1
|
Nakatani Y, Ishikawa K, Aoki Y, Shimooki T, Yamamoto N, Amano T. Inhibitory effect of atomoxetine on Nav1.2 voltage-gated sodium channel currents. Pharmacol Rep 2023; 75:746-752. [PMID: 36914846 DOI: 10.1007/s43440-023-00477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Atomoxetine (ATX), a norepinephrine reuptake inhibitor (NRI), is used to attenuate the symptoms of Attention Deficit/Hyperactivity Disorder (AD/HD) by increasing neurotransmitter concentrations at the synaptic cleft. Although Nav1.2 voltage-gated sodium channels (VGSCs) are thought to play a role in monoamine transmitter release in the synaptic junction, it is unclear how atomoxetine affects Nav1.2 VGSCs. METHODS In this study, we investigated the effect of ATX on Nav1.2 VGSC-transfected HEK293 cells with the whole-patch clamp technique. RESULTS Nav1.2 VGSC current decreased by 51.15 ± 12.75% under treatment with 50 µM ATX in the resting state (holding membrane potential at - 80 mV). The IC50 of ATX against Nav1.2 VGSC current was 45.57 µM. The activation/inactivation curve of Nav1.2 VGSC currents was shifted toward hyperpolarization by 50 µM ATX. In addition, the inhibitory effect of ATX increased with membrane depolarization (holding membrane potential at - 50 mV) and its IC50 was 10.16 µM. Moreover, ATX showed the time-dependent interaction in the inactivation state. CONCLUSION These findings suggest that ATX interacts with Nav1.2 VGSCs producing the inhibition of current and the modification of kinetic properties in the state-dependent manner.
Collapse
Affiliation(s)
- Yoshihiko Nakatani
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.
| | - Kanami Ishikawa
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Yuko Aoki
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Takahiro Shimooki
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Naoki Yamamoto
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.,Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.,Laboratory of Neurobiology, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo, 192-0397, Japan
| | - Taku Amano
- Tochigi Prefectural Okamotodai Hospital, 2162 Shimookamotomachi, Utsunomiya, Tochigi, 329-1104, Japan
| |
Collapse
|
2
|
Föhr KJ, Rapp M, Fauler M, Zimmer T, Jungwirth B, Messerer DAC. Block of Voltage-Gated Sodium Channels by Aripiprazole in a State-Dependent Manner. Int J Mol Sci 2022; 23:ijms232112890. [PMID: 36361681 PMCID: PMC9656591 DOI: 10.3390/ijms232112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Aripiprazole is an atypical antipsychotic drug, which is prescribed for many psychiatric diseases such as schizophrenia and mania in bipolar disorder. It primarily acts as an agonist of dopaminergic and other G-protein coupled receptors. So far, an interaction with ligand- or voltage-gated ion channels has been classified as weak. Meanwhile, we identified aripiprazole in a preliminary test as a potent blocker of voltage-gated sodium channels. Here, we present a detailed analysis about the interaction of aripiprazole with the dominant voltage-gated sodium channel of heart muscle (hNav1.5). Electrophysiological experiments were performed by means of the patch clamp technique at human heart muscle sodium channels (hNav1.5), heterologously expressed in human TsA cells. Aripiprazole inhibits the hNav1.5 channel in a state- but not use-dependent manner. The affinity for the resting state is weak with an extrapolated Kr of about 55 µM. By contrast, the interaction with the inactivated state is strong. The affinities for the fast and slow inactivated state are in the low micromolar range (0.5–1 µM). Kinetic studies indicate that block development for the inactivated state must be described with a fast (ms) and a slow (s) time constant. Even though the time constants differ by a factor of about 50, the resulting affinity constants were nearly identical (in the range of 0.5 µM). Besides this, aripirazole also interacts with the open state of the channel. Using an inactivation deficit mutant, an affinity of about 1 µM was estimated. In summary, aripiprazole inhibits voltage-gated sodium channels at low micromolar concentrations. This property might add to its possible anticancer and neuroprotective properties.
Collapse
Affiliation(s)
- Karl Josef Föhr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, 89081 Ulm, Germany
- Correspondence:
| | - Michael Rapp
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, University of Ulm, 89081 Ulm, Germany
| | - Thomas Zimmer
- Institute of Physiology, University Hospital of Jena, 07747 Jena, Germany
| | - Bettina Jungwirth
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - David Alexander Christian Messerer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, 89081 Ulm, Germany
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91052 Erlangen, Germany
| |
Collapse
|
3
|
Topriceanu CC, Moon JC, Captur G, Perera B. The use of attention-deficit hyperactivity disorder medications in cardiac disease. Front Neurosci 2022; 16:1020961. [PMID: 36340760 PMCID: PMC9626759 DOI: 10.3389/fnins.2022.1020961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 09/02/2023] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with onset usually in childhood characterized by inattention, impulsivity, and hyperactivity causing a functional impairment. Untreated ADHD, or treatment delay is associated with adverse outcomes and poor quality of life. Although conservative management strategies such as behavioral and psychological interventions are important, pharmacological treatment has a strong evidence base with improved outcomes. ADHD medications are broadly divided into stimulant and non-stimulant medications. Stimulant medications are generally more effective than non-stimulants. Cardiovascular safety of ADHD medication has been a matter of debate for decades. Treatment guidelines advise the careful consideration of risks and benefits in people with cardiovascular diseases such as congenital heart disease or cardiomyopathy. Although stimulants can increase systemic blood pressure and heart rate, no significant associations were found between their use and serious cardiovascular events. Concerns regarding QT effects and attendant sudden cardiac death risks deter clinicians from initiating much-needed ADHD medications in patients with heart disease. This overly cautious approach is potentially depriving low-risk individuals from significant benefits associated with timely ADHD drug treatment. This review discusses the cardiovascular risks reportedly associated with ADHD medications, the evidence base for their safe usage in persons with established cardiovascular disease, and highlights future research directions.
Collapse
Affiliation(s)
- Constantin-Cristian Topriceanu
- Barnet, Enfield and Haringey Mental Health Trust, London, United Kingdom
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom
- Cardiac MRI Unit, Barts Heart Centre, London, United Kingdom
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom
| | - James C. Moon
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiac MRI Unit, Barts Heart Centre, London, United Kingdom
| | - Gabriella Captur
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
- UCL MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom
- Department of Cardiology, Centre for Inherited Heart Muscle Conditions, The Royal Free Hospital, London, United Kingdom
| | - Bhathika Perera
- Barnet, Enfield and Haringey Mental Health Trust, London, United Kingdom
| |
Collapse
|
4
|
Rapedius M, Obergrussberger A, Humphries ESA, Scholz S, Rinke-Weiss I, Goetze TA, Brinkwirth N, Rotordam MG, Strassmaier T, Randolph A, Friis S, Liutkute A, Seibertz F, Voigt N, Fertig N. There is no F in APC: Using physiological fluoride-free solutions for high throughput automated patch clamp experiments. Front Mol Neurosci 2022; 15:982316. [PMID: 36072300 PMCID: PMC9443850 DOI: 10.3389/fnmol.2022.982316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Fluoride has been used in the internal recording solution for manual and automated patch clamp experiments for decades because it helps to improve the seal resistance and promotes longer lasting recordings. In manual patch clamp, fluoride has been used to record voltage-gated Na (NaV) channels where seal resistance and access resistance are critical for good voltage control. In automated patch clamp, suction is applied from underneath the patch clamp chip to attract a cell to the hole and obtain a good seal. Since the patch clamp aperture cannot be moved to improve the seal like the patch clamp pipette in manual patch clamp, automated patch clamp manufacturers use internal fluoride to improve the success rate for obtaining GΩ seals. However, internal fluoride can affect voltage-dependence of activation and inactivation, as well as affecting internal second messenger systems and therefore, it is desirable to have the option to perform experiments using physiological, fluoride-free internal solution. We have developed an approach for high throughput fluoride-free recordings on a 384-well based automated patch clamp system with success rates >40% for GΩ seals. We demonstrate this method using hERG expressed in HEK cells, as well as NaV1.5, NaV1.7, and KCa3.1 expressed in CHO cells. We describe the advantages and disadvantages of using fluoride and provide examples of where fluoride can be used, where caution should be exerted and where fluoride-free solutions provide an advantage over fluoride-containing solutions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Aiste Liutkute
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen, Germany
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
5
|
Fuchs E, Messerer DAC, Karpel-Massler G, Fauler M, Zimmer T, Jungwirth B, Föhr KJ. Block of Voltage-Gated Sodium Channels as a Potential Novel Anti-cancer Mechanism of TIC10. Front Pharmacol 2021; 12:737637. [PMID: 34744721 PMCID: PMC8567104 DOI: 10.3389/fphar.2021.737637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Tumor therapeutics are aimed to affect tumor cells selectively while sparing healthy ones. For this purpose, a huge variety of different drugs are in use. Recently, also blockers of voltage-gated sodium channels (VGSCs) have been recognized to possess potentially beneficial effects in tumor therapy. As these channels are a frequent target of numerous drugs, we hypothesized that currently used tumor therapeutics might have the potential to block VGSCs in addition to their classical anti-cancer activity. In the present work, we have analyzed the imipridone TIC10, which belongs to a novel class of anti-cancer compounds, for its potency to interact with VGSCs. Methods: Electrophysiological experiments were performed by means of the patch-clamp technique using heterologously expressed human heart muscle sodium channels (hNav1.5), which are among the most common subtypes of VGSCs occurring in tumor cells. Results: TIC10 angular inhibited the hNav1.5 channel in a state- but not use-dependent manner. The affinity for the resting state was weak with an extrapolated Kr of about 600 μM. TIC10 most probably did not interact with fast inactivation. In protocols for slow inactivation, a half-maximal inhibition occurred around 2 µM. This observation was confirmed by kinetic studies indicating that the interaction occurred with a slow time constant. Furthermore, TIC10 also interacted with the open channel with an affinity of approximately 4 µM. The binding site for local anesthetics or a closely related site is suggested as a possible target as the affinity for the well-characterized F1760K mutant was reduced more than 20-fold compared to wild type. Among the analyzed derivatives, ONC212 was similarly effective as TIC10 angular, while TIC10 linear more selectively interacted with the different states. Conclusion: The inhibition of VGSCs at low micromolar concentrations might add to the anti-tumor properties of TIC10.
Collapse
Affiliation(s)
- Eva Fuchs
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany
| | | | | | - Michael Fauler
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Thomas Zimmer
- Institute of Physiology, University Hospital of Jena, Jena, Germany
| | - Bettina Jungwirth
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany
| | - Karl Josef Föhr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
6
|
Fu D, Wu DD, Guo HL, Hu YH, Xia Y, Ji X, Fang WR, Li YM, Xu J, Chen F, Liu QQ. The Mechanism, Clinical Efficacy, Safety, and Dosage Regimen of Atomoxetine for ADHD Therapy in Children: A Narrative Review. Front Psychiatry 2021; 12:780921. [PMID: 35222104 PMCID: PMC8863678 DOI: 10.3389/fpsyt.2021.780921] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Atomoxetine, a selective norepinephrine (NE) reuptake inhibitor, was approved for attention deficit/hyperactivity disorder (ADHD) treatment in children, adolescents and adults. We searched the database PubMed/MEDLINE (2000 to October 1, 2021). Only publications in English were considered. Atomoxetine inhibits the presynaptic norepinephrine transporter (NET), preventing the reuptake of NE throughout the brain along with inhibiting the reuptake of dopamine in specific brain regions such as the prefrontal cortex (PFC). The novel mechanism of atomoxetine also includes several new brain imaging studies and animal model studies. It is mainly metabolized by the highly polymorphic drug metabolizing enzyme cytochrome P450 2D6 (CYP2D6). Atomoxetine is effective and generally well tolerated. ADHD is often accompanied by multiple comorbidities. A series of studies have been published suggesting that atomoxetine is effective in the treatment of ADHD symptoms for children with various types of comorbidity. In some cases, it is possible that atomoxetine may have a positive influence on the symptoms of comorbidities. Atomoxetine can be administered either as a single daily dose or split into two evenly divided doses, and has a negligible risk of abuse or misuse. The latest guideline updated that clinical dose selection of atomoxetine was recommended based on both CYP2D6 genotype and the peak concentration. To have a more comprehensive understanding of atomoxetine, this review sets the focus on the mechanism, clinical efficacy and dosage regimen in detail, and also touches on those studies regarding adverse reactions of atomoxetine.
Collapse
Affiliation(s)
- Di Fu
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China.,School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dan-Dan Wu
- Department of Children Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Xia
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Ji
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-Rong Fang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun-Man Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Xu
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qian-Qi Liu
- Department of Children Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|