1
|
Huang L, Luo Y, Kuai L, Zhang X, Zhang Y, Yang Z, Fei X, Sun J, Luo Y, Zhao Y, Xue T, Yin W, Chang J, Song J, Li Y, Li B, Li Y. An approach for psoriasis of microneedle patch simultaneously targeting multiple inflammatory cytokines and relapse related T cells. Biomaterials 2025; 318:123120. [PMID: 39923540 DOI: 10.1016/j.biomaterials.2025.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
Psoriasis is a chronic inflammatory skin disorder affecting approximately 125 million people globally. Topical medications are a cornerstone of current treatment protocols; however, their efficacy in mitigating inflammation is constrained by their predominantly single-target mechanisms. A significant challenge is the lack of pharmaceuticals specifically targeting CD8+ tissue resident memory T (CD8+ TRM) cells, which are the targets in psoriasis relapse. Consequently, relapse rates can soar to 90% post-treatment discontinuation. In this study, we successfully screened a specific macrophage membrane capable of targeting multiple inflammatory factors at psoriatic sites. This membrane was coextruded with etomoxir, a compound that targets CD8+ TRM cells. To enhance drug retention and penetration, we employed a delivery strategy involving PDA and microneedles, resulting in the synthesis of PDA-Etomoxir-Macrophage membrane@microneedle (PEM@m). In vivo, PEM@m exhibited superior efficacy in alleviating psoriasis symptoms and preventing relapse compared to the clinical drug calcipotriol (Cal). Mechanistically, PEM@m broadly inhibits inflammatory signals, and its reduction of CD8+ TRM cells can be associated with decreased activity in the pentose phosphate pathway (PPP). Our study offers a novel and promising approach for the definitive treatment of psoriasis.
Collapse
Affiliation(s)
- Li Huang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaoyou Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Zichen Yang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiuyuan Sun
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Tingting Xue
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Weimin Yin
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiao Chang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Dermatology, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yan Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
2
|
Jo HG, Seo J, Jang B, Kim Y, Kim H, Baek E, Park SY, Lee D. Integrating network pharmacology and experimental validation to advance psoriasis treatment: Multi-target mechanistic elucidation of medicinal herbs and natural compounds. Autoimmun Rev 2025; 24:103836. [PMID: 40381707 DOI: 10.1016/j.autrev.2025.103836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Psoriasis, a chronic immune-mediated inflammatory disease (IMID), presents significant therapeutic challenges, necessitating exploration of alternative treatments like medicinal herbs (MH) and natural compounds (NC). Network pharmacology offers predictive insights, yet a systematic evaluation connecting these predictions with experimental validation outcomes specifically for MH/NC in psoriasis is lacking. This review specifically fills this gap by comprehensively integrating and analyzing studies that combine network pharmacology predictions with subsequent experimental validation. METHODS A systematic literature search identified 44 studies employing both network pharmacology and in vitro or in vivo experimental methods for MH/NC targeting psoriasis. This review provides a systematic analysis of the specific network pharmacology platforms, predicted targets/pathways, in vivo and in vitro experimental validation models, and key biomarker changes reported across these integrated studies. Methodological approaches and the consistency between predictions and empirical findings were critically evaluated. RESULTS This first comprehensive analysis reveals that network pharmacology predictions regarding MH/NC mechanisms in psoriasis are frequently corroborated by experimental data. Key signaling pathways, including the IL-17/IL-23 axis, MAPK, and NF-κB, emerge as consistently predicted and experimentally validated targets across diverse natural products. The review maps the specific network pharmacology tools and experimental designs utilized, establishing a methodological benchmark for the field and highlighting the successful synergy between computational prediction and empirical verification. CONCLUSION By systematically integrating and critically assessing the linkage between network pharmacology predictions and experimental validation for MH/NC in psoriasis, this review offers a unique clarification of the current, validated state-of-the-art, differentiating it from previous literature. It confirms network pharmacology's predictive power for natural products, identifies robustly validated therapeutic pathways, and provides a crucial benchmark, offering data-driven insights for future research into artificial intelligence-enhanced natural product-based therapies for psoriasis and other IMIDs.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; Naturalis Inc., 6 Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea.
| | - Jihye Seo
- Siho Korean Medicine Clinic, 407, Dongtansillicheon-ro, Hwaseong-si 18484, Republic of Korea
| | - Boyun Jang
- IntegroMediLab Co., Ltd., 143, Magokjungang-ro, Gangseo-gu, Seoul 07797, Republic of Korea
| | - Youngsoo Kim
- IntegroMediLab Co., Ltd., 143, Magokjungang-ro, Gangseo-gu, Seoul 07797, Republic of Korea
| | - Hyehwa Kim
- KC Korean Medicine Hospital, 12, Haeol 2-gil, Paju-si 10865, Republic of Korea
| | - Eunhye Baek
- RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soo-Yeon Park
- Department of Ophthalmology, Otolaryngology & Dermatology, College of Korean Medicine, Dongshin University, 185 Geonjae-ro, Naju-si 58245, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea.
| |
Collapse
|
3
|
Ali BF, Abu-Raghif AR, Ridha-Salman H, Al-Athari AJH. Vildagliptin topical ointment: an effective treatment for imiquimod-induced psoriasis in mice. J Mol Histol 2025; 56:143. [PMID: 40285915 DOI: 10.1007/s10735-025-10416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Psoriasis is a chronic immune-related dermatosis characterized by inflamed, thickened, brownish-red, peeling skin patches. Vildagliptin is an anti-diabetic drug with novel anti-inflammatory, anti-oxidative, and anti-proliferative activities. This study aimed to assess the anti-psoriatic activity of topical vildagliptin. 40 Swiss albino mice were sorted into five groups, each with 8 animals. The control group obtained no treatment. The induction group obtained imiquimod cream (5%) at a dose of 62.5 mg per day. The vehicle group obtained imiquimod (as did the induction group), accompanied by topical vehicle application. The clobetasol group obtained imiquimod cream (as did the induction group), and two hours later, clobetasol ointment (0.05%) was administered. The vildagliptin group obtained imiquimod (as in the induction group), followed by topical vildagliptin ointment (3%), two hours after induction. The experiment lasts for 8 consecutive days. Evaluations were conducted on the results of biochemical indicators, histological assessments, and clinical observations. Vildagliptin administered topically effectively corrected psoriatic histological irregularities, improved the psoriasis-like skin lesions such as erythema, flacking, and acanthosis, and attenuated the imiquimod-provoked elevations of PASI and Baker's score. Further, overexpression of inflammatory markers (TNF-α, IL-17 A, IL-23, and IL-22), angiogenic markers (VEGF), oxidative-stress components (MDA and SOD), and proliferative factors (Ki-67) were dramatically mitigated by vildagliptin treatment. Topical vildagliptin has profound anti-psoriatic effects.
Collapse
Affiliation(s)
- Basma Farooq Ali
- College of Medicine, Department of Pharmacology, Al-Nahrain University, Baghdad, Iraq.
| | | | | | | |
Collapse
|
4
|
Gao C, Cai Y, Wu X, Song J, Zheng Q, Wang M, Luo Y, Luo Y, Fei X, Zhang Y, Yang Y, Kuai L, Ru Y, Hong S, Tian N, Li B, Zhang Z. CRISPR/Cas9-Mediated Knockout and Overexpression Studies Unveil the Role of PD-L1 in Immune Modulation in a Psoriasis-like Mouse Model. Inflammation 2025:10.1007/s10753-025-02281-w. [PMID: 40178656 DOI: 10.1007/s10753-025-02281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/23/2025] [Accepted: 03/01/2025] [Indexed: 04/05/2025]
Abstract
The role of programmed death-ligand 1 (PD-L1), an essential immune checkpoint protein, has garnered considerable interest in recent years due to its influence on immune responses, particularly inhibiting immature Th cells into Th17 cells. This study aims to examine the effect of PD-L1 on psoriasis progress, which is the condition characterized by an immune response dominated by Th17 cells. We constructed the PD-L1 knockout (PD-L1KO) and overexpression (PD-L1OE) mice through CRISPR/Cas9 technology to assess the impact of PD-L1 in an imiquimod (IMQ)-induced psoriasis-like mouse model. In comparison to IMQ, the ear thickness exhibited a reduction, the PASI score decreased, and HE sections revealed a thinning of the epidermal spines in PD-L1OE mice. PD-L1KO mice, however, showed opposite results. Moreover, immunohistochemical assessments of the skin lesion tissues demonstrated heightened epidermal proliferation and inflammatory infiltration in the PD-L1KO group, accompanied by elevated tissue expression of proliferating cell nuclear antigen (PCNA), Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p50, and F4/80 in comparison to IMQ-treated and WT mice. The absence of PD-L1 in IMQ-induced mice was found to intensify the immune response, as evidenced by heightened expression of phosphorylated signal transducers and activators of transcription 3 (pSTAT3) and CD3 in the affected tissues compared to both IMQ-treated and WT mice. According to our findings, PD-L1 plays important roles in inhibiting inflammation, proliferation, and regulating immune responses. Targeting PD-L1 may present a promising therapeutic strategy for the management of psoriasis.
Collapse
Grants
- 20224Y0373, 20234Y0269, 20234Y0075 Shanghai Municipal Health Commission Health Industry Clinical Research Special Project
- No. 82174383, 82204954, 82304819, 82305232, 82374458, W2433194 Shanghai Municipal Health Commission Health Industry Clinical Research Special Project
- No. 82174383, 82204954, 82304819, 82305232, 82374458, W2433194 Shanghai Municipal Health Commission Health Industry Clinical Research Special Project
- No. 82174383, 82204954, 82304819, 82305232, 82374458, W2433194 Shanghai Municipal Health Commission Health Industry Clinical Research Special Project
- No. 82174383, 82204954, 82304819, 82305232, 82374458, W2433194 Shanghai Municipal Health Commission Health Industry Clinical Research Special Project
- No. 82174383, 82204954, 82304819, 82305232, 82374458, W2433194 Shanghai Municipal Health Commission Health Industry Clinical Research Special Project
- No. 82174383, 82204954, 82304819, 82305232, 82374458, W2433194 Shanghai Municipal Health Commission Health Industry Clinical Research Special Project
- No. 82174383, 82204954, 82304819, 82305232, 82374458, W2433194 Shanghai Municipal Health Commission Health Industry Clinical Research Special Project
- 22YF1441300 Shanghai Science and Technology Development Funds (Sailing Program)
- lczh2021-05, lcfy2022-04, lczh2023-01 Clinical Transformation Incubation Program in Hospital
- lczh2021-05, lcfy2022-04, lczh2023-01 Clinical Transformation Incubation Program in Hospital
- lczh2021-05, lcfy2022-04, lczh2023-01 Clinical Transformation Incubation Program in Hospital
- zyyzdxk-2023065 Evidence-based dermatology base sponsored by State Administration of Traditional Chinese Medicine, High-level Chinese Medicine Key Discipline Construction Project (Integrative Chinese and Western Medicine Clinic) of National Administration of TCM
- zyyzdxk-2023065 Evidence-based dermatology base sponsored by State Administration of Traditional Chinese Medicine, High-level Chinese Medicine Key Discipline Construction Project (Integrative Chinese and Western Medicine Clinic) of National Administration of TCM
- 2023ZZ02017 Shanghai Dermatology Research Center
- SHDC2023CRW009 Shanghai Dermatology Hospital Demonstration Research Ward Project
- shzyyzdxk-2024104 Shanghai Key Discipline Construction Project of Traditional Chinese Medicine
- 2024-QNRC2-B04 Youth Medical Talents-Specialist Program of Shanghai "Rising Stars of Medical Talents" Youth Development Program, and Youth Talent Promotion Project of China Association of Traditional Chinese Medicine (2024-2026) Category B
Collapse
Affiliation(s)
- Chunjie Gao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yunxi Cai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xinxin Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Qi Zheng
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Mingxia Wang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yang Yang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yi Ru
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Seokgyeong Hong
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Na Tian
- Department of Rheumatology and Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China.
- Institute of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Institute of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
5
|
Ridha-Salman H, Al-Zubaidy AA, Abbas AH, Hassan DM, Malik SA. The alleviative effects of canagliflozin on imiquimod-induced mouse model of psoriasis-like inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2695-2715. [PMID: 39254877 DOI: 10.1007/s00210-024-03406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Psoriasis is a life-long immune-mediated dermatosis with thickened, reddish, and flaky skin patches. Canagliflozin is a gliflozin antidiabetic with non-classical remarkable antioxidative, anti-inflammatory, anti-proliferative, and immune-modulating effects. The aim of this study is to examine the probable effects of topical canagliflozin on a mouse model of imiquimod-provoked psoriasis-like dermatitis. The study evaluated 20 Swiss white mice, sorted haphazardly into 4 groups of 5 animals each. Every mouse, with the exception of the control group, had imiquimod applied topically to their shaved backs for 7 days. The control group included healthy mice that were not given any treatment. Mice in the other three groups underwent topical treatment with vehicle (induction group), 0.05% clobetasol propionate ointment (clobetasol group), or 4% canagliflozin emulgel (canagliflozin 4% group) on exactly the same day as imiquimod cream was administered. Topical canagliflozin markedly lowered the intensity of imiquimod-provoked psoriasis eruptions, featuring redness, glossy-white scales, and acanthosis, while also correcting histopathological aberrations. Canagliflozin administration to imiquimod-exposed animals resulted in significantly decreased cutaneous concentrations of inflammatory mediators such as IL-8, IL-17, IL-23, and TNF-α, with raised levels of IL-10. Canagliflozin further lowered proliferative factors involving Ki-67 and PCNA, diminished oxidative indicators such as MDA and MPO, and augmented the activity of antioxidant markers, notably SOD and CAT. Canagliflozin might alleviate the imiquimod-induced animal model of psoriasis, probably thanks to its profound anti-inflammatory, antioxidant, antiangiogenic, and antiproliferative activities.
Collapse
Affiliation(s)
| | - Adeeb Ahmed Al-Zubaidy
- Department of Pharmacology, College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Alaa Hamza Abbas
- College of Pharmacy, Al-Mustaqbal University, Babylon, Hillah, 51001, Iraq
| | - Dhuha M Hassan
- Pedodontic, Orthodontic and Preventive Department, College of Dentistry, Babylon University, Babylon, Iraq
| | - Samir A Malik
- College of Pharmacy, Al-Mustaqbal University, Babylon, Hillah, 51001, Iraq
| |
Collapse
|
6
|
Ma X, Zhao H, Song JK, Zhang Z, Gao CJ, Luo Y, Ding XJ, Xue TT, Zhang Y, Zhang MJ, Zhou M, Wang RP, Kuai L, Li B. Retracing from Outcomes to Causes: NRF2-Driven GSTA4 Transcriptional Regulation Controls Chronic Inflammation and Oxidative Stress in Atopic Dermatitis Recurrence. J Invest Dermatol 2025; 145:334-345.e11. [PMID: 38879155 DOI: 10.1016/j.jid.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 07/14/2024]
Abstract
Atopic dermatitis (AD), a chronic and recurrent inflammatory skin disorder, presents a high incidence and imposes a substantial economic burden. Preventing its recurrence remains a significant challenge in dermatological therapy owing to poorly understood underlying mechanisms. In our study, we adopted a strategy of tracing the mechanisms of recurrence from clinical outcomes. We developed a mouse model of recurrent AD and applied clinically validated treatment regimens. Transcriptomic analyses revealed a pronounced enrichment in the glutathione metabolic pathway in the treated group. Through integrated bioinformatics and in vivo validation, we identified glutathione S-transferase alpha 4 (GSTA4) as a pivotal mediator in AD recurrence. Immunohistochemical analysis demonstrated decreased GSTA4 expression in lesions from patients with AD. Functionally, in vitro overexpression of GSTA4 significantly curtailed AD-like inflammatory responses and ROS production. Moreover, we discovered that NRF2 transcriptional activity regulates GSTA4 expression and function. Our treatment notably augmented NRF2-mediated GSTA4 transcription, yielding pronounced anti-inflammatory and ROS-neutralizing effects. Conclusively, our findings implicate GSTA4 as a critical factor in the recurrence of AD, particularly in the context of oxidative stress and chronic inflammation. Targeting the NRF2-GSTA4 axis emerges as a promising anti-inflammatory and antioxidative strategy for preventing AD recurrence.
Collapse
Affiliation(s)
- Xin Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hang Zhao
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Zhan Zhang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Jie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Ying Luo
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Jie Ding
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ting-Ting Xue
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Meng-Jie Zhang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Mi Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Ping Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Le Kuai
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Wu X, Hu S, Jia N, Zhang C, Liu C, Song J, Kuai L, Jiang W, Li B, Chen Q. Accurate network pharmacology and novel ingredients formula of herbal targeting estrogen signaling for psoriasis intervention. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118099. [PMID: 38554853 DOI: 10.1016/j.jep.2024.118099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a common chronic inflammatory skin disease, psoriasis is incompletely understood and brings a lot of distress to patients. The estrogen signaling pathway has been implicated in its pathogenesis, making it a potential therapeutic target. Si Cao Formula (SCF) has demonstrated promise in treating psoriasis clinically. However, its molecular mechanisms concerning psoriasis remain largely unexplored. AIM OF THE STUDY To elucidate the underlying mechanisms of the action of SCF on psoriasis. MATERIALS AND METHODS Active ingredients were identified by LC-MS/MS. After the treatment with SCF, the exploration of differentially expressed proteins (DEPs) were conducted using tandem mass tag (TMT)-based quantitative proteomics analysis. By GO/KEGG, WikiPathways and network pharmacology, core signaling pathway and protein targets were explored. Consequently, major signaling pathway and protein targets were validated by RT-qPCR, immunoblotting and immunofluorescence. Based on Lipinski's Rule of Five rules and molecular docking, 8 active compounds were identified that acted on the core targets. RESULTS 41 compounds of SCF and 848 specific targets of these compounds were identified. There were 570 DEPs between IMQ (Imiquimod) and IMQ + SCF group, including 279 up-regulated and 304 down-regulated proteins. GO/KEGG, WikiPathways and network pharmacology revealed estrogen signaling pathway as the paramount pathways, through which SCF functioned on psoriasis. We further show novel ingredients formula of SCF contributes to estrogen signaling intervention, including liquiritin, parvisoflavone B, glycycoumarin, 8-prenylluteone, licochalcone A, licochalcone B, oxymatrine, and 13-Hydroxylupanine, where targeting MAP2K1, ILK, HDAC1 and PRKACA, respectively. Molecular docking proves that they have good binding properties. CONCLUSION Our results provide an in-depth view of psoriasis pathogenesis and herbal intervention, which expands our understanding of the systemic pharmacology to reveal the multiple ingredients and multiple targets of SCF and focus on one pathway (estrogen signaling pathway) may be a novel therapeutic strategy for psoriasis treatment of herbal medicine.
Collapse
Affiliation(s)
- Xinxin Wu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Sheng Hu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ning Jia
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Caiyun Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Changya Liu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Wencheng Jiang
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Bin Li
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Qilong Chen
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
8
|
Wu X, Zheng Q, Shen F, Song J, Luo Y, Fei X, Jiang W, Xie S, Ma X, Kuai L, Wang R, Ding X, Li M, Luo Y, Li B. The therapeutic efficacy and mechanism action of Si Cao formula in the treatment of psoriasis: A pilot clinical investigation and animal validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117662. [PMID: 38160866 DOI: 10.1016/j.jep.2023.117662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/17/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is a chronic inflammation and relapsing disease that affected approximately 100 million individuals worldwide. In previous clinical study, it was observed that the topical application of Si Cao Formula (SCF) ameliorated psoriasis skin lesions and reduced the recurrence rate of patients over a period of three months. However, the precise mechanism remains unclear. AIM OF THE STUDY The objective of this study was to assess the effectiveness and safety of SCF in patients diagnosed with psoriasis and explore the molecular mechanisms that contribute to SCF's therapeutic efficacy in psoriasis treatment. MATERIALS AND METHODS A randomized, controlled, and pilot clinical study was performed. This study assessed 30 individuals diagnosed with mild to moderate plaque psoriasis. 15 of them underwent local SCF treatment, the others received calcipotriol intervention. The outcome measure focused on Psoriasis Area and Severity Index (PASI), Dermatology Life Quality Index (DLQI), and recurrence rate. In addition, IMQ-induced psoriasis-like mice model were used to assess the impact of SCF on ameliorating epidermal hyperplasia, suppressing angiogenesis, and modulating immune response. Furthermore, we performed bioinformatics analysis on transcriptome data obtained from skin lesions of mice model. This analysis allowed us to identify the targets and signaling pathways associated with the action of SCF. Subsequently, we conducted experimental validation to confirm the core targets. RESULTS Our clinical pilot study demonstrated that SCF could ameliorate skin lesions in psoriasis patients with comparable efficacy of calcipotriol in drop of PASI and DLQI scores. SCF exhibited a significantly reduced recurrence rate within 12 weeks (33.3%). Liquid Chromatography Mass Spectrometry (LC-MS) identified 41 active constituents of SCF (26 cations and 15 anions). Animal experiments showed SCF ameliorates the skin lesions of IMQ-induced psoriasis like mice model and suppresses epidermal hyperkeratosis and angiogenesis. There were 845 up-regulated and 764 down-regulated DEGs between IMQ and IMQ + SCF groups. GO analysis revealed that DEGs were linked to keratinization, keratinocyte differentiation, organic acid transport epidermal cell differentiation, and carboxylic acid transport interferon-gamma production. KEGG pathway analysis showed that SCF may play a vital part through IL-17 and JAK/STAT signaling pathway. In addition, SCF could reduce the number of positive cells expressing PCNA, CD31, pSTAT3, CD3, and F4/80 within the epidermis of psoriatic lesions, as well as the expression of Il-17a and Stat3 in IMQ-induced psoriasis mice. CONCLUSIONS Our research suggests that SCF serves as a reliable and efficient local approach for preventing and treating psoriasis. The discovery of plausible molecular mechanisms and therapeutic targets associated with SCF may support its broad implementation in clinical settings.
Collapse
Affiliation(s)
- Xinxin Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Qi Zheng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Fang Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Wencheng Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Shaoqiong Xie
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruiping Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaojie Ding
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Miao Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Zhu C, Chen Y, Tai Z, Pan H, Shen M, Chen Z, Zhu Q. Effect and mechanism of longkui yinxiao soup in treating psoriasis in mice. Front Pharmacol 2023; 14:1136604. [PMID: 36992832 PMCID: PMC10040526 DOI: 10.3389/fphar.2023.1136604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
Objective: Longkui Yinxiao Soup is a traditional Chinese medicine formula used to treat psoriasis for decades. Although Longkui Yinxiao Soup showed promising efficacy in clinical practice, the regulatory mechanisms of Longkui Yinxiao Soup remain elusive. This study aimed to explore the underlying mechanisms of Longkui Yinxiao Soup in a psoriasis-like mouse model.Methods: Longkui Yinxiao Soup was quality controlled by determining the contents of imperatorin and rhoifolin using high-performance liquid chromatography. The imiquimod-induced psoriasis-like mouse model was used to study the therapeutic effect and mechanism of Longkui Yinxiao Soup. The histopathological skin changes were observed by hematoxylin and eosin staining; the infiltration of proliferating proteins, proliferating cell nuclear antigen and Ki67, in skin tissues were observed by immunohistochemical analysis; and the inflammatory factors such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-23, and IL-17 in serum were detected using enzyme-linked immunosorbent assay. RNA sequencing and bioinformatic analysis were used to predict the mechanism of LYS against psoriasis. mRNA expressions of p38, extracellular regulated protein kinases (ERK), mitogen-activated protein kinase 3 (MEK3), mitogen-activated protein kinase 6 (MEK6), RAP1 GTPase activating protein (Rap1gap), and Rap1 were determined using real-time quantitative polymerase chain reaction. The expression levels of proteins related to Rap1–mitogen-activated protein kinase signaling pathways were measured by Western blotting.Results: A quality-control method for Longkui Yinxiao Soup was successfully established using imperatorin and rhoifolin as content determination indexes. Longkui Yinxiao Soup significantly ameliorated the psoriatic symptoms in mice. The serum levels of inflammatory cytokines such as IL-6, TNF-α, IL-23, and IL-17 were decreased, and the expression levels of antigen identified by monoclonal antibody Ki67 (Ki67) and PCNA in skin tissues were downregulated. Moreover, the inhibition of Rap1–MAPK signaling pathways by Longkui Yinxiao Soup was detected.Conclusion: This study confirmed the antipsoriatic activity of Longkui Yinxiao Soup in psoriasis-like mice. This might be due to the inhibition of inflammatory factor secretion, keratinocyte proliferation, and the Rap1–MAPK signal pathway.
Collapse
Affiliation(s)
- Congcong Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Ya Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Huijun Pan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Min Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
- *Correspondence: Quangang Zhu, ; Zhongjian Chen,
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
- *Correspondence: Quangang Zhu, ; Zhongjian Chen,
| |
Collapse
|
10
|
Chen Y, Zhang Z, Zhang Y, Jiang J, Luo Y, Fei X, Ru Y, Li B, Zhang H, Liu T, Yang Y, Kuai L, Song J, Luo Y. Gene set enrichment analysis and ingenuity pathway analysis to verify the impact of Wnt signaling in psoriasis treated with Taodan granules. Am J Transl Res 2023; 15:422-434. [PMID: 36777818 PMCID: PMC9908442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/03/2022] [Indexed: 02/14/2023]
Abstract
BACKGROUND Taodan granules (TDGs), traditional Chinese herbals, have effectiveness in relieving skin erythema, scales, and other symptoms of psoriasis. Yet mechanisms of TDGs remain indistinct. OBJECTIVE To indicate the molecular mechanisms of TDGs in treating psoriasis. MATERIALS AND METHODS Primarily, transcriptional profiling was applied to identify differentially expressed genes (DEGs), proceeding with Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) analysis were used for functional enrichment analysis. Subsequently, levels of selected genes were validated by RT-PCR and western blotting. RESULTS The GSEA results revealed TDGs could down-regulate the Wnt signaling pathway to ameliorate skin lesions of imiquimod (IMQ)-induced psoriatic models mice. IPA core network associated with Wnt signaling pathways in TDGs for psoriasis was established. Thereinto zeste homolog 2 (EZH2), CTNNB1, tumor protein p63 (TP63), and WD repeat domain 5 (WDR5) were considered as upstream genes in the Wnt signaling pathway. Experimental verification indicated TDGs could down-regulate EZH2, CTNNB1, and WDR5 at the mRNA and protein levels, along with up-regulate TP63 levels. Moreover, TDGs were confirmed to reduce RAC2 and WNT5A at mRNA and protein levels of the Wnt signaling pathway. CONCLUSIONS TDGs may improve psoriasis through the regulation for upstream genes (down-regulating levels of EZH2, CTNNB1, and WDR5; up-regulating TP63 levels) of Wnt signaling pathway, thus reducing levels of RAC2 and WNT5A in the Wnt signaling pathway.
Collapse
Affiliation(s)
- Yiran Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese MedicineShanghai 200437, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese MedicineShanghai 201203, China
| | - Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese MedicineShanghai 200437, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese MedicineShanghai 201203, China
| | - Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese MedicineShanghai 200437, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese MedicineShanghai 201203, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji UniversityShanghai 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji UniversityShanghai 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji UniversityShanghai 200443, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese MedicineShanghai 200437, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese MedicineShanghai 201203, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese MedicineShanghai 200437, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese MedicineShanghai 201203, China,Shanghai Skin Disease Hospital, School of Medicine, Tongji UniversityShanghai 200443, China
| | - Huiping Zhang
- Shanghai Applied Protein Technology Co., Ltd.58 Yuanmei Road, Shanghai 200233, China
| | - Taiyi Liu
- Shanghai Applied Protein Technology Co., Ltd.58 Yuanmei Road, Shanghai 200233, China
| | - Yingyao Yang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese MedicineShanghai 200437, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese MedicineShanghai 201203, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese MedicineShanghai 200437, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese MedicineShanghai 201203, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji UniversityShanghai 200443, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese MedicineShanghai 200437, China,Institute of Dermatology, Shanghai Academy of Traditional Chinese MedicineShanghai 201203, China
| |
Collapse
|
11
|
Xing M, Yan X, Guo J, Li W, Li Z, Dong C, Guo J, Qu K, Luo Y. Banzhilian formula alleviates psoriasis-like lesions via the LCN2/MMP-9 axis based on transcriptome analysis. Front Pharmacol 2023; 14:1055363. [PMID: 36950008 PMCID: PMC10025347 DOI: 10.3389/fphar.2023.1055363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Oral Banzhilian formula (BZLF) is effective in the clinical treatment of psoriasis. However, the effectiveness and mechanism of different drug delivery routes deserve further study. Methods: First, we established the mouse model of psoriasis using imiquimod (IMQ), and high-performance liquid chromatography (HPLC) was used for the quality control of BZLF. Secondly, Total RNA Sequencing and bioinformatics analysis were used to explore the regulatory mechanism of BZLF in improving psoriatic lesions. Finally, further verification was based on animal experiments. Results: we externally applied BZLF for skin lesions in an imiquimod-induced psoriasis mouse model and found that BZLF alleviated psoriasis-like skin lesions while inhibiting the expression of Ki67 and inflammatory factors (Il17a, Tnf-α, S100a7 and Cxcl1) in skin lesions. Transcriptome sequencing results suggested that BZLF inhibited signalling pathways closely related to psoriatic inflammation, such as the IL-17 signalling pathway, chemokine signalling pathway, TNF signalling pathway, and NF-kappa B signalling pathway, and the protein-protein interaction (PPI) network identified LCN2 as one of the core target genes and screened out its regulated downstream gene MMP9. Discussion: Our findings suggest that the anti-psoriatic mechanism of BZLF involved in downregulating the LCN2/MMP-9 axis.
Collapse
Affiliation(s)
- Meng Xing
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Xiaoning Yan
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Jiangtao Guo
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, China
- The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenbin Li
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, China
| | - ZhangJun Li
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Chun Dong
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Jiao Guo
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Keshen Qu
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
- Department of Dermatology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Keshen Qu, ; Ying Luo,
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Keshen Qu, ; Ying Luo,
| |
Collapse
|
12
|
Mechanism of Huoluo Xiaoling Dan in the Treatment of Psoriasis Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7053613. [PMID: 35265149 PMCID: PMC8898804 DOI: 10.1155/2022/7053613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 01/09/2023]
Abstract
Objective To explore the mechanism of the action of Huoluo Xiaoling Dan (HLXLD) in the treatment of psoriasis based on network pharmacology and molecular docking. Methods The main active components and targets of HLXLD were collected from CMSP, and the targets related to psoriasis were collected from GeneCards, OMIM, TTD, DisGeNET, and DrugBank. Drug disease target genes were obtained by Venny tools, drug-component-target networks were constructed and analyzed, and pathway enrichment analysis was performed. AutoDockTools is used to connect the core components and the target, and PyMOL software is used to visualize the results. Results 126 active components (such as quercetin, luteolin, tanshinone IIA, dihydrotanshinlactone, and beta-sitosterol) and 238 targets of HLXLD were screened out. 1,293 targets of psoriasis were obtained, and 123 drug-disease targets were identified. Key targets included AKT1, TNF, IL6, TP53, VEGFA, JUN, CASP3, IL1B, STAT3, PTGS2, HIF1A, EGF, MYC, EGFR, MMP9, and PPARG. Enrichment analysis showed that 735 GO analysis and 85 KEGG pathways were mainly involved in biological processes such as response to the drug, inflammatory response, gene expression, and cell proliferation and apoptosis, as well as signal pathways such as cancer, TNF, HIF-1, and T cell receptor. Molecular docking showed that there was strong binding activity between the active ingredient and the target protein. Conclusions HLXLD could treat psoriasis through multicomponents, multitargets, and multipathways, which provides a new theoretical basis for further basic research and clinical application.
Collapse
|
13
|
Zhang Y, Song JK, Jiang JS, Yin SY, Luo Y, Luo Y, Ding XJ, Ru Y, Liu L, Li W, Kuai L, Li B. Modular pharmacology-based approach to identify hub genes and kernel pathways of taodan granules treated psoriasis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114485. [PMID: 34348195 DOI: 10.1016/j.jep.2021.114485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taodan granules (TDG) have been observed to decrease interleukins, or psoriasis area and severity index (PASI) score for psoriasis vulgaris, without significant adverse events. However, the regulatory network remains elucidated. AIM OF THE STUDY The objective is to identify critical genes and kernel pathways of TDG treated psoriasis. MATERIALS AND METHODS Firstly, construct a network of components-targets of TDG using network pharmacology. Secondly, the ClusterONE algorithm was used to build a modular network and identify critical genes and corresponding pathways. Thirdly, the critical genes and kernel pathways were verified in imiquimod (IMQ) induced psoriasis-like mice model. RESULTS The results validated that TDG downregulated the mRNA expression of MMP2 (degree = 5, P < 0.05), IL6 (degree = 9, P < 0.05), TNF (degree = 14, P < 0.05), CCL2 (degree = 8, P < 0.05), CXCL2 (degree = 8, P < 0.05), IL1B (degree = 9, P < 0.05), and JUN (degree = 9, P < 0.05), while upregulated IL10 (degree = 8) expression. Besides, TDG were observed to regulate IL17 signaling pathway and TNF signaling pathway (size = 18), via the skin tissue homogenate of psoriasis-like mice. CONCLUSION In summary, this study identified the potential targets and pathways, providing additional evidence for the clinical application of TDG treated psoriasis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jing-Si Jiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuang-Yi Yin
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Yue Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Jie Ding
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Li
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xian 710003, China.
| |
Collapse
|