1
|
Jing H, Gao Y, Jing L, Yang H, Liu S. Recent advances in therapeutic use of transforming growth factor-beta inhibitors in cancer and fibrosis. Front Oncol 2025; 15:1489701. [PMID: 40352593 PMCID: PMC12061708 DOI: 10.3389/fonc.2025.1489701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 04/03/2025] [Indexed: 05/14/2025] Open
Abstract
Transforming growth factor-beta (TGF-β) has long been known to be associated with early embryonic development and organogenesis, immune supervision, and tissue repair and homeostasis in adults. TGF-β has complex roles in fibrosis and cancer that may be opposing at different stages of these diseases. Under pathological conditions, overexpression of TGF-β causes epithelial-mesenchymal transition, deposition of extracellular matrix, and formation of cancer-associated fibroblasts, leading to fibrotic disease or cancer. Fibroblasts, epithelial cells, and immune cells are the most common targets of TGF-β, while fibrosis and cancer are the most common TGF-β-associated diseases. Given the critical role of TGF-β and its downstream molecules in fibrosis and progression of cancer, therapies targeting TGF-β signaling appear to be a promising strategy. Preclinical and clinical studies have investigated therapies targeting TGF-β, including antisense oligonucleotides, monoclonal antibodies, and ligand traps. However, development of targeted TGF-β therapy has been hindered by systemic cytotoxicity. This review discusses the molecular mechanisms of TGF-β signaling and highlights targeted TGF-β therapy for cancer and fibrosis as a therapeutic strategy for related diseases.
Collapse
Affiliation(s)
- Hanhui Jing
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Gao
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Linyuan Jing
- Department of Integrated Chinese and Western Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Hanyu Yang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Zhang Y, Fu Q, Sun W, Yue Q, He P, Niu D, Zhang M. Mechanical forces in the tumor microenvironment: roles, pathways, and therapeutic approaches. J Transl Med 2025; 23:313. [PMID: 40075523 PMCID: PMC11899831 DOI: 10.1186/s12967-025-06306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Tumors often exhibit greater stiffness compared to normal tissues, primarily due to increased deposition within the tumor stroma. Collagen, proteoglycans, laminin, and fibronectin are key components of the extracellular matrix (ECM), interacting to facilitate ECM assembly. Enhanced fiber density and cross-linking within the ECM result in elevated matrix stiffness and interstitial fluid pressure, subjecting tumors to significant physical stress during growth. This mechanical stress is transduced intracellularly via integrins, the Rho signaling pathway, and the Hippo signaling pathway, thereby promoting tumor invasion. Additionally, mechanical pressure fosters glycolysis in tumor cells, boosting energy production to support metastasis. Mechanical cues also regulate macrophage polarization, maintaining an inflammatory microenvironment conducive to tumor survival. In summary, mechanical signals within tumors play a crucial role in tumor growth and invasion. Understanding these signals and their involvement in tumor progression is essential for advancing our knowledge of tumor biology and enhancing therapeutic approaches.
Collapse
Affiliation(s)
- Yanli Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China.
| | - Qi Fu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Wenyue Sun
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Qiujuan Yue
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Ping He
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Dong Niu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Min Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China.
| |
Collapse
|
3
|
Boz Er AB, Er I. Targeting ITGβ3 to Overcome Trastuzumab Resistance through Epithelial-Mesenchymal Transition Regulation in HER2-Positive Breast Cancer. Int J Mol Sci 2024; 25:8640. [PMID: 39201327 PMCID: PMC11354641 DOI: 10.3390/ijms25168640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
HER2-positive breast cancer, representing 15-20% of all breast cancer cases, often develops resistance to the HER2-targeted therapy trastuzumab. Unfortunately, effective treatments for advanced HER2-positive breast cancer remain scarce. This study aims to investigate the roles of ITGβ3, and Hedgehog signaling in trastuzumab resistance and explore the potential of combining trastuzumab with cilengitide as a therapeutic strategy. Quantitative gene expression analysis was performed to assess the transcription of EMT (epithelial-mesenchymal transition) markers Slug, Snail, Twist2, and Zeb1 in trastuzumab-resistant HER2-positive breast cancer cells. The effects of ITGβ3 and Hedgehog signaling were investigated. Additionally, the combination therapy of trastuzumab and cilengitide was evaluated. Acquired trastuzumab resistance induced the transcription of Slug, Snail, Twist2, and Zeb1, indicating increased EMT. This increased EMT was mediated by ITGB3 and Hedgehog signaling. ITGβ3 regulated both the Hedgehog pathway and EMT, with the latter being independent of the Hedgehog pathway. The combination of trastuzumab and cilengitide showed a synergistic effect, reducing both EMT and Hedgehog pathway activity. Targeting ITGβ3 with cilengitide, combined with trastuzumab, effectively suppresses the Hedgehog pathway and EMT, offering a potential strategy to overcome trastuzumab resistance and improve outcomes for HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Asiye Busra Boz Er
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize 53200, Turkey;
| | - Idris Er
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| |
Collapse
|
4
|
Seo Y, Seo M, Kim J. Effects of cilengitide derivatives on TGF-β1-induced epithelial-to-mesenchymal transition and invasion in gefitinib-resistant non-small cell lung cancer cells. Front Pharmacol 2023; 14:1277199. [PMID: 37927598 PMCID: PMC10622769 DOI: 10.3389/fphar.2023.1277199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Long-term administration of tyrosine kinase inhibitors (TKIs) used for the treatment of non-small cell lung cancer (NSCLC) induces TKI resistance in cells. The appearance of resistant cells requires the combined administration of another therapeutic agent and may cause side effects in the gastrointestinal and central nervous system. In previous studies, we found that derivatives of cilengitide, a cyclic Arg-Gly-Asp (RGD) peptide, exert NSCLC apoptotic and anti-epithelial-mesenchymal transition (EMT) effects. In particular, cRGDwV and cRGDyV, which are cyclic peptides containing aromatic amino acids, were found to inhibit NSCLC cell growth, TGF-β1-induced EMT, and invasion. In this study, we confirmed the effects of cRGDwV and cRGDyV on proliferation, TGF-β1-induced EMT marker expression, migration, and invasion in gefitinib-resistant NSCLC A549 (A549GR) cells. In A549GR cells, cRGDwV and cRGDyV showed inhibitory effects on the expression of mesenchymal marker expression, migration, and invasion. These results indicate that cyclic RGD peptides containing aromatic amino acids can be used to inhibit mesenchymal marker expression as well as migration and invasion in gefitinib-resistant cells.
Collapse
Affiliation(s)
| | | | - Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Health Science, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
5
|
Chen MT, Li BZ, Zhang EP, Zheng Q. Potential roles of tumor microenvironment in gefitinib-resistant non-small cell lung cancer: A narrative review. Medicine (Baltimore) 2023; 102:e35086. [PMID: 37800802 PMCID: PMC10553124 DOI: 10.1097/md.0000000000035086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/15/2023] [Indexed: 10/07/2023] Open
Abstract
During the course of treating non-small cell lung cancer (NSCLC) with epithelial growth factor receptor (EGFR) mutant, gefitinib resistance (GR) is unavoidable. As the environment for tumor cells to grow and survive, tumor microenvironment (TME) can significantly affect therapeutic response and clinical outcomes, offering new opportunities for addressing GR. Dynamic changes within the TME were identified during the treatment of gefitinib, suggesting the close relationship between TME and GR. Various dynamic processes like angiogenesis, hypoxia-pathway activation, and immune evasion can be blocked so as to synergistically enhance the therapeutic effects of gefitinib or reverse GR. Besides, cellular components like macrophages can be reprogrammed for the same purpose. In this review, we summarized recently proposed therapeutic targets to provide an overview of the potential roles of TME in treating gefitinib-resistant NSCLC, and discussed the difficulty of applying these targets in cancer treatment.
Collapse
Affiliation(s)
- Mu-Tong Chen
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Bai-Zhi Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - En-Pu Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Qing Zheng
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shantou University Medical College, Shantou, China
| |
Collapse
|
6
|
Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. MOLECULAR BIOMEDICINE 2022; 3:45. [PMID: 36534225 PMCID: PMC9761655 DOI: 10.1186/s43556-022-00109-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor beta (TGF-β) is a crucial cytokine that get increasing concern in recent years to treat human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeostasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-β signal plays an essential role in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer. Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising therapeutic target in these diseases. Recently, multiple strategies targeting TGF-β signals including neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligonucleotides to disrupt the production of TGF-β at the transcriptional level, and vaccine are under evaluation of safety and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and function of TGF-β in physiological and pathological conditions, elaborated TGF-β associated signal transduction. And then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-β signal transduction to treat diseases.
Collapse
Affiliation(s)
- Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Fan Tang
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China ,grid.13291.380000 0001 0807 1581Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Peng
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Ye Zhang
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huashan Shi
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| |
Collapse
|
7
|
Chen JR, Zhao JT, Xie ZZ. Integrin-mediated cancer progression as a specific target in clinical therapy. Biomed Pharmacother 2022; 155:113745. [DOI: 10.1016/j.biopha.2022.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/15/2022] Open
|
8
|
Seo M, Kim J. Combination effect of cilengitide derivatives with gefitinib on
TGF
‐β1‐induced epithelial‐to‐mesenchymal transition in human non‐small cell lung cancer cells. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Minji Seo
- Department of Biomedical Laboratory Science School of Health Science, Dankook University Cheonan Republic of Korea
| | - Jiyeon Kim
- Department of Biomedical Laboratory Science School of Health Science, Dankook University Cheonan Republic of Korea
| |
Collapse
|
9
|
Park K, Jeong J, Kim J. Synthesis and biological evaluation of cilengitide derivatives on
TGF
‐β1‐induced epithelial‐to‐mesenchymal transition in human non‐small cell lung cancer cells. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kyeong‐Yong Park
- Department of Integrated Material's Development CHA Meditech Co., Ltd Daejeon South Korea
| | - Jisu Jeong
- Department of Medical Laboratory Science, College of Health Science Dankook University Cheonan Republic of Korea
| | - Jiyeon Kim
- Department of Medical Laboratory Science, College of Health Science Dankook University Cheonan Republic of Korea
| |
Collapse
|
10
|
Combination Effect of Cilengitide with Erlotinib on TGF-β1-Induced Epithelial-to-Mesenchymal Transition in Human Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2022; 23:ijms23073423. [PMID: 35408781 PMCID: PMC8999066 DOI: 10.3390/ijms23073423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is important for morphogenesis during development and is mainly induced by transforming growth factor (TGF)-β. In lung cancer, EMT is characterized by the transformation of cancer cells into a mobile, invasive form that can transit to other organs. Here, using a non–small cell lung cancer (NSCLC) cell line, we evaluated the EMT-related effects of the epidermal growth factor receptor inhibitor erlotinib alone and in combination with cilengitide, a cyclic RGD-based integrin antagonist. Erlotinib showed anti-proliferative and inhibitory effects against the TGF-β1–induced EMT phenotype in NSCLC cells. Compared with erlotinib alone, combination treatment with cilengitide led to an enhanced inhibitory effect on TGF-β1–induced expression of mesenchymal markers and invasion in non–small cell lung cancer A549 cells. These results suggest that cilengitide could improve anticancer drug efficacy and contribute to improved treatment strategies to inhibit and prevent EMT-based cancer progression.
Collapse
|