1
|
Duan Q, Wang M, Cui Z, Ma J. Saikosaponin D suppresses esophageal squamous cell carcinoma via the PI3K-AKT signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6059-6070. [PMID: 39638887 DOI: 10.1007/s00210-024-03676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Saikosaponin D is the saikosaponin with the highest biological activity in Bupleurum chinense DC, which has anti-tumor effects on a variety of human tumors. In this study, we aimed to explore the SSD-induced apoptosis mechanism in ESCC cells. We predicted the targets of SSD and ESCC through several databases and analyzed the intersecting targets to identify the connections and possible pathways between proteins. We evaluated the binding activity between proteins and SSD through molecular docking. Based on the network pharmacology results, different concentrations of SSD were used to treat Eca-109 alongside Te-10 cells. The CCK-8, colony formation, wound healing, transwell, apoptosis, and western blot assays were performed to verify the inhibitory SSD impact on Eca-109 and Te-10 cells. Network pharmacology predicted 186 potential targets of SSD, and 500 targets of ESCC, along with 31 common targets, 5 core protein targets, and 94 potential pathways. Depending on molecular docking findings, SSD was closely bound to five core targets. Cellular experiments showed that SSD suppressed the Eca-109 and Te-10 cell proliferation and metastasis and enhanced apoptosis via the PI3K-AKT signaling. This study suggests SSD inhibited Eca-109 and Te-10 cell proliferation and migration by inhibiting the PI3K-AKT pathway and promoting apoptosis.
Collapse
Affiliation(s)
- Qiong Duan
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China
| | - Mingxiao Wang
- Sichuan Integrative Medicine Hospital, Chengdu, 610000, China
| | - Zhenting Cui
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China
| | - Jianxin Ma
- The Affiliated Lianyungang Municipal Oriental Hospital of Xuzhou Medical University, Lianyungang, 222042, China.
| |
Collapse
|
2
|
Feng Y, Wang W, Zhang Y, Feng Y, Zhao Y, Zhang Z, Wang Y. Xiao-Chai-Hu-Tang Ameliorates Depressive Symptoms via Modulating Neuro-Endocrine Network in Chronic Unpredictable Mild Stress-Induced Mice. CNS Neurosci Ther 2025; 31:e70290. [PMID: 39981856 PMCID: PMC11843474 DOI: 10.1111/cns.70290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/11/2024] [Accepted: 12/09/2024] [Indexed: 02/22/2025] Open
Abstract
OBJECTIVE Xiao-Chai-Hu-Tang (XCHT) has been demonstrated to exert an antidepressant effect during long-term clinical practices. However, the potential mechanisms of XCHT remain unknown. This study aims to investigate the effect of XCHT on chronic unpredictable mild stress-induced mice with depressive-like behaviors and to explore the underlying mechanisms. METHODS The active compositions and potential related targets of XCHT in the brain were obtained through UPLC-Q-TOF-MS, network pharmacology, and bioinformatics analyses, verified by experimental validation. Then, the protein-protein interaction (PPI), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and molecular docking were used to predict the core targets and mechanisms of XCHT on depression. After being treated with XCHT standard decoction, based on enzyme-linked immunosorbent assay (ELISA), non-targeted metabolism, targeted LC-MS analyses, RNA-seq, quantitative RT-PCR, immunofluorescence, and western blotting were determined to clarify the mechanism of XCHT in the treatment of anxiety and depression disorder. RESULTS In total, 166 active ingredients and 525 related targets of XCHT were detected and selected from the network databases. The inflammatory response and metabolism of neurotransmitters were the main related signaling pathways predicted by KEGG enrichment analyses. Behavioral testing shows that XCHT has antidepressant effects, and untargeted metabolomic studies showed it significantly reduced levels of the neurotoxic substance quinoline acid. Combining the results of molecular docking, RNA-seq, and western blot revealed that XCHT regulated nerve regeneration via BDNF/TrkB/CREB and PI3K/AKT signaling pathways. Immunofluorescence analysis revealed that XCHT downregulated the chronic stress-induced activation of microglia and astrocytes in the hippocampus. CONCLUSION XCHT exerts antidepressant functions by modulating neuroinflammation and neuroregeneration.
Collapse
Affiliation(s)
- Ying Feng
- Department of Medical Oncology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Wenkai Wang
- Department of Medical Oncology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- The Second Clinical Medical College of Guizhou University of Traditional Chinese MedicineGuizhou ProvinceChina
| | - Yuanyuan Feng
- Department of Medical Oncology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhaozhou Zhang
- Department of Medical Oncology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yan Wang
- Department of Medical Oncology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- School of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- The Second Clinical Medical College of Guizhou University of Traditional Chinese MedicineGuizhou ProvinceChina
| |
Collapse
|
3
|
He M, Hu M, Wang T, Zuo Z, Li H, Zhao Z, Hao Y, Dai X, Wang J, Sun Y. Morinda officinalis oligosaccharides alleviate chronic unpredictable mild stress-induced depression through the BDNF/TrkB/CREB pathway and symptoms of sexual dysfunction in mice. Front Neurosci 2025; 18:1509543. [PMID: 39844852 PMCID: PMC11750790 DOI: 10.3389/fnins.2024.1509543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
Background In recent years, depression has become a global public health concern, and one of the common concomitant symptoms are diminished sexual motivation and impaired sexual performance. The aim of this study was to investigate the potential effects of Morinda officinalis oligosaccharides (MOO) on depression and its concomitant symptom, sexual dysfunction. Methods Chronic unpredictable mild stress (CUMS)-induced depression model was constructed, and the effects of MOO on depression and sexual abilities were evaluated. Results The results revealed that MOO was able to alleviate CUMS-induced depression-like behavior in mice, to inhibit hippocampal neuron apoptosis, to reverse monoamine neurotransmitter imbalance, increase Brain-derived neurotrophic factor (BDNF) expression levels in the hippocampus, to modulate the composition and distribution of gut microbiota, and to increase the abundance of probiotics after continuous gavage of MOO for 28 days. MOO further confirmed that sexual dysfunction is closely related to the development of depression by improving the lack of sexual motivation and low sexual performance in CUMS-induced depressed mice, modulating the disruption of sex hormone secretion in serum, and alleviating sperm morphology and functional defects in the epididymis. Conclusion These findings on MOO provide a basis for exploring its antidepressant mechanism, its use to improve hypogonadotropic symptoms, and for future development of new antidepressant drug to improves hypogonadotropic symptoms.
Collapse
Affiliation(s)
- Mengjie He
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| | - Mengying Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tingqiao Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| | - Zeping Zuo
- Beijing Tongrentang Company Limited, Beijing, China, China
| | - Hongkai Li
- Beijing Tongrentang Company Limited, Beijing, China, China
| | - Zhiwei Zhao
- Beijing Tongrentang Company Limited, Beijing, China, China
| | - Yunwen Hao
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| | - Jianfang Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| |
Collapse
|
4
|
Ding W, Wang L, Li L, Li H, Wu J, Zhang J, Wang J. Pathogenesis of depression and the potential for traditional Chinese medicine treatment. Front Pharmacol 2024; 15:1407869. [PMID: 38983910 PMCID: PMC11231087 DOI: 10.3389/fphar.2024.1407869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Depression is a prevalent mental disorder that significantly diminishes quality of life and longevity, ranking as one of the primary causes of disability globally. Contemporary research has explored the potential pathogenesis of depression from various angles, encompassing genetics, neurotransmitter systems, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, inflammation, and intestinal flora, among other contributing factors. In addition, conventional chemical medications are plagued by delayed onset of action, persistent adverse effects, and restricted therapeutic efficacy. In light of these limitations, the therapeutic approach of traditional Chinese medicine (TCM) has gained increasing recognition for its superior effectiveness. Numerous pharmacological and clinical studies have substantiated TCM's capacity to mitigate depressive symptoms through diverse mechanisms. This article attempts to summarize the mechanisms involved in the pathogenesis of depression and to describe the characteristics of herbal medicines (including compounded formulas and active ingredients) for the treatment of depression. It further evaluates their effectiveness by correlating with the multifaceted pathogenesis of depression, thereby furnishing a reference for future research endeavors.
Collapse
Affiliation(s)
- Weixing Ding
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Lulu Wang
- School of Medicine, Changchun Sci-Tech University, Changchun, China
| | - Lei Li
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Hongyan Li
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Jianfa Wu
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
| | - Jing Zhang
- College of Traditional Chinese Medicinal Material, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun, China
| | - Jing Wang
- Jilin Province Faw General Hospital, Changchun, China
| |
Collapse
|
5
|
Ran S, Peng R, Guo Q, Cui J, Chen G, Wang Z. Bupleurum in Treatment of Depression Disorder: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:512. [PMID: 38675471 PMCID: PMC11054835 DOI: 10.3390/ph17040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of depression has been steadily rising in recent years, making it one of the most prevalent mental illnesses. As the pursuit of novel antidepressant drugs captivates the pharmaceutical field, the therapeutic efficacy of Traditional Chinese Medicine (TCM) has been widely explored. Chaihu (Bupleurum) has been traditionally used for liver conditions such as hepatitis, liver inflammation, liver fibrosis, and liver cancer. It is believed to have hepatoprotective effects, promoting liver cell regeneration and protecting against liver damage. In addition, Bupleurum has also been used as a Jie Yu (depression-relieving) medicine in China, Japan, Republic of Korea, and other Asian countries for centuries. This review article aims to summarize the research conducted on the antidepressant properties and mechanisms of Bupleurum, as well as discuss the potential of TCM formulas containing Bupleurum. This review highlights various antidepressant ingredients isolated from Bupleurum, including saikosaponin A, saikosaponin D, rutin, puerarin, and quercetin, each with distinct mechanisms of action. Additionally, Chinese herb prescriptions and extracts containing Bupleurum, such as Chaihu Shugansan, Xiaoyaosan, and Sinisan, are also included due to their demonstrated antidepressant effects. This review reveals that these Bupleurum compounds exhibit antidepressant effects through the regulation of neurotransmitter mechanisms (such as 5-HT and DA), the NMDA (N-methyl-D-aspartate) system, brain-derived neurotrophic factor (BDNF), and other intracellular signaling pathways. Collectively, this comprehensive review provides insights into the multiple applications of Bupleurum in the treatment of depression and highlights its potential as an alternative or complementary approach to traditional therapies. However, it is essential to consider the potential adverse effects and clinical restrictions of Bupleurum despite its promising potential. Further research is needed to elucidate its specific mechanisms of action and evaluate its effectiveness in human subjects.
Collapse
Affiliation(s)
| | | | | | | | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (S.R.); (R.P.); (Q.G.); (J.C.)
| | - Ziying Wang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (S.R.); (R.P.); (Q.G.); (J.C.)
| |
Collapse
|
6
|
Liu JY, Shen YL, Zhu JY, Yang DD. Saikosaponin D mitigate pilocarpine-induced astrocyte injury by regulating the NLRP3/caspase-1 signaling pathway. Chem Biol Drug Des 2024; 103:e14481. [PMID: 38458969 DOI: 10.1111/cbdd.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 03/10/2024]
Abstract
Studies have shown that saikosaponin D (SSD) has favorable neurotherapeutic effects. Therefore, the objective of this study was to explore the efficacy and possible molecular mechanisms of SSD on pilocarpine (PP)-induced astrocyte injury. Primary astrocytes were isolated from juvenile rats and identified using immunofluorescence. The cells were treated with PP and/or SSD for 6 h and 12 h, respectively, followed by measurement of their viability through 3-(4,5-dimethylthiazol)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Next, quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the expression levels of Glial fibrillary acidic protein (GFAP), C3, S100 calcium binding protein A10 (S100a10), pentraxin 3 (Ptx3), toll-like receptor 4 (TLR4), and RAG in astrocytes after different treatments. Enzyme-linked immunosorbent assay and biochemical tests were utilized to evaluate the level of inflammatory factors [interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α)] secreted by cells and the content of oxidative stress-related factors (malondialdehyde [MDA] and glutathione [GSH]) or enzyme activity (catalase [CAT] and glutathione peroxidase [GPX]) in cells. The JC-1 mitochondrial membrane potential (MMP) fluorescence probe was used to measure the MMP in astrocytes. Additionally, western blot was applied to test the expression of proteins related to the nod-like receptor protein 3 (NLRP3)/caspase-1 signaling pathway. PP treatment (1 mM) induced cell injury by significantly reducing the viability of astrocytes and expression of cellular markers. SSD treatment (4 μM) had no toxicity to astrocytes. Besides, SSD (4 μM) treatment could significantly up-regulate the cell viability and marker expression of PP-induced astrocytes. Furthermore, SSD could be employed to inhibit inflammation (reduce IL-1β, IL-6, and TNF-α levels) and oxidative stress (decrease MDA level, elevate GSH level, the activity of CAT and GPX), and ameliorate mitochondrial dysfunction (upregulate JC-1 ratio) in PP-induced astrocytes. Moreover, further mechanism exploration revealed that SSD treatment significantly reduced the activity of the NLRP3/caspase-1 signaling pathway activated by PP induction. SSD increased cell viability, inhibited inflammation and oxidative stress response, and ameliorated mitochondrial dysfunction in PP-induced astrocyte injury model, thus playing a neuroprotective role. The mechanism of SSD may be related to the inhibition of the NLRP3/caspase-1 inflammasome.
Collapse
Affiliation(s)
- Jun-Yan Liu
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Yu-Ling Shen
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Jing-Yi Zhu
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, Sichuan, China
| | - Dong-Dong Yang
- Department of Neurology, Hospital of Chengdu University of TCM, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Xiang Q, Liu Y, Chen L. Saikosaponin d (SSD) alleviates diabetic peripheral neuropathy by regulating the AQP1/RhoA/ROCK signaling in streptozotocin-induced diabetic rats. Acta Diabetol 2023; 60:805-815. [PMID: 36920548 DOI: 10.1007/s00592-023-02060-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
AIMS Diabetic peripheral neuropathy (DPN) is one of the most important complications of diabetes with a poor prognosis. Saikosaponin d (SSD) is a triterpenoid saponin isolated from Radix Bupleuri that has multiple pharmacological activities. However, whether SSD affects DPN is unclarified. METHODS Sprague Dawley rats were treated with streptozotocin (STZ) and high-fat diet (HFD) to induce DPN, in the presence or absence of SSD, with or without transfection of lentivirus vectors carrying siRNA targeting aquaporin 1 (si-AQP1). The body weight, plasma glucose levels, mechanical and thermal hyperalgesia, and nerve conductive velocity (NCV) of rats were measured. Hematoxylin-Eosin staining was used for histopathological observation of sciatic nerves. RT-qPCR and western blotting were utilized for measuring expression levels of AQP1 and ras homolog family member A/Rho-associated protein kinase (RhoA/ROCK) signaling pathway-related markers in dorsal root ganglion (DRG) of rats. RESULTS SSD increased the body weight, decreased plasma glucose levels, attenuated mechanical and thermal hyperalgesia, enhanced NCV and reduced proinflammatory cytokine levels in DPN rats. AQP1 displayed a high level in DPN rats and SSD treatment repressed the expression of AQP1. SSD enhanced the protective effect of AQP1 knockdown on the pathological changes of DPN. AQP1 depletion suppressed the activation of RhoA/ROCK signaling pathway in DPN rats. CONCLUSION SSD alleviates STZ/HFD-induced DPN in rats by inhibiting the AQP1/RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Qingwei Xiang
- Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, No. 4, Huayuan Mountain, Wuchang District, Wuhan, 430061, Hubei, China.
| | - Yu Liu
- Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, No. 4, Huayuan Mountain, Wuchang District, Wuhan, 430061, Hubei, China
| | - Li Chen
- Department of Obstetrics and Gynecology, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China
| |
Collapse
|
8
|
Zhao M, Xiao L, Linghu KG, Zhao G, Chen Q, Shen L, Dar P, Chen M, Hu Y, Zhang J, Yu H. Comprehensive comparison on the anti-inflammation and GC-MS-based metabolomics discrimination between Bupleuri chinense DC. and B. scorzonerifolium Willd. Front Pharmacol 2022; 13:1005011. [PMID: 36188603 PMCID: PMC9521629 DOI: 10.3389/fphar.2022.1005011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Bupleuri Radix (BR) is a traditional Chinese medicine and widely used for cold and fever, influenza, inflammation, hepatitis and menstrual diseases. Two authentic medicinal plants of Bupleuri chinense DC. (Beichaihu, BCH) and B. scorzonerifolium Willd. (Nanchiahu, NCH) are recommended by the current Chinese Pharmacopoeia for BR. In the present study, the comparative investigations on the anti-inflammatory effects and gas chromatography-mass spectrometry (GC-MS)-based metabolomics for the species discrimination of BCH and NCH were conducted and reported. The in vitro evaluations indicated that the supercritical fluid extracts (SFEs) (IC50 of 6.39 ± 0.52 and 1.32 ± 0.05 mg (herb)/mL for BCH and NCH) were determined to be more potent than those of the hydro-distillation extracts (HDEs) (IC50 of 203.90 ± 8.08 and 32.32 ± 2.27 mg (herb)/mL for BCH and NCH) against LPS-induced inflammation in RAW264.7 macrophages. The higher anti-inflammatory effects of NCH were associated to its different chemical compositions to the BCH as characterized by the GC-MS analysis. Furthermore, based on the metabolomics and deep chemometric approaches, a minimum combination containing 15 chemical markers was optimized from the identified components and successfully applied for the species discrimination of BCH and NCH. This study not only helps to comparative understand BCH and NCH both in phytochemistry and pharmacology, but also provides the potential chemical markers for improvement of methods for the quality control of BCH and NCH.
Collapse
Affiliation(s)
- Mingming Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Linxuan Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Ke-Gang Linghu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Guanding Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Qiling Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Liyu Shen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Parsa Dar
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Yuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jinming Zhang, ; Hua Yu,
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
- *Correspondence: Jinming Zhang, ; Hua Yu,
| |
Collapse
|
9
|
Hu L, Wang J, Zhao X, Cai D. Mechanism of saikogenin G against major depressive disorder determined by network pharmacology. Medicine (Baltimore) 2022; 101:e30193. [PMID: 36042622 PMCID: PMC9410695 DOI: 10.1097/md.0000000000030193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Many classic decoctions of Chinese medicine including Radix Bupleuri are used to treat major depressive disorder (MDD). Saikosaponin D is a representative bioactive ingredient discovered in Radix Bupleuri. The mechanism of saikogenin G (SGG) as a metabolite in MDD remains unclear to date. This study aims to elucidate the mechanism of SGG in treating MDD with network pharmacology. We evaluated the drug likeness of SGG with SwissADME web tool and predicted its targets using the SwissTargetPrediction and PharmMapper. MDD-related targets were identified from the following databases: DisGeNET, DrugBank, Online Mendelian Inheritance in Man, and GeneCards. The common targets of SGG and MDD were imported to the STRING11.0 database, and then a protein-protein interaction network was constructed. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment were analyzed with DAVID 6.8 database. The molecular weight of SGG was 472.7 g/mol, the topological polar surface area was 69.92 A2 <140 A2, the octanol/water partition coefficient (Consensus LogP0/W) was 4.80, the rotatable bond was 1, the hydrogen bond donors was 3, and the hydrogen bond acceptors was 4. A total of 322 targets of SGG were obtained and there were 1724 MDD-related targets. A total of 78 overlapping genes were selected as targets of MDD treatment including albumin, insulin-like growth factor I, mitogen-activated protein kinase 1, proto-oncogene tyrosine-protein kinase Src, and epidermal growth factor receptor. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that proteoglycans in cancer, pathways in cancer, prostate cancer, hypoxia-inducible factor-1, central carbon metabolism in cancer, estrogen, PI3K-Akt, ErbB, Rap1, and prolactin signaling pathways played an important role(P < .0001). This study showed that SGG exhibits good drug-like properties and elucidated the potential mechanisms of SGG in treating MDD with regulating inflammation, energy metabolism, monoamine neurotransmitters, neuroplasticity, phosphocreatine-creatine kinase circuits, and so on.
Collapse
Affiliation(s)
- Lili Hu
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
- *Correspondence: Lili Hu, College of Basic Medicine, Shanxi University of Chinese Medicine, No. 121 DaXue Street, Jinzhong 030619, China (e-mail: )
| | - Jue Wang
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoge Zhao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, China
| | - Donghui Cai
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
10
|
Petković A, Chaudhury D. Encore: Behavioural animal models of stress, depression and mood disorders. Front Behav Neurosci 2022; 16:931964. [PMID: 36004305 PMCID: PMC9395206 DOI: 10.3389/fnbeh.2022.931964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Animal studies over the past two decades have led to extensive advances in our understanding of pathogenesis of depressive and mood disorders. Among these, rodent behavioural models proved to be of highest informative value. Here, we present a comprehensive overview of the most popular behavioural models with respect to physiological, circuit, and molecular biological correlates. Behavioural stress paradigms and behavioural tests are assessed in terms of outcomes, strengths, weaknesses, and translational value, especially in the domain of pharmacological studies.
Collapse
Affiliation(s)
| | - Dipesh Chaudhury
- Laboratory of Neural Systems and Behaviour, Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Wang Z, Zheng R, Wang X, Huang X, Huang J, Gu C, He Y, Wu S, Chen J, Yang Q, Qiu P. Aerobic Exercise Improves Methamphetamine-Induced Olfactory Dysfunction Through α-Synuclein Intervention in Male Mice. Front Mol Neurosci 2022; 15:884790. [PMID: 35586307 PMCID: PMC9108672 DOI: 10.3389/fnmol.2022.884790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
Methamphetamine (Meth) is a predominantly abused neurostimulant, and its abuse is often associated with multiple neurological symptoms. Olfaction, the sense of smell, is a highly neurotransmission-dependent physiological process; however, the effect of Meth on olfactory function and its underlying mechanisms remain largely unknown. This study aimed to explore the impact of Meth abuse on the olfactory system and the potential mechanisms. Chronic Meth abuse was induced by daily administration of Meth in male mice for 4 weeks, and we then systematically examined olfactory performance. Behavioral tests found that Meth-treated animals showed increased olfactory threshold, decreased olfactory sensitivity, reduced olfactory-dependent discrimination, and difficulty in seeking buried food. Notably, the increased deposition of α-synuclein (α-syn) in the olfactory bulb was detected. Adeno-associated virus (AAV)-mediated α-syn intervention therapy in the olfactory bulb significantly alleviated Meth-induced olfactory function impairment, and 8 weeks of aerobic exercise showed similar effects through the same principle of α-syn intervention. Notably, exercise-mediated reduction of α-syn inhibited abnormal firing activity and restored the inhibitory synaptic regulation of mitral cells in the olfactory bulb. These findings suggest the involvement of α-syn in the pathogenic mechanisms of Meth-induced olfactory dysfunction and shed light on the possible therapeutic applications of aerobic exercise in Meth-induced olfactory dysfunction.
Collapse
|
12
|
Huang P, Wei S, Luo M, Tang Z, Lin Q, Wang X, Luo M, He Y, Wang C, Wei D, Xia C, Xu J. MiR-139-5p has an antidepressant-like effect by targeting phosphodiesterase 4D to activate the cAMP/PKA/CREB signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1594. [PMID: 34790800 PMCID: PMC8576692 DOI: 10.21037/atm-21-5149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022]
Abstract
Background Phosphodiesterase 4D (PDE4D) inhibitor is commonly used to treat depression, but side effects seriously decrease its efficacy. PDE4D was a downstream target mRNA of miR-139-5p. Therefore, we examined the effects of hippocampal miR-139-5p gain- and loss-of-function on depression-like behaviors, the expression level of PDE4D, and hippocampus neurogenesis. Methods Bioinformatic analyses were carried out to to screen differential genes. Quantitative real-time polymerase chain reaction (qRT-PCR) and luciferase reporter assay were used to confirm the relationship between miR-139-5p and PDE4D. MiR-139-5p mimics, miR-139-5p inhibitor, or miR-NC were used to explore the function of miR-139-5p in HT-22 cells. We further explored the role of miR-139-5p in vivo using AAV-injection. Elisa, western blotting, and fluorescence in situ hybridization (FISH) were used to detect the expression of miR-139-5p and PDE4D in CRC tissues. Results Here, we showed that PDE4D messenger RNA (mRNA) was a direct target of microRNA (miR)-139-5p, which was downregulated in a chronic ultra-mild stress (CUMS)-induced depression mouse model. Moreover, in experiments in vitro, miR-139-5p mimic repressed PDE4D expression in HT-22 cells, but promoted phosphorylated cyclic-AMP response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) expression. Interestingly, adeno-associated virus (AAV)-miR-139-5p downregulated susceptibility to stress-induced depression-like behaviors in mice. AAV-miR-139-5p suppressed PDE4D in mouse hippocampal cells, increasing expression level of cyclic adenosine monophosphate (cAMP), p-CREB, and BDNF, and stimulating mouse hippocampal neurogenesis. Conclusions Our findings suggested that miR-139-5p acted like an antidepressant by targeting PDE4D, thereby regulating the cAMP/protein kinase A (PKA)/CREB/BDNF pathway to improve depression.
Collapse
Affiliation(s)
- Peng Huang
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Songren Wei
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Luo
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhuohong Tang
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Qingmei Lin
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Xing Wang
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Mi Luo
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Yanjun He
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Chuan Wang
- Department of Biliary Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Dezhan Wei
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China
| | - Chenglai Xia
- South Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|