1
|
Puppala ER, Prasad N, Prakash AN, Abubakar M, Syamprasad NP, Gangasani JK, Naidu VGM. Mesua assamica (King & Prain) kosterm. bark ethanolic extract attenuates rheumatoid arthritis via down-regulating TLR4/NF-κB/COX-2/iNOS and activation of Nrf2/HO-1 pathways: A comprehensive study on in-vitro and in-vivo models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118671. [PMID: 39103024 DOI: 10.1016/j.jep.2024.118671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a multifactorial, polygenic inflammatory disease. Mesua assamica (King & Prain) Kosterm. (MA) is an endangered medicinal plant indigenous to South Asia, primarily to Assam in India. The tree bark is claimed to possess anti-inflammatory, anti-diabetic, anti-cancer, and anti-malarial properties; nevertheless, its role in RA has not been elucidated. Hence, this study aims to investigate the in-vitro and in-vivo anti-arthritic effects of Mesua assamica bark ethanolic extract (MAE). AIM OF THE STUDY This study aims to investigate the anti-rheumatic potential of MAE in-vitro on RAW 264.7 cells for its anti-oxidant and anti-inflammatory activities and in-vivo on the CFA-induced adjuvant arthritis in the rat model. MATERIALS AND METHODS We investigated the possible therapeutic effects of MAE in-vitro using RAW 264.7 cells triggered by LPS. Meanwhile, adult Wistar rats were injected intradermally with 100 μl of CFA to induce arthritis, and they were given MAE orally at doses of 100 and 200 mg/kg for up to 28 days. Paw volume analysis, X-ray radiography, anti-oxidant levels analysis, gene and protein expression studies, and histological analysis were carried out to assess the effects of MAE in-vivo. RESULTS MAE significantly mitigated the inflammation by reducing ROS levels and dropped the nitrite, PGE2, and COX-2 levels enhanced by LPS in-vitro. At the same time, MAE treatment reduced the paw and joint inflammation and increased the immune organ index in the CFA rats. Histopathology data revealed that MAE mitigated the CFA-induced lesions of the ankle joints and synovial tissues. Similarly, MAE significantly abated the secretion of pro-inflammatory cytokines, inhibited the protein expression of TLR4, NF-кB, COX-2, and iNOS, as well as improved the Nrf2 and HO-1 levels in-vitro and in-vivo. CONCLUSION All the results highlighted the anti-rheumatic potential of MAE in RA in-vitro and in-vivo by inhibiting the TLR4/NF-кB/COX-2/iNOS and promoting the Nrf2/HO-1 signaling axis.
Collapse
Affiliation(s)
- Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Neethu Prasad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Arun N Prakash
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Md Abubakar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - N P Syamprasad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Jagadeesh Kumar Gangasani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India.
| |
Collapse
|
2
|
Prakash AN, Prasad N, Puppala ER, Panda SR, Jain S, Ravichandiran V, Singh M, Naidu VGM. Loganic acid protects against ulcerative colitis by inhibiting TLR4/NF-κB mediated inflammation and activating the SIRT1/Nrf2 anti-oxidant responses in-vitro and in-vivo. Int Immunopharmacol 2023; 122:110585. [PMID: 37421777 DOI: 10.1016/j.intimp.2023.110585] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/27/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Ulcerative colitis (UC) is an idiopathic, chronic disorder of the intestines characterized by excessive inflammation and oxidative stress. Loganic acid (LA) is an iridoid glycoside reported to have antioxidant and anti-inflammatory properties. However, the beneficial effects of LA on UC are unexplored yet. Thus, this study aims to explore the potential protective effects of LA and its possible mechanisms. In-vitro models were employed using LPS-stimulated RAW 264.7 macrophage cells, and Caco-2 cells, whereas an in-vivo model of ulcerative colitis was employed using 2.5% DSS in BALB/c mice. Results indicated that LA significantly suppressed the intracellular ROS levels and inhibited the phosphorylation of NF-κB in both RAW 264.7 and Caco-2 cells, contrarily LA activated the Nrf2 pathway in RAW 264.7 cells. In DSS-induced colitis mice, LA significantly alleviated the inflammation and colonic damage by decreasing the pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ), oxidative stress markers (MDA, and NO), and also expression levels of various inflammatory proteins (TLR4 and NF-кB) which was evidenced by immunoblotting. On the contrary, the release of GSH, SOD, HO-1, and Nrf2 were profoundly increased upon LA treatment.Subsequently, molecular docking studies showed that LA interacts with active site regions of target proteins (TLR4, NF-κB, SIRT1, and Nrf2) through hydrogen bonding and salt bridge interaction. The current findings demonstrated that LA could exhibit a protective effect in DSS-induced ulcerative colitis through its anti-inflammatory and anti-oxidant effects via inactivating the TLR4/NF-κB signaling pathway and activating the SIRT1/Nrf2 pathways.
Collapse
Affiliation(s)
- Arun N Prakash
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Neethu Prasad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Siddhi Jain
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal 700054, India
| | - Meenakshi Singh
- Centre for GMP Extraction Facility, Sponsored by Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India.
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India; Centre for GMP Extraction Facility, Sponsored by Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India.
| |
Collapse
|
3
|
Zhao X, Tian Z, Sun M, Dong D. Nrf2: a dark horse in doxorubicin-induced cardiotoxicity. Cell Death Discov 2023; 9:261. [PMID: 37495572 PMCID: PMC10372151 DOI: 10.1038/s41420-023-01565-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Being a broad-spectrum anticancer drug, doxorubicin is indispensable for clinical treatment. Unexpectedly, its cardiotoxic side effects have proven to be a formidable obstacle. Numerous studies are currently devoted to elucidating the pathological mechanisms underlying doxorubicin-induced cardiotoxicity. Nrf2 has always played a crucial role in oxidative stress, but numerous studies have demonstrated that it also plays a vital part in pathological mechanisms like cell death and inflammation. Numerous studies on the pathological mechanisms associated with doxorubicin-induced cardiotoxicity demonstrate this. Several clinical drugs, natural and synthetic compounds, as well as small molecule RNAs have been demonstrated to prevent doxorubicin-induced cardiotoxicity by activating Nrf2. Consequently, this study emphasizes the introduction of Nrf2, discusses the role of Nrf2 in doxorubicin-induced cardiotoxicity, and concludes with a summary of the therapeutic modalities targeting Nrf2 to ameliorate doxorubicin-induced cardiotoxicity, highlighting the potential value of Nrf2 in doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China
| | - Zheng Tian
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China.
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
4
|
Bradic J, Andjic M, Novakovic J, Kocovic A, Tomovic M, Petrovic A, Nikolic M, Mitrovic S, Jakovljevic V, Pecarski D. Lady's Bedstraw as a Powerful Antioxidant for Attenuation of Doxorubicin-Induced Cardiotoxicity. Antioxidants (Basel) 2023; 12:1277. [PMID: 37372007 DOI: 10.3390/antiox12061277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to examine the effects of a 14-day treatment with lady's bedstraw methanol extract on doxorubicin-induced cardiotoxicity through functional, biochemical and histological examinations. We used 24 male Wistar albino rats divided into the following groups: control (CTRL), doxorubicin (DOX), and DOX + GVE (Galium verum extract). GVE was administered orally at a dose of 50 mg/kg per day for 14 days, while a single dose of doxorubicin was injected into the DOX groups. After accomplishing treatment with GVE, cardiac function was assessed, which determined the redox state. During the autoregulation protocol on the Langendorff apparatus, ex vivo cardiodynamic parameters were measured. Our results demonstrated that the consumption of GVE effectively suppressed the disturbed response of the heart to changes in perfusion pressures caused by administration of DOX. Intake of GVE was associated with a reduction in most of the measured prooxidants in comparison to the DOX group. Moreover, this extract was capable of increasing the activity of the antioxidant defense system. Morphometric analyses showed that rat hearts treated with DOX showed more pronounced degenerative changes and necrosis compared to the CTRL group. However, GVE pretreatment seems to be able to prevent the pathological injuries caused by DOX injection via decrease in oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Makovica 69, 34000 Kragujevac, Serbia
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Makovica 69, 34000 Kragujevac, Serbia
| | - Jovana Novakovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Makovica 69, 34000 Kragujevac, Serbia
| | - Aleksandar Kocovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Makovica 69, 34000 Kragujevac, Serbia
| | - Marina Tomovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Anica Petrovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Makovica 69, 34000 Kragujevac, Serbia
| | - Marina Nikolic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Makovica 69, 34000 Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Makovica 69, 34000 Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, Moscow 119991, Russia
| | - Danijela Pecarski
- The College of Health Science, Academy of Applied Studies Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Syamprasad NP, Jain S, Rajdev B, Panda SR, Gangasani JK, Challa VS, Vaidya JR, Kundu GC, Naidu VGM. AKR1B1 inhibition using NARI-29-an Epalrestat analogue-alleviates Doxorubicin-induced cardiotoxicity via modulating Calcium/CaMKII/MuRF-1 axis. Chem Biol Interact 2023; 381:110566. [PMID: 37257577 DOI: 10.1016/j.cbi.2023.110566] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
The clinical use of doxorubicin (Dox) is narrowed due to its carbonyl reduction to doxorubicinol (Doxol) implicating resistance and cardiotoxicity. Hence, in the present study we have evaluated the cardioprotective effect of AKR1B1 (or aldose reductase, AR) inhibitor NARI-29 (epalrestat (EPS) analogue) and its effect in the Dox-modulated calcium/CaMKII/MuRF1 axis. Initially, the breast cancer patient survival associated with AKR1B1 expression was calculated using Kaplan Meier-plotter (KM-plotter). Further, breast cancer, cardiomyoblast (H9c2), and macrophage (RAW 264.7) cell lines were used to establish the in vitro combination effect of NARI-29 and Dox. To develop the cardiotoxicity model, mice were given Dox 2.5 mg/kg (i.p.), biweekly. The effect of AKR1B1 inhibition using NARI-29 on molecular and cardiac functional changes was measured using echocardiography, fluorescence-imaging, ELISA, immunoblotting, flowcytometry, High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FD) and cytokine-bead array methods. The bioinformatics data suggested that a high expression of AKR1B1 is associated with significantly low survival of breast cancer patients undergoing chemotherapy; hence, it could be a target for chemo-sensitization and chemo-prevention. Further, in vitro studies showed that AKR1B1 inhibition with NARI-29 has increased the accumulation and sensitized Dox to breast cancer cell lines. However, treatment with NARI-29 has alleviated the Dox-induced toxicity to cardiomyocytes and decreased the secretion of inflammatory cytokines from RAW 264.7 cells. In vivo studies revealed that the NARI-29 (25 and 50 mg/kg) has prevented the functional, histological, biochemical, and molecular alterations induced by Dox treatment. Moreover, we have shown that NARI-29 has prevented the carbonyl reduction of Dox to Doxol in the mouse heart, which reduced the calcium overload, prevented phosphorylation of CaMKII, and reduced the expression of MuRF1 to protect from cardiac injury and apoptosis. Hence in conclusion, AKR1B1 inhibitor NARI-29 could be used as an adjuvant therapeutic agent with Dox to prevent cardiotoxicity and synergize anti-breast cancer activity.
Collapse
Affiliation(s)
- N P Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam, 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam, 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam, 781101, India
| | - Samir Ranjan Panda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam, 781101, India
| | - Jagadeesh Kumar Gangasani
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam, 781101, India
| | - Veerabhadra Swamy Challa
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam, 781101, India
| | - Jayathirtha Rao Vaidya
- Fluoro Agro Chemicals Department and AcSIR-Ghaziabad, CSIR-Indian Institute of Chemical Technology, Uppal Road Tarnaka, Hyderabad, Telangana, 500007, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India; School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751 024, India; Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam, 781101, India.
| |
Collapse
|
6
|
Tyrosinase Inhibitory Kinetics, LC-QTOF-MS Based Chemical Profiling and Molecular Docking of Phytochemicals from Dillenia indica L. Barks. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
7
|
Far from being a simple question: The complexity between in vitro and in vivo responses from nutrients and bioactive compounds with antioxidant potential. Food Chem 2023; 402:134351. [DOI: 10.1016/j.foodchem.2022.134351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
|
8
|
Puppala ER, Yalamarthi SS, Aochenlar SL, Prasad N, Syamprasad NP, Singh M, Nanjappan SK, Ravichandiran V, Tripathi DM, Gangasani JK, Naidu VGM. Mesua assamica (King&Prain) kosterm. Bark ethanolic extract attenuates chronic restraint stress aggravated DSS-induced ulcerative colitis in mice via inhibition of NF-κB/STAT3 and activation of HO-1/Nrf2/SIRT1 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115765. [PMID: 36195303 DOI: 10.1016/j.jep.2022.115765] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mesua Assamica (King & prain) Kosterm. (MA) is an evergreen endemic medicinal tree available in Assam in India and other parts of south Asia. The bark of the plant is traditionally used for ant-malarial activity and treating fevers. It was reported to have anti-oxidant, anti-inflammatory, anti-diabetic, anti-cancer and anti-malarial properties, but no research findings have been reported about its protective activity on intestinal inflammatory disorders like ulcerative colitis (UC) yet. AIM OF THE STUDY The aim of the current study is to evaluate the anti-ulcerative property of ethanolic extract of MA (MAE) in-vitro on GloResponse™ NF-кB-RE-luc2P HEK 293 cells for its anti-oxidant and anti-inflammatory activities and in-vivo chronic restraint stress aggravated dextran sodium sulfate (DSS)-induced UC model. MATERIALS AND METHODS The chemical constituents of MAE were identified by LC-MS/MS. The in-vitro effects of MAE on GloResponse™ NF-кB-RE-luc2P HEK 293 cells stimulated with TNF-α 30 ng/ml were investigated for its potential therapeutic effects. Parameters such as body weights, behavioural, colonoscopy, colon lengths and spleen weights were measured and recorded in chronic restraint stress aggravated DSS-induced UC model in C57BL/6 mice. Histological, cytokines and immunoblotting analysis in the colon tissues were determined to prove its anti-inflammatory and anti-oxidant activities. RESULTS MAE poses significant anti-oxidant and anti-inflammatory activity in-vitro in GloResponse™ NF-кB-RE-luc2P HEK 293 cells evidenced by DCFDA and immunoflourescence assay. MAE treatment at 100 mg/kg and 200 mg/kg for 14 consecutive days has reduced Disease activity Index (DAI), splenomegaly and improved the shortened colon length and sucrose preference in mice. MAE treatment has increased the levels of anti-oxidants like GSH and reduced the levels of MDA, MPO and nitrite levels in colon tissues. Moreover, MAE has ameliorated neutrophil accumulation, mucosal and submucosal inflammation and crypt density evidenced by histopathology. Furthermore, MAE treatment significantly reduced the increased pro-inflammatory cytokines like IL-6, IL-1β and TNF-α. we found from immunoblotting that there is a concomitant decrease in protein expression of NF-κB, STAT3 signalling cascades and phosphorylation of IKBα with an increase in Nrf2, SOD2, HO-1 and SIRT1 in colon tissues. In addition, we have performed molecular docking studies confirming that phytochemicals present in the MAE have a stronger binding ability and druggability to the NF-κB, Nrf2 and SIRT1 proteins. CONCLUSIONS MAE exhibited significant anti-colitis activity on chronic restraint stress aggravated DSS-induced ulcerative colitis via regulating NF-κB/STAT3 and HO-1/Nrf2/SIRT1 signaling pathways.
Collapse
Affiliation(s)
- Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Sai Sudha Yalamarthi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Sunepjungla L Aochenlar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Neethu Prasad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - N P Syamprasad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Meenakshi Singh
- Centre for GMP Extraction Facility, Sponsored by Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, 700054, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, 700054, India
| | - Dinesh Mani Tripathi
- Liver Physiology & Vascular Biology, Department of Molecular and Cellular Medicine Institute of Liver and Biliary Sciences (ILBS), Vasant Kunj, New Delhi, 110070, India
| | - Jagadeesh Kumar Gangasani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India.
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India.
| |
Collapse
|
9
|
Majhi S, Singh L, Yasir M. Evaluation of Ameliorative Effect of Quercetin and Candesartan in Doxorubicin-Induced Cardiotoxicity. Vasc Health Risk Manag 2022; 18:857-866. [PMID: 36536768 PMCID: PMC9758906 DOI: 10.2147/vhrm.s381485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/05/2022] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Several mechanisms have been explored for the anthracycline myocardial toxicity. These are free-radical generation, myocyte apoptosis, lipid peroxidation, mitochondrial deterioration, and direct repression of muscle-specific gene expression. Adriamycin (Doxorubicin) is a potent anti-cancer agent. Adriamycin in prolonged use is fatal and generates free radicals that lead to dose-dependent cardiac toxicity. OBJECTIVE The intent of the study was to explore the protective activity of candesartan and quercetin in cardiomyopathy induced by doxorubicin in rats. METHODS To induce cardiac toxicity, rats were intraperitoneally treated with doxorubicin (06 equivalent injections of 2.5 mg/kg, i. p. at 48 hour interval for 02 consecutive weeks to achieve a cumulative dose of 15 mg/kg). Individual and combined oral treatment of candesartan (5 mg/kg/day) and quercetin (10 mg/kg/day) was administered for four weeks. RESULTS Following cardiomyopathy, heart/body weight ratio (3.526 × 10-3), serum creatine kinase (352.4±16.99 IU/L), lactate dehydrogenase (661.7±20.45 IU/L) levels were elevated in addition to altered lipid profile (TC - 118.4±4.25 mg/dL, TG - 263.3±9.99 mg/dL, VLDL - 52.66±1.99 mg/dL, LDL - 52.99±5.80 mg/dL and HDL - 12.78±0.36 mg/dL). The pre-cotreatment of candesartan and quercetin significantly restored the values to normal. The increased level of lipid peroxides (33.12±1.63 µmol/mg protein), serum troponin-T (1.82 ± 0.11 pg/mL) and nitric oxide (13.33±0.73 nmol/mg protein) level along with attenuating antioxidant profile, ie catalase, glutathione and superoxide dismutase (1.43±0.12 nmol/mg protein, 8.48±0.42 nmol/mg protein and 2.09±0.031 U/mg protein) were reversed to normal. Morphometry and histopathologic changes represented a beneficial effect of single and combination pre-cotreatment of drugs which significantly decreases adriamycin cardiac toxicity. CONCLUSION The overall result depicts more beneficial and cardioprotective effect of quercetin and candesartan combination as compared to their individual effects in doxorubicin treated animals. Therefore, this combination might be a suitable option to treat the cardiotoxic effect of doxorubicin.
Collapse
Affiliation(s)
- Sagarika Majhi
- Department of Pharmacology, I. T. S College of Pharmacy, Ghaziabad, UP, India
| | - Lubhan Singh
- Department of Pharmacology, Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, UP, India
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
10
|
Zhou P, Gao G, Zhao CC, Li JY, Peng JF, Wang SS, Song R, Shi H, Wang L. In vivo and in vitro protective effects of shengmai injection against doxorubicin-induced cardiotoxicity. PHARMACEUTICAL BIOLOGY 2022; 60:638-651. [PMID: 35298357 PMCID: PMC8933025 DOI: 10.1080/13880209.2022.2046801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Shengmai injection (SMI) has been used to treat heart failure. OBJECTIVE This study determines the molecular mechanisms of SMI against cardiotoxicity caused by doxorubicin (DOX). MATERIALS AND METHODS In vivo, DOX (15 mg/kg) was intraperitoneally injected in model, Dex (dexrazoxane), SMI-L (2.7 mL/kg), SMI-M (5.4 mL/kg), and SMI-H (10.8 mL/kg) for 7 consecutive days. Hematoxylin-eosin (HE) and Masson staining were used to evaluate histological changes, and cardiomyocyte apoptosis was identified using TdT-mediated dUTP nick-end labelling (TUNEL). Enzymatic indexes were determined. mRNA and protein expressions were analysed through RT-qPCR and Western blotting. In vitro, H9c2 cells were divided into control group, model group (2 mL 1 μM DOX), SMI group, ML385 group, and SMI + ML385 group, the intervention lasted for 24 h. mRNA and protein expressions were analysed. RESULTS SMI markedly improved cardiac pathology, decreased cardiomyocyte apoptosis, increased creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), decreased superoxide dismutase (SOD). Compared with the model group, the protein expression of nuclear factor erythroid2-related factor 2 (Nrf2) (SMI-L: 2.42-fold, SMI-M: 2.67-fold, SMI-H: 3.07-fold) and haem oxygenase-1(HO-1) (SMI-L: 1.64-fold, SMI-M: 2.01-fold, SMI-H: 2.19-fold) was increased and the protein expression of kelch-like ECH-associated protein 1 (Keap1) (SMI-L: 0.90-fold, SMI-M: 0.77-fold, SMI-H: 0.66-fold) was decreased in SMI groups and Dex group in vivo. Additionally, SMI dramatically inhibited apoptosis, decreased CK, LDH and MDA levels, and enhanced SOD activity. Our results demonstrated that SMI reduced DOX-induced cardiotoxicity via activation of the Nrf2/Keap1 signalling pathway. CONCLUSIONS This study revealed a new mechanism by which SMI alleviates DOX-induced 45 cardiomyopathy by modulating the Nrf2/Keap1 signal pathway.
Collapse
Affiliation(s)
- Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ge Gao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chun-chun Zhao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jing-ya Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jian-fei Peng
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Shu-shu Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Rui Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hui Shi
- Nursing School, Anhui University of Chinese Medicine, Hefei, China
| | - Liang Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
11
|
Puppala ER, Aochenlar SL, Shantanu PA, Ahmed S, Jannu AK, Jala A, Yalamarthi SS, Borkar RM, Tripathi DM, Naidu VGM. Perillyl alcohol attenuates chronic restraint stress aggravated dextran sulfate sodium-induced ulcerative colitis by modulating TLR4/NF-κB and JAK2/STAT3 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154415. [PMID: 36070663 DOI: 10.1016/j.phymed.2022.154415] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is the most prevalent chronic inflammatory immune bowel disease. The modernization of lifestyle accompanied by the stress to cope with the competition has resulted in a new range of complications where stress became a critical contributing factor for many diseases, including UC. Hence there is an urgent need to develop a dual role in curtailing both systemic and neuroinflammation. Perillyl alcohol (POH) is a natural essential oil found in lavender, peppermint, cherries etc and has been widely studied for its strong anti-inflammatory, antioxidant and anti-stress properties. HYPOTHESIS/PURPOSE POH regulates the various inflammatory signaling cascades involved in chronic inflammation by inhibiting farnesyltransferase enzyme. Several studies reported that POH could inhibit the phosphorylation of NF-κB, STAT3 and promote the endogenous antioxidant enzymes like Nrf2 via farnesyltransferase enzyme inhibition. Also, the effects of POH against UC is not known yet. Thus, this study aims to explore the anti-ulcerative properties of POH on stress aggravated ulcerative colitis in C57BL/6 mice. METHODS Ulcerative colitis was induced by duel exposure of chronic restraint stress (day 1 to day 28) and 2.5% dextran sulphate sodium (day8 to day14) in mice. POH treatment 100 and 200 mg/kg was administred from day14 ti day28 following oral route of administration. Disease activity index, colonoscopy, western blot analysis and histological analysis, neurotransmitter analysis and Gene expression studies were perofomerd to asses the anti-colitis effects of POH. RESULTS The treatment reversed the oxidative stress and inflammatory response by inhibiting TLR4/NF-kB pathway, and IL-6/JAK2/STAT3 pathway in both isolated mice colons and brains. The inhibition of these pathways resulted in a decrease in pro-inflammatory cytokines like IL-6, IL-1β and TNF-α. The treatment improved the physiological and histological changes with decreased ulcerations as examined by colonic endoscopy and Haematoxylin and Eosin staining. The treatment also improved the behavior response as it increased mobility time which was reduced by chronic restrained stress. This was due to increased satiety neurotransmitters like dopamine and serotonin and decreased cortisol in mice brains. CONCLUSION These results infer that POH has significant anti-colitis activity on chronic restraint stress aggravated DSS-induced UC in mice.
Collapse
Affiliation(s)
- Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Sunepjungla L Aochenlar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - P A Shantanu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Sahabuddin Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Arun Kumar Jannu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Sai Sudha Yalamarthi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Dinesh Mani Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary sciences (ILBS), New Delhi, Delhi 110070
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101.
| |
Collapse
|
12
|
Ponneganti S, Suryanarayana Murty U, Bagul C, Borkar RM, Radhakrishnanand P. Phyto-metabolomics of phlogacanthus thyrsiformis by using LC-ESI-QTOF-MS/MS and GC/QTOF-MS: Evaluation of antioxidant and enzyme inhibition potential of extracts. Food Res Int 2022; 161:111874. [DOI: 10.1016/j.foodres.2022.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
|
13
|
Puppala ER, Jain S, Saha P, Rachamalla M, Np S, Yalamarthi SS, Abubakar M, Chaudhary A, Chamundeswari D, Usn M, Gangasani JK, Naidu VGM. Perillyl alcohol attenuates rheumatoid arthritis via regulating TLR4/NF-κB and Keap1/Nrf2 signaling pathways: A comprehensive study onin-vitro and in-vivo experimental models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 97:153926. [PMID: 35030388 DOI: 10.1016/j.phymed.2022.153926] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/14/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Rheumatoid arthritis is a chronic and idiopathic autoimmune disorder. Perillyl alcohol (POH) is a monoterpene which can be extracted from widely available essential oils and is known for its strong anti-inflammatory and anti-oxidant properties. HYPOTHESIS/PURPOSE Recent studies have been proven that inhibitors of farnesyltransferase enzyme showed significant anti-arthritic activity. POH is one such natural molecule having anti-inflammatory and anti-oxidant properties by inhibiting farnesyltransferase enzyme which further down regulates NF-κB and Nrf2 via Ras/Raf/MAPK pathway. Also, the effect of POH against rheumatoid arthritis is not known yet. Hence, the present research was intended to assess the anti-arthritic potential of POH in-vitro and in-vivo. METHODS The in-vitro effects of POH on RAW 264.7 cells stimulated with LPS 1 µg/ml were investigated to its potential therapeutic effects. CFA 100 µl was intradermally administered to rats for the induction of arthritis. POH 100 mg/kg and 200 mg/kg administered topically from day 1 to day 28. Paw volumes measured, radiography analysis, anti-oxidant status, Gene expression studies, western blot analysis and histological analysis were performed to check the effects of POH. RESULTS Our in-vitro findings suggested that POH inhibits inflammation by suppressing reactive oxygen species (ROS), NF-кB and Nrf2 signaling axis. Besides this, POH also rescinded the nitrate levels, pro-inflammatory cytokine levels like IL-1β, IL-6 and TNF-α also PGE2 and COX-2 levels induced by LPS in murine macrophages. Additionally, our in-vivo results revealed that POH conscientiously alleviated CFA induced inflammation by restoring arthritis index, body weight, nitrosative, lipid peroxidation assays. Macroscopically through measuring paw volumes and X-ray, it was evidenced that POH has decreased inflammation and bone erosion. Not only in-vitro but also in-vivo, POH has abridged cytokine levels IL-1β, IL-6, and TNF-α. Histopathological evaluation presented POH treatment alleviated joint inflammation, pannus formation, and bone erosion significantly. Moreover, POH suppressed the protein expression of NF-кB, COX-2, iNOS and improved Nrf2, and SOD2 levels in paw tissues estimated by western blotting. CONCLUSION POH was effective in ameliorating LPS stimulation mediated oxidative stress and pro-inflammatory cytokines in RAW 264.7 cells in-vitro and FCA induced arthritis in rats in-vivo through its anti-inflammatory effects via regulating TLR4/NF-κB and Keap1/Nrf2 signaling pathways..
Collapse
Affiliation(s)
- Eswara Rao Puppala
- Department of Pharmacology and Toxiclology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Siddhi Jain
- Department of Pharmacology and Toxiclology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Pritam Saha
- Department of Pharmacology and Toxiclology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Syamprasad Np
- Department of Pharmacology and Toxiclology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Sai Sudha Yalamarthi
- Department of Pharmacology and Toxiclology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Md Abubakar
- Department of Pharmacology and Toxiclology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Antra Chaudhary
- Department of Pharmacology and Toxiclology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - D Chamundeswari
- Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Murty Usn
- National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Jagadeesh Kumar Gangasani
- Department of Pharmacology and Toxiclology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - V G M Naidu
- Department of Pharmacology and Toxiclology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101.
| |
Collapse
|
14
|
Cheng D, Liu P, Wang Z. Palmatine attenuates the doxorubicin-induced inflammatory response, oxidative damage and cardiomyocyte apoptosis. Int Immunopharmacol 2022; 106:108583. [PMID: 35151220 DOI: 10.1016/j.intimp.2022.108583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND As a natural isoquinoline alkaloid, palmatine (PLT) has been proven to play a protective role against a variety of cardiovascular diseases. However, little research on the effects of PLT on doxorubicin (DOX)-induced cardiotoxicity has been carried out. Thus, we investigated the potential functions of PLT in DOX-induced cardiotoxicity. In the present study, a single intraperitoneal injection of DOX (15 mg/kg) in mice was used to establish an acute cardiotoxicity model. Our study shows that PLT administration could reduce myocardial injury and improve cardiac dysfunction in DOX-treated mice. Further experiments showed that PLT administration suppressed the DOX-induced inflammatory response, oxidative damage and cardiomyocyte apoptosis in mice. Moreover, we found that the protective effect of PLT treatment was counteracted by sirtuin1 (Sirt1) knockdown. In summary, our study shows that PLT treatment can exert a protective effect against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Dongliang Cheng
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, Hubei Province 430000, China
| | - Ping Liu
- Department of Pathology, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, Hubei Province 430000, China.
| |
Collapse
|
15
|
Pawar SD, Kumar GJ, Chikkondra A, Lal B, Radhakrishnanand P, Murty US, Sahu PL, Dubey S, Soni A, Kumar P. Synthesis, characterization, method development, and validation of nor-ethylmorphine hydrochloride reference material using established analytical techniques for dope control analysis. Drug Test Anal 2022; 14:388-392. [PMID: 34652878 DOI: 10.1002/dta.3178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022]
Abstract
Ethylmorphine is permitted internationally for therapeutic purposes where morphine is not indicated across the globe. Nor-ethylmorphine a major metabolite of ethylmorphine. To differentiate the intake of morphine from ethylmorphine, nor-ethylmorphine stable reference material is desirable. There is no available commercial source and no data for reference material context for this substance. Therefore, nor-ethylmorphine HCl was synthesized and characterized, and purity and potency were assessed using nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TGA), and high-performance liquid chromatography (HPLC). Purity and potency were found to be 98.29% and 96.40%, respectively, providing a fit for purpose reference material for doping control analysis in sports.
Collapse
Affiliation(s)
- Sachin D Pawar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-Guwahati), Guwahati, Assam, India
| | - Gangasani J Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-Guwahati), Guwahati, Assam, India
| | - Aruna Chikkondra
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-Guwahati), Guwahati, Assam, India
| | - Banwari Lal
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-Guwahati), Guwahati, Assam, India
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-Guwahati), Guwahati, Assam, India
| | - Upadhyayula S Murty
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-Guwahati), Guwahati, Assam, India
| | - P L Sahu
- National Dope Testing Laboratory, New Delhi, India
| | - Sachin Dubey
- National Dope Testing Laboratory, New Delhi, India
| | - Arpit Soni
- National Dope Testing Laboratory, New Delhi, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-Guwahati), Guwahati, Assam, India
| |
Collapse
|
16
|
Susanna KJ, Gajbhiye R, Sarmah B, Pawar SD, Mehta P, Murty US, Ravichandiran V, Alexander A, Kumar P. Simultaneous Method Development and Validation of Anastrozole Along with Piperine: Degradation Studies and Degradants Characterization Using LC-QTOF-ESI-MS Along with In-silico ADMET Predictions. Curr Drug Metab 2022; 23:113-130. [PMID: 35168518 DOI: 10.2174/1389200223666220215152606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Anastrozole (ATZ) is a selective non-steroidal inhibitor widely used for the treatment of breast cancer in post-menopausal women. ATZ exerts its biological activity by inhibiting the enzyme aromatase, which is responsible for converting androgens to estrogens. Piperine (PIP), a natural alkaloid and the main component of black pepper, is used as a bioenhancer and for combating a variety of health issues ranging from upset stomach to dental problems. INTRODUCTION ATZ has been reported to have poor water solubility and less bioavailability. The novel combination of ATZ and PIP was proposed to enhance the bioavailability of both the compounds. However, there are no reported studies on the simultaneous estimation of ATZ and PIP as well as stability studies to explore their potential interactions and degradation profiling. METHOD A simple, accurate, precise, robust, sensitive, reliable, and economic analytical method for the simultaneous estimation of ATZ and PIP was developed using acetonitrile and water (60:40) as the mobile phase. Forced degradation studies and characterization of degradants were performed, and degradants were identified for molecular weight using LC-QTOF-ESI-MS; the structures of degradants were confirmed with mass accuracy measurements. The mechanism of each degradant has also been described in more detail in the manuscript. RESULTS AND CONCLUSION A total of fourteen degradants were characterized and reported for their good human oral absorption. A precise, robust, accurate, cheap, and sensitive RP-HPLC-DAD simultaneous method for the estimation of ATZ and PIP has been developed. From the future point of view, there is huge scope to conduct pharmacological, pharmacodynamic, and drug-herb interaction studies based on this fruitful outcome. All the degradants may be screened against MDR-resistant breast cancer in the future to check their potential as a drug target.
Collapse
Affiliation(s)
- K Jony Susanna
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, SilaKatamur (Halugurisuk), 781101, India
| | - Rahul Gajbhiye
- National Institute of Pharmaceutical Education and Research, Chunilal Bhawan (Adjacent to BCPL), Kolkata, West Bengal - 700054, India
| | - Bhaskar Sarmah
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, SilaKatamur (Halugurisuk), 781101, India
| | - Sachin Dattram Pawar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, SilaKatamur (Halugurisuk), 781101, India
| | - Pakhuri Mehta
- Faculty of Chemistry, University of Warsaw, Krakowskie Przedmieście, Warszawa, Poland
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, SilaKatamur (Halugurisuk), 781101, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research, Chunilal Bhawan (Adjacent to BCPL), Kolkata, West Bengal - 700054, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati, SilaKatamur (Halugurisuk), India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, SilaKatamur (Halugurisuk), 781101, India
| |
Collapse
|
17
|
Sudha Yalamarthi S, Puppala ER, Abubakar M, Saha P, Challa VS, Np S, Usn M, Gangasani JK, Naidu VGM. Perillyl alcohol inhibits keratinocyte proliferation and attenuates imiquimod-induced psoriasis like skin-inflammation by modulating NF-κB and STAT3 signaling pathways. Int Immunopharmacol 2021; 103:108436. [PMID: 34929480 DOI: 10.1016/j.intimp.2021.108436] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 01/05/2023]
Abstract
Psoriasis is a chronic inflammatory and proliferative skin disease characterized by pathological skin lesions which significantly impact the quality of life. Recent studies have been proven that inhibitors of farnesyltransferase enzyme showed significant anti-psoriatic activity. Perillyl alcohol (POH) is one such natural molecule having anti proliferative, anti-inflammatory and anti-oxidant properties by inhibiting farnesyltransferase enzyme which further down regulates NF-κB and STAT3 via Ras/Raf/MAPK pathway. Hence, in the current study we aimed to find the effect of POH on human keratinocytes (HaCat) cells in in-vitro and IMQ induced psoriatic like skin inflammation model in mice. POH significantly decreased the intracellular ROS levels and inhibited the phosphorylation of NF-κB and STAT3 in in-vitro. It was found that POH (200 mg/kg, topical application) has reduced the epidermal hyperplasia, psoriasis area and severity index (PASI) scoring; splenomegaly in imiquimod (IMQ) induced psoriatic mice. Further, POH treatment has decreased the pro-inflammatory serum cytokine levels such as IL-6, IL-12/23, TNF-α and IL-1β and also reduced the expression levels of various inflammatory proteins, COX-2, iNOS, IL-17A, IL-22, NF-кB and STAT3 evidenced by Immunoblotting studies from skin samples. The levels of endogenous antioxidants like glutathione GSH, SOD, Nrf2 were restored to normal levels upon POH treatment. POH downregulated the proteins levels of TLR7, TLR8, CyclinD1 and mRNA expression of Bcl-2 in the skin samples when compared to the IMQ group. POH has ameliorated the hyper-keratosis and acanthosis which was evidenced by histopathology. Collectively, our results suggest that POH has a promising therapeutic application for ameliorating psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Sai Sudha Yalamarthi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Md Abubakar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Pritam Saha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Veerabhadra Swamy Challa
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Syamprasad Np
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Murty Usn
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Jagadeesh Kumar Gangasani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
18
|
Hu G, Zhou X. Gallic Acid Ameliorates Atopic Dermatitis-Like Skin Inflammation Through Immune Regulation in a Mouse Model. Clin Cosmet Investig Dermatol 2021; 14:1675-1683. [PMID: 34815684 PMCID: PMC8605796 DOI: 10.2147/ccid.s327825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022]
Abstract
Background Gallic acid (GA) has an anti-inflammatory effect by regulating inflammatory molecules. This study aimed to investigate the effect of GA on atopic dermatitis (AD)-like skin inflammation. Methods 4-dinitrochlorobenzene (DNCB) was used to induce an AD-like skin inflammation model. The effect of GA on DNCB-induced inflammation was assessed by measuring the thickness and histopathological examination of the ear. Serum IgE and TNF-α levels were detected. The effect of GA on lymph nodes was determined by measuring the weights and mRNA/protein expression levels of TNF-α, IL-4, IFN-γ and IL-17. Ratio of Treg cells and Th17 cells was also analyzed. Results It was found that the thickness and pathology of the ear were significantly improved by GA in the DNCB-induced mice. Serum IgE and TNF-α levels were significantly reduced in GA-treated model mice compared to the model group. GA treatment lowered the weight of lymph node and the expression of mRNAs of TNF-α, IL-4, IFN-γ, and IL-17 of lymph node. In the ear, inflammatory factors (IL-4, IL-5, IL-17, or IL-23) showed a significant decrease in GA-treated model mice versus model mice, while the expression levels of IL-10 and TGF-β showed a great increase in GA-treated model mice. ROR-γt showed a decrease in GA-treated model group, along with an increase expression of SOCS3. Conclusion GA could ameliorate AD-like skin inflammation possibly through Th17 mediated immune regulation in a DNCB-induced mouse model.
Collapse
Affiliation(s)
- Guohong Hu
- Dermatology Hospital of Jiangxi Province, Nanchang, 330001, Jiangxi, People's Republic of China
| | - Xiansheng Zhou
- Dermatology Hospital of Jiangxi Province, Nanchang, 330001, Jiangxi, People's Republic of China
| |
Collapse
|