
Hyperuricemia (HUA) may lead to myocardial cell damage, thereby promoting the occurrence and adverse outcomes of heart diseases. In this review, we discuss the latest clinical research progress, and explore the impact of HUA on myocardial damage-related diseases such as myocardial infarction, arrhythmias, and heart failure. We also combined recent findings from basic research to analyze potential mechanisms linking HUA with myocardial injury. In different pathological models (such as direct action of high uric acid on myocardial cells or combined with myocardial ischemia-reperfusion model), HUA may cause damage by activating the NOD-like receptor protein 3 inflammasome-induced inflammatory response, interfering with cardiac cell energy metabolism, affecting antioxidant defense systems, and stimulating reactive oxygen species production to enhance the oxidative stress response, ultimately resulting in decreased cardiac function. Additionally, we discuss the impact of lowering uric acid intervention therapy and potential safety issues that may arise. However, as the mechanism underlying HUA-induced myocardial injury is poorly defined, further research is warranted to aid in the development novel therapeutic strategies for HUA-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yue Zheng
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Z.); (Z.C.); (J.Y.); (Y.Y.)
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhirui Chen
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Z.); (Z.C.); (J.Y.); (Y.Y.)
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jinya Yang
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Z.); (Z.C.); (J.Y.); (Y.Y.)
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, USA;
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
| | - Yiguang Yan
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Z.); (Z.C.); (J.Y.); (Y.Y.)
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (S.H.); (Z.L.)
| | - Shian Huang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (S.H.); (Z.L.)
| | - Zheng Liang
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (S.H.); (Z.L.)
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Z.); (Z.C.); (J.Y.); (Y.Y.)
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Precision Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (Y.Z.); (Z.C.); (J.Y.); (Y.Y.)
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
8
|
Huang B, Han R, Tan H, Zhu W, Li Y, Jiang F, Xie C, Ren Z, Shi R. Scutellarin ameliorates diabetic nephropathy via TGF-β1 signaling pathway. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:25. [PMID: 38656633 PMCID: PMC11043297 DOI: 10.1007/s13659-024-00446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Breviscapine, a natural flavonoid mixture derived from the traditional Chinese herb Erigeron breviscapus (Vant.) Hand-Mazz, has demonstrated a promising potential in improving diabetic nephropathy (DN). However, the specific active constituent(s) responsible for its therapeutic effects and the underlying pharmacological mechanisms remain unclear. In this study, we aimed to investigate the impact of scutellarin, a constituent of breviscapine, on streptozotocin-induced diabetic nephropathy and elucidate its pharmacological mechanism(s). Our findings demonstrate that scutellarin effectively ameliorates various features of DN in vivo, including proteinuria, glomerular expansion, mesangial matrix accumulation, renal fibrosis, and podocyte injury. Mechanistically, scutellarin appears to exert its beneficial effects through modulation of the transforming growth factor-β1 (TGF-β1) signaling pathway, as well as its interaction with the extracellular signal-regulated kinase (Erk) and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Bangrui Huang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education)Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China
| | - Rui Han
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Hong Tan
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Wenzhuo Zhu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Yang Li
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Fakun Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education)Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China
| | - Chun Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education)Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China
| | - Zundan Ren
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Rou Shi
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China.
| |
Collapse
|
9
|
Li L, Zhao K, Luo J, Tian J, Zheng F, Lin X, Xie Z, Jiang H, Li Y, Zhao Z, Wu T, Pang J. Piperine Improves Hyperuricemic Nephropathy by Inhibiting URAT1/GLUT9 and the AKT-mTOR Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6565-6574. [PMID: 38498316 DOI: 10.1021/acs.jafc.3c07655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Uncontrolled hyperuricemia often leads to the development of hyperuricemic nephropathy (HN), characterized by excessive inflammation and oxidative stress. Piperine, a cinnamic acid alkaloid, possesses various pharmacological activities, such as antioxidant and anti-inflammatory effects. In this study, we intended to investigate the protective effects of piperine on adenine and potassium oxonate-induced HN mice and a uric-acid-induced injury model in renal tubular epithelial cells (mRTECs). We observed that treatment with piperine for 3 weeks significantly reduced serum uric acid levels and reversed kidney function impairment in mice with HN. Piperine (5 μM) alleviated uric acid-induced damage in mRTECs. Moreover, piperine inhibited transporter expression and dose-dependently inhibited the activity of both transporters. The results revealed that piperine regulated the AKT/mTOR signaling pathway both in vivo and in vitro. Overall, piperine inhibits URAT1/GLUT9 and ameliorates HN by inhibiting the AKT/mTOR pathway, making it a promising candidate for patients with HN.
Collapse
Affiliation(s)
- Lu Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Kunlu Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jian Luo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jinhong Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Fengxin Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Xueman Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Zijun Xie
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Heyang Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Yongmei Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Zean Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Ting Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jianxin Pang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| |
Collapse
|
10
|
Xie Y, Sun G, Tao Y, Zhang W, Yang S, Zhang L, Lu Y, Du G. Current advances on the therapeutic potential of scutellarin: an updated review. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:20. [PMID: 38436812 PMCID: PMC10912075 DOI: 10.1007/s13659-024-00441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Scutellarin is widely distributed in Scutellaria baicalensis, family Labiatae, and Calendula officinalis, family Asteraceae, and belongs to flavonoids. Scutellarin has a wide range of pharmacological activities, it is widely used in the treatment of cerebral infarction, angina pectoris, cerebral thrombosis, coronary heart disease, and other diseases. It is a natural product with great research and development prospects. In recent years, with in-depth research, researchers have found that wild scutellarin also has good therapeutic effects in anti-tumor, anti-inflammatory, anti-oxidation, anti-virus, treatment of metabolic diseases, and protection of kidney. The cancer treatment involves glioma, breast cancer, lung cancer, renal cancer, colon cancer, and so on. In this paper, the sources, pharmacological effects, in vivo and in vitro models of scutellarin were summarized in recent years, and the current research status and future direction of scutellarin were analyzed.
Collapse
Affiliation(s)
- Yifei Xie
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China
| | - Guotong Sun
- Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Yue Tao
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen Zhang
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China
| | - Shiying Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li Zhang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yang Lu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Guanhua Du
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
11
|
Wu Z, Wang C, Yang F, Zhou J, Zhang X, Xin J, Gao J. Network pharmacology, molecular docking, combined with experimental verification to explore the role and mechanism of shizhifang decoction in the treatment of hyperuricemia. Heliyon 2024; 10:e24865. [PMID: 38322942 PMCID: PMC10844032 DOI: 10.1016/j.heliyon.2024.e24865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/12/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Ethnopharmacological relevance Shizhifang Decoction, a traditional Chinese medicine prescription formulated by Professor Zheng Pingdong of Shuguang Hospital, has been widely utilized in clinical settings for the treatment of hyperuricemia due to its proven safety and efficacy. Objective In this study, we used network pharmacology, molecular docking technology, and experimental validation to elucidate the therapeutic effects and underlying mechanisms of Shizhifang Decoction in managing hyperuricemia. Methods Quality control and component identification of the freeze-dried powder of Shizhifang Decoction were conducted using ultra-high performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. Active ingredients and their corresponding targets were obtained from Traditional Chinese Medicine Systems Pharmacology, Traditional Chinese Medicine Information Database, The Encyclopedia of Traditional Chinese Medicine, and other databases. Disease-related targets for hyperuricemia were collected from GeneCards and DisGeNET databases. The Venny platform is used to screen common targets for drug active ingredients and diseases. Subsequently, we constructed an active component-target-disease interaction network using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, create a component disease common target network using Cytoscape 3.9.1 software, from which core targets were selected. Import common targets into the Database for Annotation, Visualization and Integrated Discovery (DAVID) for Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Molecular docking was then conducted to validate the binding capacity of key active ingredients and their associated targets in Shizhifang Decoction. The theoretical predictions were further confirmed through in vitro and in vivo experiments. Result A total of 35 active ingredients and 597 action targets were identified, resulting in 890 disease-related targets for hyperuricemia. After comprehensive analysis, 99 common targets were determined. Protein-protein interaction network analysis revealed crucial relationships between these targets and hyperuricemia. Among them, 12 core targets (CASP3, IL1B, IL6, TNF, TP53, GAPDH, PTGS2, MYC, INS, VEGFA, ESR1, PPARG) were identified. Gene Ontology enrichment analysis demonstrated significant associations with the regulation of inflammatory response, cell apoptosis, and the positive regulation of extracellular regulated protein kinases 1 and extracellular regulated protein kinases 2 cascades. Kyoto Encyclopedia of Genes and Genomes pathway analysis highlighted inflammation and apoptosis-related pathways as critical mediators of Shizhifang Decoction's effects on hyperuricemia. Molecular docking studies further supported the interactions between apoptosis-related proteins and active ingredients in the extracellular regulated protein kinases 1/2 signaling pathway. In vitro experiments confirmed the downregulation of apoptosis-related proteins (caspase-3, Bax, Bcl-2) and the inhibition of the extracellular regulated protein kinases 1/2 signaling pathway by Shizhifang Decoction. These findings were also validated in animal models, demonstrating the potential of Shizhifang Decoction to mitigate renal injury induced by hyperuricemia through extracellular regulated protein kinases 1/2-mediated inhibition of renal tubular epithelial cell apoptosis. Conclusion Our study provides valuable insights into the main mechanism by which Shizhifang Decoction ameliorates hyperuricemia. By targeting the ERK1/2 signaling pathway and modulating cell apoptosis, Shizhifang Decoction exhibits promising therapeutic potential for the treatment of hyperuricemia. These findings support the continued exploration and development of Shizhifang Decoction as a potential herbal remedy for hyperuricemia management.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuanxu Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiabao Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuming Zhang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiadong Xin
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiandong Gao
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Yi YS. Regulatory Roles of Flavonoids in Caspase-11 Non-Canonical Inflammasome-Mediated Inflammatory Responses and Diseases. Int J Mol Sci 2023; 24:10402. [PMID: 37373549 DOI: 10.3390/ijms241210402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammasomes are multiprotein complexes that activate inflammatory responses by inducing pyroptosis and secretion of pro-inflammatory cytokines. Along with many previous studies on inflammatory responses and diseases induced by canonical inflammasomes, an increasing number of studies have demonstrated that non-canonical inflammasomes, such as mouse caspase-11 and human caspase-4 inflammasomes, are emerging key players in inflammatory responses and various diseases. Flavonoids are natural bioactive compounds found in plants, fruits, vegetables, and teas and have pharmacological properties in a wide range of human diseases. Many studies have successfully demonstrated that flavonoids play an anti-inflammatory role and ameliorate many inflammatory diseases by inhibiting canonical inflammasomes. Others have demonstrated the anti-inflammatory roles of flavonoids in inflammatory responses and various diseases, with a new mechanism by which flavonoids inhibit non-canonical inflammasomes. This review discusses recent studies that have investigated the anti-inflammatory roles and pharmacological properties of flavonoids in inflammatory responses and diseases induced by non-canonical inflammasomes and further provides insight into developing flavonoid-based therapeutics as potential nutraceuticals against human inflammatory diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| |
Collapse
|
13
|
Cui J, Hong P, Li Z, Lin J, Wu X, Nie K, Zhang X, Wan J. Chloroquine inhibits NLRP3 inflammasomes activation and alleviates renal fibrosis in mouse model of hyperuricemic nephropathy with aggravation by a high-fat-diet. Int Immunopharmacol 2023; 120:110353. [PMID: 37276828 DOI: 10.1016/j.intimp.2023.110353] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/03/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023]
Abstract
Numerous epidemiological studies have demonstrated that hyperuricemia (HUA) is a risk factor for renal diseases and renal fibrosis. Dietary patterns can influence serum urate levels and hyperuricemic nephropathy (HN). NLRP3 inflammasomes play a crucial role in various inflammatory responses and contribute to HN progression. Chloroquine (CQ) is an anti-inflammatory and disease-modifying anti-rheumatic drug (DMARD) utilized in treating autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. In this study, we examined the effects and underlying mechanisms of CQ in a high-fat-diet (HFD) exacerbated mouse model of HN. C57BL/6 mice were randomized into either a control group or an HN group (induced by adenine/potassium oxonate treatment), followed by a normal diet or HFD, with or without CQ treatment. Our findings revealed that the HN group exhibited elevated serum levels of blood urea nitrogen (BUN) and creatinine compared to the control group. Additionally, the HN + HFD group displayed increased serum levels of uric acid, BUN, and creatinine relative to the control + HFD group. Moreover, the HFD exacerbated renal uric acid crystal deposition and fibrosis in HN mice compared to a normal diet. CQ ameliorated renal dysfunction, as evidenced by reduced serum creatinine levels, renal fibrosis, and renal tubular injury scores, and significantly decreased NLRP3, ASC, caspase-1, and IL-1β levels in HN mice. These findings suggest that CQ inhibits the activation of NLRP3 inflammasomes and may serve as a potential therapeutic strategy for HN treatment.
Collapse
Affiliation(s)
- Jiong Cui
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Pianpian Hong
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Zhenzhou Li
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jiaqun Lin
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xiaoting Wu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Kun Nie
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xiaohong Zhang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jianxin Wan
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
14
|
Shahmohammadi A, Golchoobian R, Mirahmadi SMS, Rousta AM, Ansari F, Sharayeli M, Baluchnejadmojarad T, Roghani M. Scutellarin alleviates lipopolysaccharide-provoked septic nephrotoxicity via attenuation of inflammatory and oxidative events and mitochondrial dysfunction. Immunopharmacol Immunotoxicol 2022; 45:295-303. [DOI: 10.1080/08923973.2022.2141644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Ravieh Golchoobian
- Department of Physiology and Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Fariba Ansari
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Maryam Sharayeli
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
15
|
Li Y, Wang J, Huang D, Yu C. Baicalin Alleviates Contrast-Induced Acute Kidney Injury Through ROS/NLRP3/Caspase-1/GSDMD Pathway-Mediated Proptosis in vitro. Drug Des Devel Ther 2022; 16:3353-3364. [PMID: 36196145 PMCID: PMC9527036 DOI: 10.2147/dddt.s379629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the effect of baicalin on the reactive oxygen species (ROS)/ NOD-like receptor protein 3 (NLRP3)/Caspase-1/gasdermin-D (GSDMD) inflammasome pathway and its related mechanism in regulating pyroptosis of human renal tubular epithelial cells (HK-2) induced by contrast media. Methods Iohexol was used to act on HK-2 cells to establish a renal tubular cell pyroptosis model; and the signal pathway genes were silenced, cytokines were detected by enzyme-linked immunosorbent assay (ELISA), and cell viability, gene expression, and protein expression were evaluated by double fluorescence staining and flow cytometry. To assess the cytotoxicity caused by the contrast agent; cells were pretreated with different concentrations of baicalin; and then the cells were exposed to iohexol again, and the relevant indicators were tested again. Results After HK-2 cells were exposed to iohexol, the NLRP3 inflammasome pathway markers NLRP3, interleukin (IL)-1β, and IL-18 mRNA levels as well as the protein expression levels of NLRP3, ASC, Caspase-1, and GSDMD were up-regulated. In addition, the effect also significantly increased the IL-18, IL-1β, lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA) release, and cellular ROS levels. The results of Annexin V-FITC/PI flow cytometry showed that the level of apoptosis was increased. However, after the intervention of baicalin, the changes in the above indexes caused by iohexol stimulation of HK-2 cells were inhibited. Conclusion Exposure to iohexol can induce pyroptosis of HK-2 cells through the ROS/NLRP3/Caspase-1/GSDMD signaling pathway. Baicalin ameliorated iohexol-induced pyroptosis in HK-2 cells by regulating the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Yanyan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, People’s Republic of China
| | - Junda Wang
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, People’s Republic of China
| | - Dan Huang
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, People’s Republic of China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Correspondence: Chao Yu, College of Pharmacy, Chongqing Medical University, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People’s Republic of China, Tel +86 23-68485589, Fax +86 23-68486294, Email
| |
Collapse
|
16
|
Wang Z, Zhang P, Zhao Y, Yu F, Wang S, Liu K, Cheng X, Shi J, He Q, Xia Y, Cheng L. Scutellarin Protects Against Mitochondrial Reactive Oxygen Species-Dependent NLRP3 Inflammasome Activation to Attenuate Intervertebral Disc Degeneration. Front Bioeng Biotechnol 2022; 10:883118. [PMID: 36032701 PMCID: PMC9403485 DOI: 10.3389/fbioe.2022.883118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a predominant cause of disc herniation and is widespread worldwide. Inflammatory responses, mitochondrial dysfunction, and extracellular matrix degradation are known to be involved in IVDD. Scutellarin, an active ingredient extracted from Erigeron breviscapus (Vaniot) Ha, Hand-Mazz, is reported to exhibit therapeutic potential in several degenerative diseases by suppressing inflammation and regulating metabolism. However, whether scutellarin can improve IVDD remains unknown. Human primary nucleus pulposus cells (HNPCs) were cultured and stimulated with TNF-α in the presence or absence of scutellarin. Furthermore, a rat needle puncture model was established, and scutellarin was injected into the IVD to verify its protective function against IVDD. Scutellarin attenuated the inflammatory reaction and retained the production of major IVD components both in vitro and in vivo. Mechanistically, scutellarin reduced the amount of reactive oxygen species (ROS), alleviated mitochondrial damage, and decreased the expression levels of apoptosis-related biomarkers upon stimulation with TNF-α. In addition, scutellarin antagonized the activation of the nuclear factor κ-light-chain-enhancer of activated B (NF-κB) signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathway and suppressed the activity of the NLRP3 inflammasome mediated by TNF-α. This study reveals that scutellarin protects against degeneration of nucleus pulposus cells, which might shed light on treatment of IVDD in the future.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pengfei Zhang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunpeng Zhao
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feiran Yu
- School of Medical Imaging, Weifang Medical University, Weifang, China
| | - Shaoyi Wang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kaiwen Liu
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Shi
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiting He
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanni Xia
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Cheng
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
17
|
Lan T, Jiang S, Zhang J, Weng Q, Yu Y, Li H, Tian S, Ding X, Hu S, Yang Y, Wang W, Wang L, Luo D, Xiao X, Piao S, Zhu Q, Rong X, Guo J. Breviscapine alleviates NASH by inhibiting TGF-β-activated kinase 1-dependent signaling. Hepatology 2022; 76:155-171. [PMID: 34717002 PMCID: PMC9299589 DOI: 10.1002/hep.32221] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS NAFLD is a key component of metabolic syndrome, ranging from nonalcoholic fatty liver to NASH, and is now becoming the leading cause of cirrhosis and HCC worldwide. However, due to the complex and unclear pathophysiological mechanism, there are no specific approved agents for treating NASH. Breviscapine, a natural flavonoid prescription drug isolated from the traditional Chinese herb Erigeron breviscapus, exhibits a wide range of pharmacological properties, including effects on metabolism. However, the anti-NASH efficacy and mechanisms of breviscapine have not yet been characterized. APPROACH AND RESULTS We evaluated the effects of breviscapine on the development of hepatic steatosis, inflammation, and fibrosis in vivo and in vitro under metabolic stress. Breviscapine treatment significantly reduced lipid accumulation, inflammatory cell infiltration, liver injury, and fibrosis in mice fed a high-fat diet, a high-fat/high-cholesterol diet, or a methionine- and choline-deficient diet. In addition, breviscapine attenuated lipid accumulation, inflammation, and lipotoxicity in hepatocytes undergoing metabolic stress. RNA-sequencing and multiomics analyses further indicated that the key mechanism linking the anti-NASH effects of breviscapine was inhibition of TGF-β-activated kinase 1 (TAK1) phosphorylation and the subsequent mitogen-activated protein kinase signaling cascade. Treatment with the TAK1 inhibitor 5Z-7-oxozeaenol abrogated breviscapine-mediated hepatoprotection under metabolic stress. Molecular docking illustrated that breviscapine directly bound to TAK1. CONCLUSION Breviscapine prevents metabolic stress-induced NASH progression through direct inhibition of TAK1 signaling. Breviscapine might be a therapeutic candidate for the treatment of NASH.
Collapse
Affiliation(s)
- Tian Lan
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| | - Shuo Jiang
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| | - Jing Zhang
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| | - Qiqing Weng
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| | - Yang Yu
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| | - Haonan Li
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| | - Song Tian
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xin Ding
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| | - Sha Hu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yiqi Yang
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| | - Weixuan Wang
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| | - Lexun Wang
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| | - Duosheng Luo
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| | - Xue Xiao
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| | - Shenghua Piao
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| | - Qing Zhu
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| | - Xianglu Rong
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| | - Jiao Guo
- Institute of Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhouChina,Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangzhouChina,Key Laboratory of Glucolipid Metabolic DisorderMinistry of EducationGuangzhouChina,Guangdong TCM Key Laboratory for Metabolic DiseasesGuangzhouChina
| |
Collapse
|
18
|
Dai J, Li C, Zhao L, Guan C, Yang C, Zhang N, Zhou B, Zhang Y, Wang L, Jiang W, Luo C, Xu Y. Scutellarin protects the kidney from ischemia/reperfusion injury by targeting Nrf2. Nephrology (Carlton) 2022; 27:690-700. [PMID: 35638402 DOI: 10.1111/nep.14069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) results in high morbidity and mortality among inpatients, while effective treatment and intervention are still absent. Therefore, this study aims to explore the effects of Scutellarin (Scu) in experimental models in vivo and in vitro. METHODS In vivo experiment, we employed a total of 30 Wistar rats, which further were modelled by a bilateral renal pedicle clip for 45 min, then received 50 mg/kg/day Scu. In vitro, HK-2 cells were administered with 20μΜ Scu and then incubated in hypoxia/reoxygenation (H/R) conditions for 24 h. The knockdown of Nrf2 expression was conducted by small interfering RNA (siRNA) transfection. RESULTS As a result, the AKI model was well established with an increased SCr, BUN, KIM-1 level, and histological injury score, while Scu treatment reduced the levels above and increased the antioxidative enzyme HO-1. H/R induced an increase of ROS in HK-2 cells, while Scu decreased the ROS level. Bioinformatics results showed the transcription factor Nrf2 was a hub protein during the AKI, which also bound to Scu with low binding energy, indicating that the downstream effect of Scu might be mediated by Nrf2. To verify the suppose above, we employed siRNA against Nrf2, which shows a significant increase in ROS after Nrf2 was blocked. Meanwhile, the HO-1 showed similar expression compared with the 'H/R + Nrf2 siRNA' and 'H/R + Nrf2 siRNA + Scu' group, implying the protective effect of Scu was mediated by the Nrf2/HO-1 pathway. CONCLUSION Scu led to up-regulation of HO-1 through activating the Nrf2 signalling pathway, protecting the kidneys from ischemia/reperfusion (I/R)-induced oxidative damage.
Collapse
Affiliation(s)
- Jie Dai
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenyu Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Long Zhao
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Guan
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengyu Yang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ningxin Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yue Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Wang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Congjuan Luo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Zishen Qingre Tongluo Formula Improves Renal Fatty Acid Oxidation and Alleviated Fibrosis via the Regulation of the TGF- β1/Smad3 Signaling Pathway in Hyperuricemic Nephrology Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2793823. [PMID: 34938805 PMCID: PMC8687854 DOI: 10.1155/2021/2793823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/13/2021] [Indexed: 12/20/2022]
Abstract
Hyperuricemia, an independent risk factor for ensuing chronic kidney disease (CKD), contributed to tubulointerstitial fibrosis and insufficiency of renal fatty acid oxidation. Many studies have shown that renal fatty acid oxidation dysfunction is related to the TGF-β1/Smad3 signaling pathway. We experimented the effects of Zishen Qingre Tongluo Formula (ZQTF) on the adenine/yeast-induced HN rats and uric acid-induced renal mouse tubular epithelial cells (mTECs), determined whether this effect was related to the TGF-β1/Smad3 signaling pathway, and further investigated the relationship between this effect and renal fatty acid oxidation. Rats were given intraperitoneally with adenine (100 mg/kg) and feed chow with 10% yeast for 18 days and then received ZQTF (12.04 g/kg/day) via intragastric gavage for eight weeks. The TGF-β1/Smad3 signaling pathway and renal fatty acid oxidation protein were detected by using western blotting, real-time PCR, and immunohistochemistry staining. mTECs induced by UA were used to investigate the relationship between the TGF-β1/Smad3 signaling pathway and renal fatty acid oxidation. After treatment with ZQTF, levels of UA, 24 h UTP, BUN, and Scr were significantly decreased and histologic injuries were visibly ameliorated in HN rats. Western blotting, real-time PCR, and immunohistochemistry staining revealed that PGC-1α, PPARγ, and PPARα significantly increased, and fibronectin, collagen 1, and P-Smad3 significantly decreased in HN rats and UA-induced mTECs after ZQTF treatment. SIS3 (a specific inhibitor of Smad3) treatment significantly increased the expressions of PGC-1α, PPARγ, and PPARα and decreased the expressions of fibronectin, collagen 1, and P-Smad3 in UA-induced mTECs. Our study demonstrated that ZQTF exhibited renoprotective effects by promoting renal fatty acid oxidation via the regulation of the TGF-β1/Smad3 signaling pathway. Thus, the present results indicated that ZQTF was a novel antifibrotic strategy for hyperuricemic nephropathy.
Collapse
|
20
|
Wang F, Zhao X, Su X, Song D, Zou F, Fang L. Isorhamnetin, the xanthine oxidase inhibitor from Sophora japonica, ameliorates uric acid levels and renal function in hyperuricemic mice. Food Funct 2021; 12:12503-12512. [PMID: 34806108 DOI: 10.1039/d1fo02719k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyperuricemia is a metabolic condition closely linked to xanthine oxidase (XOD) function, which is involved in the production of uric acid (UA). In this study, XOD was used as a target to construct an in vitro and in vivo activity screening and verification system. The XOD inhibition ability of the main components from the water extract of Sophorae Flos (WSF), an unopened dry flower bud of Sophora japonica, was screened by HPLC. Isorhamnetin (IRh) was identified as a major flavonoid XOD inhibitor from WSF, and we characterized its effects and potential mechanism in ameliorating UA levels and renal function in hyperuricemia model mice. Hyperuricemia was induced by oral administration of potassium oxonate (PO) and hypoxanthine to mice for 7 days. The biochemical index results showed that treatments with low, medium, and high doses of IRh (50, 100, and 150 mg kg-1) significantly reduced serum UA levels and inhibited XOD activity in serum and in the liver. Additionally, IRh effectively decreased the levels of serum creatinine and blood urea nitrogen, suggesting that it possessed nephroprotective effects in hyperuricemic mice. Furthermore, histopathological results showed that nuclear lesions and renal tubule dilatation in the kidneys of IRh-treated hyperuricemic mice were reduced, suggesting that IRh may alleviate renal injury. Molecular docking results showed that IRh combined well with XOD and is an effective XOD inhibitor. In conclusion, IRh from Sophora japonica may reduce the UA levels and alleviate renal injury by inhibiting XOD activity. It potentially functions as a therapeutic drug and dietary supplement to treat hyperuricemia.
Collapse
Affiliation(s)
- Fuqi Wang
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xu Zhao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xin Su
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Danni Song
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fengmao Zou
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lina Fang
- College of Pharmacy, Shenyang Medical College, Shenyang 110034, China.
| |
Collapse
|
21
|
Wu R, Liang Y, Xu M, Fu K, Zhang Y, Wu L, Wang Z. Advances in Chemical Constituents, Clinical Applications, Pharmacology, Pharmacokinetics and Toxicology of Erigeron breviscapus. Front Pharmacol 2021; 12:656335. [PMID: 34539390 PMCID: PMC8443777 DOI: 10.3389/fphar.2021.656335] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022] Open
Abstract
Dengzhanxixin (DZXX), the dried whole plant of Erigeron breviscapus (Vaniot) Hand.-Mazz., belonging to Compositae and first published in Materia Medica of South Yunnan by Lan Mao in the Ming Dynasty (1368 AD–1644 AD), is included in Medicinal Materials and Decoction Pieces of the 2020 edition of the Pharmacopeia of the People’s Republic of China. Its main chemical components are flavonoids that mainly include flavonoid, flavonols, dihydroflavones, flavonol glycosides, flavonoid glycosides, coffee acyl compounds, and other substances, such as volatile oil compounds, coumarins, aromatic acids, pentacyclic terpenoids, phytosterols, and xanthones. Among them, scutellarin and 1,5-dicoffeoylquininic acid are the main active components of DZXX. DZXX has pharmacological effects, such as improving cerebral and cerebrovascular ischemia, increasing blood flow, inhibiting platelet aggregation, promoting antithrombotic formation, improving microcirculation, reducing blood viscosity, protecting optic nerves, exhibiting anti-inflammatory properties, scavenging free radicals, and eliciting antioxidant activities. It is widely used in the treatment of cardiovascular and cerebrovascular ischemic diseases, kidney diseases, liver diseases, diabetic complications, and glaucoma. Pharmacokinetic studies have shown that the active components of DZXX have a low bioavailability and a high elimination rate in vivo. Nevertheless, its utilization can be improved through liposome preparation and combination with other drugs. Acute and subacute toxicity studies have shown that DZXX is a safe medicinal material widely used in clinical settings. However, its target and drug action mechanism are unclear because of the complexity of its composition. In this paper, the clinical application and pharmacological toxicology of DZXX are reviewed to provide a reference for further studying its active components and action mechanism.
Collapse
Affiliation(s)
- Ruixia Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Min Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Ke Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yangliu Zhang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Lei Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| |
Collapse
|
22
|
Dejani NN, Elshabrawy HA, Bezerra Filho CDSM, de Sousa DP. Anticoronavirus and Immunomodulatory Phenolic Compounds: Opportunities and Pharmacotherapeutic Perspectives. Biomolecules 2021; 11:biom11081254. [PMID: 34439920 PMCID: PMC8394099 DOI: 10.3390/biom11081254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
In 2019, COVID-19 emerged as a severe respiratory disease that is caused by the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The disease has been associated with high mortality rate, especially in patients with comorbidities such as diabetes, cardiovascular and kidney diseases. This could be attributed to dysregulated immune responses and severe systemic inflammation in COVID-19 patients. The use of effective antiviral drugs against SARS-CoV-2 and modulation of the immune responses could be a potential therapeutic strategy for COVID-19. Studies have shown that natural phenolic compounds have several pharmacological properties, including anticoronavirus and immunomodulatory activities. Therefore, this review discusses the dual action of these natural products from the perspective of applicability at COVID-19.
Collapse
Affiliation(s)
- Naiara Naiana Dejani
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| | - Carlos da Silva Maia Bezerra Filho
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
- Correspondence: ; Tel.: +55-83-3216-7347
| |
Collapse
|
23
|
Xiong W, Meng XF, Zhang C. NLRP3 Inflammasome in Metabolic-Associated Kidney Diseases: An Update. Front Immunol 2021; 12:714340. [PMID: 34305953 PMCID: PMC8297462 DOI: 10.3389/fimmu.2021.714340] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Metabolic syndrome (MS) is a group of complex metabolic disorders syndrome, which refers to the pathological state of metabolism disorder of protein, fat, carbohydrate and other substances in human body. The kidney is an important organ of metabolism, and various metabolic disorders can lead to the abnormalities in the structure and function of the kidney. The recognition of pathogenesis and treatment measures of renal damage in MS is a very important part for the renal function preserve. Inflammatory response caused by various metabolic factors is a protective mechanism of the body, but persistent inflammation will become a harmful factor and aggravate kidney damage. Inflammasomes are sensors of the innate immune system that play crucial roles in initiating inflammation in response to acute infections and chronic diseases. They are multiprotein complex composed of cytoplasmic sensors (mainly NLR family members), apoptosis-associated speck-like protein (ASC or PYCARD) and pro-caspase-1. After receiving exogenous and endogenous stimuli, the sensors begin to assemble inflammasome and then promote the release of inflammatory cytokines IL-1β and IL-18, resulting in a special way of cell death named pyroptosis. In the kidney, NLRP3 inflammasome can be activated by a variety of pathways, which eventually leads to inflammatory infiltration, renal intrinsic cell damage and renal function decline. This paper reviews the function and specific regulatory mechanism of inflammasome in kidney damage caused by various metabolic disorders, which will provide a new therapeutic perspective and targets for kidney diseases.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Fang Meng
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|