1
|
Ye Y, Huang X, Li X, Gao F, Zhong W, Tang A, Zhao L, Xie D, Ye N. Shenshuaikang enema restores the intestinal barrier and microbiota-gut-kidney axis balance to alleviate chronic kidney disease via NF-κB pathway. Front Pharmacol 2025; 15:1453668. [PMID: 39906395 PMCID: PMC11790348 DOI: 10.3389/fphar.2024.1453668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/19/2024] [Indexed: 02/06/2025] Open
Abstract
Introduction Chronic kidney disease (CKD) is a chronic progressive disease characterized by abnormalities in kidney structure or function caused by variousfactors. It has become a significant public health problem, posing a threat to human health worldwide. Shenshuaikang enema (SSKE) has demonstrated notable efficacy and safety in treating CKD, although its mechanism of action remains unclear. Methods The CKD rat model was induced using 2.5% adenine, and the effect of SSKE was evaluated by detecting uremic toxins, inflammatory cytokines, and renal function. The structure of the intestine and kidney was observed using electron microscopy. Pathological changes in the intestine and kidney were detected by H&E staining. The expression of Occludin, Claudin-1, and ZO-1 in the intestine was detected by immunohistochemistry. The degree of renal fibrosis was observed using Masson and PAS staining. The expression of NF-κB and MyD88 protein in the intestine, and the expression of F4/80, TLR4, NF-κB and MyD88 in the kidney were detected by immunofluorescence staining. NF-κB-RE-Luc transgenic mice were used to construct a CKD mouse model, and changes in fluorescence intensity in mice and isolated kidney tissues were detected within 1-6 days using a small animal live imager. Finally, 16S rRNA amplicon sequencing was used to monitor changes in intestinal flora in CKD patients before and after SSKE treatment. Results We found that SSKE improves renal function, attenuates renal fibrosis, reduces inflammatory factor levels, and decreases damage to intestinal and renal structures in adenine-induced CKD rats. Additionally, our results suggest that SSKE regulates NF-κB pathways, increases the expression of tight junction proteins, improves intestinal permeability, promotes the growth of beneficial bacteria, inhibits the proliferation of harmful bacteria, and reduces metabolic disorders. Ultimately, these effects contribute to the efficacy of SSKE in treating CKD. Conclusion These results indicate that SSKE restores intestinal barrier function by regulating the microbiota-gut-kidney axis, thereby treating CKD.
Collapse
Affiliation(s)
- Yan Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaopeng Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ministry of Science, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueying Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenzhen Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liangbin Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dengpiao Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Li Y, Luo Y, Hu Y, Li S, Li G, Zhang W, Gu X, Wang J, Li S, Cheng H. Network pharmacology and multi-omics validation of the Jianpi-Yishen formula in the treatment of chronic kidney disease. Front Immunol 2025; 15:1512519. [PMID: 39877349 PMCID: PMC11772200 DOI: 10.3389/fimmu.2024.1512519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Objective Chronic kidney disease (CKD) is a major global health problem. In clinical practice, the Chinese patent herbal medicine Jianpi-Yishen (JPYS) formula is commonly used to treat CKD. However, the molecular mechanisms by which JPYS targets and modulates the host immune response remain unclear. Methods This study utilized network pharmacology, RNA sequencing (RNA-seq), and metabolic analyses using in vivo and in vitro models to investigate the impact of the JPYS formula on inflammation and the immune system. Specifically, the study focused on macrophage polarization and metabolic changes that may slow down the progression of CKD. Results A total of 14,946 CKD-related targets were identified from the GeneCards and Online Mendelian Inheritance in Man (OMIM) databases through network pharmacology analyses. 227 potential targets of the JPYS formula were predicted using the TCMSP database. Additionally, network diagram demonstrated that 11 targets were associated with macrophage activity. In vivo studies indicated that the JPYS formula could reduce blood urea nitrogen and serum creatinine in adenine-induced CKD rats. Furthermore, the formula inhibited inflammatory damage and abnormal macrophage infiltration in this CKD model. RNA-seq, proteomic and metabolic analyses identified the regulation of amino acid metabolism by betaine, specifically referring to glycine, serine, and threonine metabolism, as a key target of the JPYS formula in slowing the progression of CKD. In addition, in vitro studies suggested that JPYS may enhance tryptophan metabolism in M1 macrophage polarization and betaine metabolism in M2 macrophage polarization. Conclusions The JPYS formula has been shown to have beneficial impact on CKD; a key mechanism is the mitigation of inflammatory damage through the interaction between amino acid metabolism and macrophage polarization. Of specific importance in this context are the roles of tryptophan in M1 polarization and betaine in M2 polarization.
Collapse
Affiliation(s)
- Yuyan Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yueming Luo
- Department of Geriatrics, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yilan Hu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Siting Li
- Beijing Tongrentang Hospital of Traditional Chinese Medicine, Beijing, China
| | - Guandong Li
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wanyangchuan Zhang
- Department of Minimally Invasive Intervention and Vascular Surgery, Chongqing Red Cross Hospital (People’s Hospital of Jiangbei District), Chongqing, China
| | - Xiufen Gu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianting Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shunmin Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hong Cheng
- Department of Geriatrics, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
3
|
Wang W, Dai R, Cheng M, Chen Y, Gao Y, Hong X, Zhang W, Wang Y, Zhang L. Metabolic reprogramming and renal fibrosis: what role might Chinese medicine play? Chin Med 2024; 19:148. [PMID: 39465434 PMCID: PMC11514863 DOI: 10.1186/s13020-024-01004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/15/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolic reprogramming is a pivotal biological process in which cellular metabolic patterns change to meet the energy demands of increased cell growth and proliferation. In this review, we explore metabolic reprogramming and its impact on fibrotic diseases, providing a detailed overview of the key processes involved in the metabolic reprogramming of renal fibrosis, including fatty acid decomposition and synthesis, glycolysis, and amino acid catabolism. In addition, we report that Chinese medicine ameliorates renal inflammation, oxidative stress, and apoptosis in chronic kidney disease by regulating metabolic processes, thereby inhibiting renal fibrosis. Furthermore, we reveal that multiple targets and signaling pathways contribute to the metabolic regulatory effects of Chinese medicine. In summary, this review aims to elucidate the mechanisms by which Chinese medicine inhibits renal fibrosis through the remodeling of renal cell metabolic processes, with the goal of discovering new therapeutic drugs for treating renal fibrosis.
Collapse
Affiliation(s)
- Weili Wang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Rong Dai
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China
| | - Meng Cheng
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China
| | - Yizhen Chen
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yilin Gao
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Xin Hong
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Wei Zhang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China.
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China.
| |
Collapse
|
4
|
Chu A, Wei W, Liu N, Zhang F, Zhang X, Li X, Zheng R, Ma Z, Li Y, Rong S, Zhong Y. Therapeutic effects of Kangxian Yanshen formula on patients with chronic kidney disease stages 3-4: a retrospective cohort study. Front Med (Lausanne) 2024; 11:1450561. [PMID: 39380733 PMCID: PMC11458470 DOI: 10.3389/fmed.2024.1450561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Background This study retrospectively evaluated the actual efficacy of Kangxian Yanshen Formula Chinese medicine on renal function-related indicators in chronic kidney disease (CKD) stage 3-4 patients. Methods In this retrospective cohort study, we collected 212 adult CKD patients with baseline estimated glomerular filtration rate (eGFR) of 15-60 ml/min/1.73 m2. All participants received usual care (i.e., Western medications), and participants in the exposure group (n = 109) were additionally prescribed Kangxian Yanshen Formula Chinese medicine. The primary outcome was an adjusted hazard risk and 95% confidence interval (95% CI) of a 30% decrease in eGFR at month 36 from baseline. Results In terms of eGFR, among participants treated with additional Kangxian Yanshen Formula, after adjusting for covariates, there was a 57.1% reduction in the risk of a 30% decline from baseline in eGFR among participants in the Kangxian Yanshen Formula group compared with the Western medicine group (adjusted hazard risk: 0.429; 95% CI 0.269-0.682). In addition, participants in the Kangxian Yanshen Formula group had a significantly higher change in eGFR from baseline to month 12 than those in the western medicine group (3.40 ± 11.62 versus -3.87 ± 8.39; between-group difference Δ5.61 [± 2.26 standard deviation] mL/min/1.73 m2; P = 0.014). Participants in both groups showed a decreasing trend in eGFR at months 24 and 36. Conclusion In patients with stage 3-4 CKD, Kangxian Yanshen Formula Chinese medicine therapy may help delay eGFR decline, but high-quality randomized controlled trials are needed to validate the results further.
Collapse
Affiliation(s)
- Aojiao Chu
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenqian Wei
- Department of Nephrology, Shanghai General Hospital, Shanghai, China
| | - Ni Liu
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fan Zhang
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianwen Zhang
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueling Li
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Zheng
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifang Ma
- Shanghai Fengxian District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yi Li
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu Rong
- Department of Nephrology, Shanghai General Hospital, Shanghai, China
| | - Yifei Zhong
- Department of Nephrology A, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Wang XY, Zhao SH, Wang AN, Zou D. Meta-analysis of traditional Chinese medicine on chronic kidney disease. Expert Rev Pharmacoecon Outcomes Res 2024; 24:353-359. [PMID: 38334322 DOI: 10.1080/14737167.2024.2306805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE To explore the effect of traditional Chinese medicine (TCM) on the treatment of chronic kidney disease (CKD). METHODS Databases were used for literature research until 16 December 2022, including PubMed, Cochrane Library, China National Knowledge Infrastructure (CNKI), and Embase. After full-text screening, data were extracted by two researchers independently. The Cochrane ROB tool was applied for quality assessment. The heterogeneity was tested using the Chi-squared-based Q statistic test and the I2 statistic. RESULTS The findings revealed that the use of TCM significantly improved the total effective rate (pooled odds ratio (OR) = 1.35, 95% confidence interval (CI) = [1.15, 1.57]), reduced the serum creatinine (SCr) level (pooled mean difference (MD) = -0.11, 95% CI = [-0.20, -0.03]), and increased the estimated glomerular filtration rate (eGFR, pooled MD = 3.76, 95% CI = [2.66, 4.87]) in patients with CKD, compared with non-TCM treatment. Meanwhile, TCM performed better effect on 24-h proteinuria (pooled MD = 0.17, 95% CI = [0.04, 0.31]) than non-TCM. No significant difference in the incidence of adverse events was found between TCM and non-TCM treatment (pooled OR = 0.63, 95% CI = [0.32, 1.24]). Sensitivity analysis demonstrated the stability of the pooled estimates. CONCLUSION TCM has the advantage over non-TCM treatment and is worth popularizing and applying in the prevention and cure of CKD. PROSPERO REGISTRATION NUMBER CRD42021279281.
Collapse
Affiliation(s)
- Xian-Ya Wang
- Department of Nephrology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun City, Jilin Province, China
| | - Shu-Hua Zhao
- Department of Traditional Chinese Medicine, China-Japan Union Hospital of Jilin University, Changchun City, Jilin Province, China
| | - An-Na Wang
- Department of Liver, Spleen and Stomach Diseases, the First Clinical Hospital of Jilin Academy of Traditional Chinese Medicine, Changchun City, Jilin Province, China
| | - Di Zou
- Department of Nephrology, The First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun City, Jilin Province, China
| |
Collapse
|
6
|
Liu Q, Chen J, Zeng A, Song L. Pharmacological functions of salidroside in renal diseases: facts and perspectives. Front Pharmacol 2024; 14:1309598. [PMID: 38259279 PMCID: PMC10800390 DOI: 10.3389/fphar.2023.1309598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Rhodiola rosea is a valuable functional medicinal plant widely utilized in China and other Asian countries for its anti-fatigue, anti-aging, and altitude sickness prevention properties. Salidroside, a most active constituent derived from Rhodiola rosea, exhibits potent antioxidative, hypoxia-resistant, anti-inflammatory, anticancer, and anti-aging effects that have garnered significant attention. The appreciation of the pharmacological role of salidroside has burgeoned over the last decade, making it a beneficial option for the prevention and treatment of multiple diseases, including atherosclerosis, Alzheimer's disease, Parkinson's disease, cardiovascular disease, and more. With its anti-aging and renoprotective effects, in parallel with the inhibition of oxidative stress and inflammation, salidroside holds promise as a potential therapeutic agent for kidney damage. This article provides an overview of the microinflammatory state in kidney disease and discuss the current therapeutic strategies, with a particular focus on highlighting the recent advancements in utilizing salidroside for renal disease. The potential mechanisms of action of salidroside are primarily associated with the regulation of gene and protein expression in glomerular endothelial cells, podocytes, renal tubule cells, renal mesangial cells and renal cell carcinoma cell, including TNF-α, TGF-β, IL-1β, IL-17A, IL-6, MCP-1, Bcl-2, VEGF, ECM protein, caspase-3, HIF-1α, BIM, as well as the modulation of AMPK/SIRT1, Nrf2/HO-1, Sirt1/PGC-1α, ROS/Src/Cav-1, Akt/GSK-3β, TXNIP-NLRP3, ERK1/2, TGF-β1/Smad2/3, PI3K/Akt, Wnt1/Wnt3a β-catenin, TLR4/NF-κB, MAPK, JAK2/STAT3, SIRT1/Nrf2 pathways. To the best of our knowledge, this review is the first to comprehensively cover the protective effects of salidroside on diverse renal diseases, and suggests that salidroside has great potential to be developed as a drug for the prevention and treatment of metabolic syndrome, cardiovascular and cerebrovascular diseases and renal complications.
Collapse
Affiliation(s)
- Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jianzhu Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Silymarin and Vanillic Acid Silver Nanoparticles Alleviate the Carbon Tetrachloride-Induced Nephrotoxicity in Male Rats. INT J POLYM SCI 2023. [DOI: 10.1155/2023/4120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Natural copolymer (e.g., chitosan-loaded) and synthetic (e.g., silver nitrate-loaded) nanopolymers have many medical applications in drug delivery research for enhancing the effectuality of traditional medicine. This study aimed to investigate the potential protective activity of vanillic acid, silver nanoparticles (AgNPs) of vanillic acid, and silymarin against carbon tetrachloride (CCl4)-induced nephrotoxicity in male rats. Rats were divided into five groups; the first group (G1) was a negative control, and the other rats were treated intraperitoneally with CCl4 to induce kidney toxicity twice weekly, and then divided into four groups, G2 was a positive control and left without treatment, the third group was treated with vanillic acid, the fourth (G4) was treated with vanillic acid-AgNPs, and the fifth (G5) was treated with silymarin. In G2, renal function indices (urea, creatinine, and uric acid) showed elevated levels indicating renal toxicity. Na, K, and Ca ions were decreased, whereas Cl− was increased. Antioxidants (glutathione S-transferase, glutathione reduced, total antioxidant capacity, superoxide dismutase, and catalase) were decreased, whereas lipid peroxidation was increased in the kidney tissue homogenate. IL1 was increased, whereas CYP-450 was decreased. In the treated group, all biochemical and renal tissue texture were alleviated as a result of treatment with vanillic acid in G3, vanillic acid AgNPs in G4, and silymarin in G5. Vanillic acid AgNPs and silymarin treatment in G4 and G5, respectively, were more efficient than vanillic acid in G5 in protecting the kidneys against CCl4-induced nephrotoxicity.
Collapse
|
8
|
Zheng L, Luo M, Zhou H, Chen J. Natural products from plants and microorganisms: Novel therapeutics for chronic kidney disease via gut microbiota regulation. Front Pharmacol 2023; 13:1068613. [PMID: 36733377 PMCID: PMC9887141 DOI: 10.3389/fphar.2022.1068613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Dysbiosis of gut microbiota plays a fundamental role in the pathogenesis and development of chronic kidney disease (CKD) and its complications. Natural products from plants and microorganisms can achieve recognizable improvement in renal function and serve as an alternative treatment for chronic kidney disease patients with a long history, yet less is known on its beneficial effects on kidney injury by targeting the intestinal microbiota. In this review, we summarize studies on the effects of natural products from plants and microorganisms, including herbal medicines and their bioactive extracts, polysaccharides from plants and microorganisms, and phytochemicals, on the prevention and treatment of chronic kidney disease through targeting gut microflora. We describe the strategies of these anti-CKD effects in animal experiments including remodulation of gut microbiota structure, reduction of uremic toxins, enhancement of short-chain fatty acid (SCFA) production, regulation of intestinal inflammatory signaling, and improvement in intestinal integrity. Meanwhile, the clinical trials of different natural products in chronic kidney disease clinical practice were also analyzed and discussed. These provide information to enable a better understanding of the renoprotective effects of these effective natural products from plants and microorganisms in the treatment of chronic kidney disease. Finally, we propose the steps to prove the causal role of the intestinal microflora in the treatment of chronic kidney disease by natural products from plants and microorganisms. We also assess the future perspective that natural active products from plants and microorganisms can beneficially delay the onset and progression of kidney disease by targeting the gut flora and highlight the remaining challenges in this area. With the continuous deepening of studies in recent years, it has been proved that gut microbiota is a potential target of natural active products derived from plants and microorganisms for chronic kidney disease treatment. Fully understanding the functions and mechanisms of gut microbiota in these natural active products from plants and microorganisms is conducive to their application as an alternative therapeutic in the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mingjing Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Haokui Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
9
|
Pseudorabies Virus: From Pathogenesis to Prevention Strategies. Viruses 2022; 14:v14081638. [PMID: 36016260 PMCID: PMC9414054 DOI: 10.3390/v14081638] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease (AD), is a highly infectious viral disease which is caused by pseudorabies virus (PRV). It has been nearly 200 years since the first PR case occurred. Currently, the virus can infect human beings and various mammals, including pigs, sheep, dogs, rabbits, rodents, cattle and cats, and among them, pigs are the only natural host of PRV infection. PRV is characterized by reproductive failure in pregnant sows, nervous disorders in newborn piglets, and respiratory distress in growing pigs, resulting in serious economic losses to the pig industry worldwide. Due to the extensive application of the attenuated vaccine containing the Bartha-K61 strain, PR was well controlled. With the variation of PRV strain, PR re-emerged and rapidly spread in some countries, especially China. Although researchers have been committed to the design of diagnostic methods and the development of vaccines in recent years, PR is still an important infectious disease and is widely prevalent in the global pig industry. In this review, we introduce the structural composition and life cycle of PRV virions and then discuss the latest findings on PRV pathogenesis, following the molecular characteristic of PRV and the summary of existing diagnosis methods. Subsequently, we also focus on the latest clinical progress in the prevention and control of PRV infection via the development of vaccines, traditional herbal medicines and novel small RNAs. Lastly, we provide an outlook on PRV eradication.
Collapse
|
10
|
Tan W, Wang Y, Dai H, Deng J, Wu Z, Lin L, Yang J. Potential Therapeutic Strategies for Renal Fibrosis: Cordyceps and Related Products. Front Pharmacol 2022; 13:932172. [PMID: 35873549 PMCID: PMC9304961 DOI: 10.3389/fphar.2022.932172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
At present, there is no effective drug for the treatment of renal fibrosis; in particular, a safe and effective treatment for renal fibrosis should be established. Cordyceps has several medical effects, including immunoregulatory, antitumor, anti-inflammatory, and antioxidant effects, and may prevent kidney, liver, and heart diseases. Cordyceps has also been reported to be effective in the treatment of renal fibrosis. In this paper, we review the potential mechanisms of Cordyceps against renal fibrosis, focusing on the effects of Cordyceps on inflammation, oxidative stress, apoptosis, regulation of autophagy, reduction of extracellular matrix deposition, and fibroblast activation. We also discuss relevant published clinical trials and meta-analyses. Available clinical studies support the possibility that Cordyceps and related products provide benefits to patients with chronic kidney diseases as adjuvants to conventional drugs. However, the existing clinical studies are limited by low quality and significant heterogeneity. The use of Cordyceps and related products may be a potential strategy for the treatment of renal fibrosis. Randomized controlled trial studies with good methodological quality, favorable experimental design, and large sample size are needed to evaluate the efficacy and safety of Cordyceps.
Collapse
Affiliation(s)
- Wei Tan
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunyan Wang
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Dai
- Nephrology, YunYang County People’s Hospital, Chongqing, China
| | - Junhui Deng
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifen Wu
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lirong Lin
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jurong Yang,
| |
Collapse
|
11
|
Blair HA. Hexanic Extract of Serenoa repens (Permixon ®): A Review in Symptomatic Benign Prostatic Hyperplasia. Drugs Aging 2022; 39:235-243. [PMID: 35237936 PMCID: PMC9192452 DOI: 10.1007/s40266-022-00924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
Abstract
The hexanic extract (HE) of Serenoa repens (Permixon®) is indicated for the symptomatic treatment of benign prostatic hyperplasia (BPH). The drug is the n-hexane lipidosterolic extract of the American dwarf palm tree (also known as saw palmetto). The anti-inflammatory activity of HE S.repens has been demonstrated in vitro, in vivo and in men with prostatic inflammation. In randomized clinical trials, the efficacy of HE S. repens was similar to that of an α-blocker in terms of improving voiding and storage symptoms, increasing urinary flow rate and reducing prostate volume in men with BPH. HE S. repens was also as effective as 5α-reductase inhibitors and/or α-blockers at improving lower urinary tract symptoms (LUTS) and quality of life (QOL) in real-world observational studies. HE S. repens was generally well tolerated, with a lesser impact on male sexual function compared with other available therapies. Thus, HE S. repens is a useful option for the treatment of symptomatic BPH. BPH (enlargement of the prostate gland) compresses the urethra, leading to uncomfortable LUTS such as difficulty starting a urine stream, weak flow, incomplete bladder emptying, frequent urination, urgency, and waking at night to urinate. To avoid side effects often associated with other available treatments such as 5α-reductase inhibitors and α-blockers, plant extracts like HE Serenoa repens (Permixon®) are commonly used to treat the symptoms of BPH. HE S. repens is derived from a small palm tree native to America and has been shown to have anti-inflammatory effects in prostate inflammation. In clinical studies, HE S. repens was as effective as an α-blocker at improving urinary symptoms, increasing urinary flow rate and reducing prostate volume in men with BPH. In real-world studies, HE S. repens was as effective as 5α-reductase inhibitors and/or α-blockers at improving LUTS and QOL. European guidelines recommend HE S. repens as a treatment option for men with LUTS who want to avoid any potential side effects, especially those related to sexual function. HE S. repens was generally well tolerated, and is a useful option for the treatment of symptomatic BPH.
Collapse
Affiliation(s)
- Hannah A Blair
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
12
|
Xie D, Li K, Ma T, Jiang H, Wang F, Huang M, Sheng Z, Xie Y. Therapeutic Effect and Safety of Tripterygium Glycosides Combined With Western Medicine on Type 2 Diabetic Kidney Disease: A Meta-Analysis. Clin Ther 2022; 44:246-256.e10. [DOI: 10.1016/j.clinthera.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
|
13
|
Shao M, Ye C, Bayliss G, Zhuang S. New Insights Into the Effects of Individual Chinese Herbal Medicines on Chronic Kidney Disease. Front Pharmacol 2021; 12:774414. [PMID: 34803715 PMCID: PMC8599578 DOI: 10.3389/fphar.2021.774414] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022] Open
Abstract
The clinical and experimental study into the effects of Chinese herbal medicines on chronic kidney disease has evolved over the past 40 years with new insight into their mechanism and evidence of their clinical effects. Among the many traditional Chinese herbs examined in chronic renal disease, five were found to have evidence of sufficient clinical efficacy, high frequency of use, and well-studied mechanism. They are: Abelmoschus manihot and Huangkui capsule, Salvia miltiorrhiza and its components (tanshinone II A, salvianolic acid A and B); Rhizoma coptidis and its monomer berberine; Tripterygium wilfordii and its components (triptolide, tripterygium glycosides); Kudzu root Pueraria and its monomer Puerarin. These Chinese herbal medications have pharmaceutical effects against fibrosis, inflammation and oxidative stress and also promote renal repair and regeneration. This article reviews their clinical efficacy, anti-fibrotic effects in animal models, and molecular mechanism of action.
Collapse
Affiliation(s)
- Minghai Shao
- Department of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States.,Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Zakaria MM, Derbala SA, Salem AE, El-Agroudy AE, El-Tantawy FM. Inflammatory markers in chronic kidney disease and end stage renal disease patients. Mol Biol Rep 2021; 48:6857-6862. [PMID: 34472006 DOI: 10.1007/s11033-021-06684-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is condition characterized by a gradual loss of kidney function, patient with CKD suffering from a variety of immune system defects. METHODS This study looked at Fas, T cell, BCl2, and P53 activity in people with CKD, end stage renal disease (ESRD), and stable controls. RESULTS The CD4+ and CD8+ levels in ESRD patients' peripheral blood were slightly lower than those in CKD patients. The CKD and ESRD groups had slightly higher Fas and FasL mRNA expression and slightly lower BCl2 mRNA gene expression than the normal control group (P < 0.05). P53 mRNA gene expression was shown to be higher in the patients than in the controls (P < 0.01). CONCLUSIONS ESRD patients have a significantly lower number of T-cell subsets than CKD patients this is related to a higher degree of apoptosis in these cells.
Collapse
Affiliation(s)
- Mahmoud M Zakaria
- Faculty of Medicine, Urology and Nephrology Center, Mansoura University, Mansoura, 35511, Egypt
| | - Safaa A Derbala
- Faculty of Medicine, Urology and Nephrology Center, Mansoura University, Mansoura, 35511, Egypt
| | - Ayman E Salem
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, 35511, Egypt
| | - Amgad E El-Agroudy
- Faculty of Medicine, Urology and Nephrology Center, Mansoura University, Mansoura, 35511, Egypt
| | - Fatma M El-Tantawy
- Faculty of Medicine, Urology and Nephrology Center, Mansoura University, Mansoura, 35511, Egypt.
| |
Collapse
|