1
|
Szternel Ł, Sobucki B, Wieprzycka L, Krintus M, Panteghini M. Golgi protein 73 in liver fibrosis. Clin Chim Acta 2025; 565:119999. [PMID: 39401651 DOI: 10.1016/j.cca.2024.119999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/17/2024]
Abstract
Golgi protein 73 (GP73) is implicated in key pathogenic processes, particularly those related to inflammation and fibrogenesis. In the last years, its measurement has emerged as a promising biomarker for detection of liver fibrosis (LF), a common consequence of chronic liver disease that can progress to cirrhosis and eventually hepatocellular carcinoma. GP73 concentrations in blood appear significantly increased in LF patients, correlating with disease severity, making this biomarker a possible non-invasive alternative for detecting and monitoring this condition regardless of etiology. Understanding the molecular mechanisms involving GP73 expression could also lead to new therapeutic strategies aimed at modulating its synthesis or function to prevent or reverse LF. Despite its clinical potential, GP73 as a LF biomarker faces several challenges. The lack of demonstrated comparability among different assays as well as the lack of knowledge of individual variability can make difficult the result interpretation. Further research is therefore needed focusing on robust clinical validation of GP73 as a LF biomarker. Addressing analytical, biological, and clinical limitations will be critical to exploiting its potential for improving detection and monitoring of advanced LF.
Collapse
Affiliation(s)
- Łukasz Szternel
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Bartłomiej Sobucki
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Laura Wieprzycka
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| | - Magdalena Krintus
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland.
| | - Mauro Panteghini
- Department of Laboratory Medicine, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Poland
| |
Collapse
|
2
|
Li D, Qu Y, Wang B, Zhang H, Qin L. Spatio-temporal expression of Sox2 + progenitor cells regulates the regeneration of rat submandibular gland. Arch Oral Biol 2024; 168:106080. [PMID: 39217919 DOI: 10.1016/j.archoralbio.2024.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Sox2 plays crucial roles in tissues homeostasis and regeneration. However, there are lack of a comprehensive examination of Sox2 expression and its functional role in submandibular gland regeneration. Therefore, we aimed to elucidate the impact of Sox2 on submandibular gland regeneration. MATERIALS AND METHODS A Sprague-Dawley rat submandibular gland duct ligation/de-ligation regeneration model was conducted in this study. Sox2-shRNA vectors were retro-ductally administered into the submandibular gland to establish a stable Sox2 knockdown model. Conventional histopathological and molecular biological methods were used to investigate phenotypic changes. RESULTS The submandibular gland normalized completely 28 days after ligature removal (following 7 days of duct ligation). AQP5 expression gradually increased after ligation removal until returning to normal levels. In submandibular gland regeneration, Sox2 re-expressed and co-expressed with AQP5+ acinar cells, and Sox2 expression peaked on day 14, recovered to normal on day 28, reproducing the developmental pattern. Sox2 knockdown hindered gland regeneration and induced irreversible fibrosis. The AQP5 expression was significantly lower than the contemporaneous solely ligated group, while the blue collagen deposition and the Vimentin expression increased prominently. The expression of CD68, IL-1β, TNF-α and IL-17A increased significantly, and epithelial cells in the Sox2 knockdown group expressed higher levels of IL-17A. CONCLUSIONS These findings highlight Sox2 as a crucial regulator of the acinar cell lineage. Sox2+ progenitor cells are pivotal for acinar cell maintenance, which is indispensable for submandibular gland regeneration. Collectively, our findings may help develop targeted interventions for enhancing tissue repair and preventing irreversible fibrosis in salivary gland disorders.
Collapse
Affiliation(s)
- Dan Li
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, China
| | - Yi Qu
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, China
| | - Bin Wang
- Department of Head and Neck Oncology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Workers' New Village No.3, Taiyuan, 030013, China
| | - Haoyang Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, China.
| |
Collapse
|
3
|
García-Topete DA, Álvarez-Lee LA, Carballo-López GI, Uriostegui-Campos MA, Guzmán-Uribe C, Castro-Ceseña AB. Antifibrotic activity of carbon quantum dots in a human in vitro model of non-alcoholic steatohepatitis using hepatic stellate cells. Biomater Sci 2024; 12:1307-1319. [PMID: 38263852 DOI: 10.1039/d3bm01710a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Around 33% of the global population suffers from non-alcoholic fatty liver disease (NAFLD). From these patients, 30% of them progress into non-alcoholic steatohepatitis (NASH), the critical point where lack of treatment leads to cirrhosis and hepatic failure. Moreover, to date, there are no approved therapeutic options available for NASH. It is known that hepatic stellate cell (HSC) activation contributes the most to hepatic disfunction, leading to reactive oxygen species (ROS) accumulation and chronic inflammation, and that the use of nanomaterials to deliver antioxidants may have potential to reduce the activity of activated HSCs. Therefore, we implemented a human in vitro co-culture model in which we take into consideration two factors related to NASH and fibrosis: human hepatic stellate cells from a NASH diagnosed donor (HHSC-N) and peripheral blood mononuclear cells (PBMCs), particularly lymphocytes. The co-cultures were treated with: (1) carbon quantum dots (CD) or (2) lactoferrin conjugated CD (CD-LF) for 24 h or 72 h. CD and CD-LF treatments significantly downregulated profibrotic genes' expression levels of ACTA2, COL1A1, and TIMP1 in co-cultured HHSC-N at 72 h. Also, we assayed the inflammatory response by quantifying the concentrations of cytokines IL-22, IL-10, IFN-γ and IL-4 present in the co-culture's conditioned media whose concentrations may suggest a resolution-associated response in progress. Our findings may serve as a starting point for the development of a NASH treatment using bio-nanotechnology.
Collapse
Affiliation(s)
- David A García-Topete
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Laura A Álvarez-Lee
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
- CONAHCYT-Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| | - Gabriela I Carballo-López
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Marco A Uriostegui-Campos
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Carlos Guzmán-Uribe
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
- Centro de Nanociencias y Nanotecnología, UNAM. Km 107, Carretera Tijuana-Ensenada, C.P. 22800, Ensenada, Baja California, Mexico
| | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
- CONAHCYT-Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| |
Collapse
|
4
|
Li Y, Lu Y, Nian M, Sheng Q, Zhang C, Han C, Dou X, Ding Y. Therapeutic potential and mechanism of Chinese herbal medicines in treating fibrotic liver disease. Chin J Nat Med 2023; 21:643-657. [PMID: 37777315 DOI: 10.1016/s1875-5364(23)60443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 10/02/2023]
Abstract
Liver fibrosis is a pathological condition characterized by replacement of normal liver tissue with scar tissue, and also the leading cause of liver-related death worldwide. During the treatment of liver fibrosis, in addition to antiviral therapy or removal of inducers, there remains a lack of specific and effective treatment strategies. For thousands of years, Chinese herbal medicines (CHMs) have been widely used to treat liver fibrosis in clinical setting. CHMs are effective for liver fibrosis, though its mechanisms of action are unclear. In recent years, many studies have attempted to determine the possible mechanisms of action of CHMs in treating liver fibrosis. There have been substantial improvements in the experimental investigation of CHMs which have greatly promoted the understanding of anti-liver fibrosis mechanisms. In this review, the role of CHMs in the treatment of liver fibrosis is described, based on studies over the past decade, which has addressed the various mechanisms and signaling pathways that mediate therapeutic efficacy. Among them, inhibition of stellate cell activation is identified as the most common mechanism. This article provides insights into the research direction of CHMs, in order to expand its clinical application range and improve its effectiveness.
Collapse
Affiliation(s)
- Yanwei Li
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yunrui Lu
- Liaoning University of Traditional Chinese Medicine, Shenyang 110000, China
| | - Mozuo Nian
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Qiuju Sheng
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Chong Zhang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Chao Han
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Xiaoguang Dou
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yang Ding
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
5
|
Cheng C, Wu Y, Wang X, Xue Q, Huang Y, Liao F, Wang X, Duan Q, Miao C. RNA methylations in hepatic fibrosis, a gradually emerging new treatment strategy. Cell Biosci 2023; 13:126. [PMID: 37420298 DOI: 10.1186/s13578-023-01066-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/06/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Hepatic fibrosis (HF) is a pathological process caused by excessive accumulation of extracellular matrix caused by a series of causes, leading to the formation of fiber scar. RNA methylation is a newly discovered epigenetic modification that exists widely in eukaryotes and prokaryotes and plays a crucial role in the pathogenesis of many diseases. RESULTS The occurrence and development of HF are regulated by many factors, including excessive deposition of extracellular matrix, activation of hepatic stellate cells, inflammation, and oxidative stress. RNA methylations of different species have become a crucial regulatory mode of transcript expression, And participate in the pathogenesis of tumors, nervous system diseases, autoimmune diseases, and other diseases. In addition, there are five common types of RNA methylation, but only m6A plays a crucial regulatory role in HF. The pathophysiological regulation of m6A on HF is achieved by the combination of the methylated transferase, demethylated enzyme, and methylated reading protein. CONCLUSIONS RNA methylated methyltransferase, demethylase, and reading protein extensively affect the pathological mechanism of HF, which may be a new therapeutic and diagnostic target, representing a new class of therapeutic strategies.
Collapse
Affiliation(s)
- Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xin Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Faxue Liao
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China.
- Anhui Public Health Clinical Center, Hefei, China.
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiangjun Duan
- Department of Experimental (Practical Training) Teaching Center, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
- Institute of Rheumatism, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
6
|
Udomsinprasert W. Interleukin-1 family cytokines in liver cell death: a new therapeutic target for liver diseases. Expert Opin Ther Targets 2023; 27:1125-1143. [PMID: 37975716 DOI: 10.1080/14728222.2023.2285763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Liver cell death represents a basic biological process regulating the progression of liver diseases via distinct mechanisms. Accumulating evidence has uncovered participation of interleukin (IL)-1 family cytokines in liver cell death. Upon activation of cell death induced by hepatotoxic stimuli, IL1 family cytokines released by hepatic dead cells stimulate recruitment of immune cells, which in turn influence inflammation and subsequent liver injury, thus highlighting their potential as therapeutic targets in liver diseases. Enhancing our comprehension of mechanisms underlying IL1 family cytokine signaling in cell death responses could pave the way for novel therapeutic interventions aimed at addressing liver cell death-related liver pathologies. AREAS COVERED This review summarizes the recent findings reported in preclinical and clinical studies on mechanisms of liver cell death, alongside participation of IL1 family members consisting of IL1α, ILβ, IL18, and IL33 in liver cell death and their significant implications in liver diseases. EXPERT OPINION Discovery of new and innovative therapeutic approaches for liver diseases will need close cooperation between fundamental and clinical scientists to better understand the multi-step processes behind IL1 family cytokines' contributions to liver cell death.
Collapse
|
7
|
Wang Z, Du K, Jin N, Tang B, Zhang W. Macrophage in liver Fibrosis: Identities and mechanisms. Int Immunopharmacol 2023; 120:110357. [PMID: 37224653 DOI: 10.1016/j.intimp.2023.110357] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Liver fibrosis is a chronic disease characterized by the deposition of extracellular matrix and continuous loss of tissues that perform liver functions. Macrophages are crucial modulators of innate immunity and play important roles in liver fibrogenesis. Macrophages comprise heterogeneous subpopulations that exhibit different cellular functions. Understanding the identity and function of these cells is essential for understanding the mechanisms of liver fibrogenesis. According to different definitions, liver macrophages are divided into M1/M2 macrophages or monocyte-derived macrophages/Kupffer cells. Classic M1/M2 phenotyping corresponds to pro- or anti-inflammatory effects, and, therefore, influences the degree of fibrosis in later phases. In contrast, the origin of the macrophages is closely associated with their replenishment and activation during liver fibrosis. These two classifications of macrophages depict the function and dynamics of liver-infiltrating macrophages. However, neither description properly elucidates the positive or negative role of macrophages in liver fibrosis. Critical tissue cells mediating liver fibrosis include hepatic stellate cells and hepatic fibroblasts, with hepatic stellate cells being of particular interest because of their close association with macrophages in liver fibrosis. However, the molecular biological descriptions of macrophages are inconsistent between mice and humans, warranting further investigations. In liver fibrosis, macrophages can secrete various pro-fibrotic cytokines, such as TGF-β, Galectin-3 and interleukins (ILs), and fibrosis-inhibiting cytokines, such as IL10. These different secretions may be associated with the specific identity and spatiotemporal characteristics of macrophages. Furthermore, during fibrosis dissipation, macrophages may degrade extracellular matrix by secreting matrix metalloproteinases (MMPs). Notably, using macrophages as therapeutic targets in liver fibrosis has been explored. The current therapeutic approaches for liver fibrosis can by categorized as follows: treatment with macrophage-related molecules and macrophage infusion therapy. Although there have been limited studies, macrophages have shown reliable potential for liver fibrosis treatment. In this review, we focu on the identity and function of macrophages and their relationship to the progression and regression of liver fibrosis.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Emergency Medicine Center, Jinhua Municipal Central Hospital, Zhejiang, China.
| | - Kailei Du
- Dongyang Peoples hospital, Zhejiang, China
| | - Nake Jin
- Ningbo Hangzhou Bay Hospital, Zhejiang, China
| | - Biao Tang
- Jinhua Municipal Central Hospital, Zhejiang, China
| | - Wenwu Zhang
- Department of Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
8
|
Salem GEM, Azzam SM, Nasser MA, Malah TE, Abd El-Latief HM, Chavanich S, Khan RH, Anwar HM. Bacterial protease alleviate chronic liver fibrosis induced by thioacetamide through suppression of hepatic stellate cells consequently decrease its proliferative index. Int J Biol Macromol 2023; 239:124243. [PMID: 37011746 DOI: 10.1016/j.ijbiomac.2023.124243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
In chronic liver diseases, liver fibrosis occurs due to excessive extracellular matrix (ECM) protein accumulation. Approximately 2 million deaths occur yearly due to liver disease, while cirrhosis is the 11th most common cause of death. Therefore, newer compounds or biomolecules must be synthesized to treat chronic liver diseases. In this aspect, the present study focuses on the assessment of the anti-inflammatory and antioxidant impact of Bacterial Protease (BP) produced by a new mutant strain of bacteria (Bacillus cereus S6-3/UM90) and 4,4'-(2,5-dimethoxy-1,4-phenylene) bis (1-(3-ethoxy phenyl)-1H-1,2,3-triazole) (DPET) in the treatment of early stage of liver fibrosis induced by thioacetamide (TAA). Sixty male rats were divided into six groups, ten rats each as follows: (1) Control group, (2) BP group, (3) TAA group, (4) TAA-Silymarin (S) group, (5) TAA-BP group, and (6) TAA-DPET group. Liver fibrosis significantly elevated liver function ALT, AST, and ALP, as well as anti-inflammatory interleukin 6 (IL-6) and VEGF. The oxidative stress parameters (MDA, SOD, and NO) were significantly increased with a marked reduction in GSH. Expression of MAPK and MCP-1 was unregulated in the TAA group, with downregulation of Nrf2 was observed. TAA caused histopathological alterations associated with hepatic vacuolation and fibrosis, increasing collagen fibers and high immuno-expression of VEGF. On the other hand, treatment with BP successfully improved the severe effects of TAA on the liver and restored histological architecture. Our study concluded the protective potentials of BP for attenuating liver fibrosis and could be used as adjuvant therapy for treating hepatic fibrosis.
Collapse
|
9
|
Ghobrial DK, El-Nikhely N, Sheta E, Ragab HM, Rostom SAF, Saeed H, Wahid A. The Role of Pyrazolo[3,4-d]pyrimidine-Based Kinase Inhibitors in The Attenuation of CCl4-Induced Liver Fibrosis in Rats. Antioxidants (Basel) 2023; 12:antiox12030637. [PMID: 36978885 PMCID: PMC10045301 DOI: 10.3390/antiox12030637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Liver Fibrosis can be life-threatening if left untreated as it may lead to serious, incurable complications. The common therapeutic approach is to reverse the fibrosis while the intervention is still applicable. Celecoxib was shown to exhibit some antifibrotic properties in the induced fibrotic liver in rats. The present study aimed to investigate the possible antifibrotic properties in CCl4-induced liver fibrosis in male Sprague–Dawley rats compared to celecoxib of three novel methoxylated pyrazolo[3,4-d]pyrimidines. The three newly synthesized compounds were proved to be safe candidates. They showed a therapeutic effect against severe CCl4-induced fibrosis but at different degrees. The three compounds were able to partially reverse hepatic architectural distortion and reduce the fibrotic severity by showing antioxidant properties reducing MDA with increasing GSH and SOD levels, remodeling the extracellular matrix proteins and liver enzymes balance, and reducing the level of proinflammatory (TNF-α and IL-6) and profibrogenic (TGF-β) cytokines. The results revealed that the dimethoxy-analog exhibited the greatest activity in all the previously mentioned parameters compared to celecoxib and the other two analogs which could be attributed to the different methoxylation patterns of the derivatives. Collectively, the dimethoxy-derivative could be considered a safe promising antifibrotic candidate.
Collapse
Affiliation(s)
- Diana K. Ghobrial
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
- Correspondence: (D.K.G.); (A.W.)
| | - Nefertiti El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21321, Egypt
| | - Hanan M. Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt
| | - Sherif A. F. Rostom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt
- Correspondence: (D.K.G.); (A.W.)
| |
Collapse
|
10
|
Interleukin-33 deficiency prevents biliary injuries and repairments caused by Clonorchis sinensis via restraining type 2 cytokines. Parasit Vectors 2022; 15:386. [PMID: 36271450 PMCID: PMC9587592 DOI: 10.1186/s13071-022-05490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Clonorchiasis caused by Clonorchis sinensis is a zoonotic parasitic disease characterized by cholangitis, biliary proliferation, biliary fibrosis, and even cholangiocarcinoma. Our previous study showed that the expression of interleukin (IL)-33 is increased in both humans and mice infected by C. sinensis, suggesting that IL-33 is potentially involved in the pathogenesis of clonorchiasis. However, the roles and potential mechanism of IL-33 underlying remain unknown. Methods Wild-type (WT) and IL-33 knockout (KO) mice (BALB/c female mice) were orally infected with 45 metacercariae of C. sinensis for 8 weeks. Biliary injuries and fibrosis were extensively evaluated. Hepatic type II cytokines (IL-4, IL-13, and IL-10) were detected by ELISA. Results For wild-type mice, we found that the mice infected with C. sinensis showed severe biliary injuries and fibrosis compared with the normal mice that were free from worm infection. In addition, the levels of type II cytokines such as IL-4, IL-13, and IL-10 in infected wild-type mice were significantly higher than in the control mice without infection (P < 0.05). However, IL-33 deficiency (IL-33 KO) prevents the augmentation of biliary injuries and fibrosis caused by C. sinensis infection. Furthermore, the increased levels of these type II cytokines induced by worm infection were also reversed in IL-33 KO mice. Conclusion Our present study demonstrates that IL-33 contributes to the pathogenesis of C. sinensis-induced biliary injuries and repair, which can potentially orchestrate type 2 responses. These findings highlight the pathophysiological role of IL-33 in the progression of clonorchiasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05490-6.
Collapse
|
11
|
Gou Y, Weng Y, Chen Q, Wu J, Wang H, Zhong J, Bi Y, Cao D, Zhao P, Dong X, Guo M, Wagstaff W, Hendren-Santiago B, Chen C, Youssef A, Haydon RC, Luu HH, Reid RR, Shen L, He TC, Fan J. Carboxymethyl chitosan prolongs adenovirus-mediated expression of IL-10 and ameliorates hepatic fibrosis in a mouse model. Bioeng Transl Med 2022; 7:e10306. [PMID: 36176604 PMCID: PMC9472002 DOI: 10.1002/btm2.10306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/09/2022] Open
Abstract
Effective and safe liver-directed gene therapy has great promise in treating a broad range of liver diseases. While adenoviral (Ad) vectors have been widely used for efficacious in vivo gene delivery, their translational utilities are severely limited due to the short duration of transgene expression and solicitation of host immune response. Used as a promising polymeric vehicle for drug release and nucleic acid delivery, carboxymethyl chitosan (CMC) is biocompatible, biodegradable, anti-microbial, inexpensive, and easy accessible. Here, by exploiting its biocompatibility, controlled release capability and anti-inflammatory activity, we investigated whether CMC can overcome the shortcomings of Ad-mediated gene delivery, hence improving the prospect of Ad applications in gene therapy. We demonstrated that in the presence of optimal concentrations of CMC, Ad-mediated transgene expression lasted up to 50 days after subcutaneous injection, and at least 7 days after intrahepatic injection. Histologic evaluation and immunohistochemical analysis revealed that CMC effectively alleviated Ad-induced host immune response. In our proof-of-principle experiment using the CCl4-induced experimental mouse model of chronic liver damage, we demonstrated that repeated intrahepatic administrations of Ad-IL10 mixed with CMC effectively mitigated the development of hepatic fibrosis. Collectively, these results indicate that CMC can improve the prospect of Ad-mediated gene therapy by diminishing the host immune response while allowing readministration and sustained transgene expression.
Collapse
Affiliation(s)
- Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Yaguang Weng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Qian Chen
- Health Management Center, Deyang People's Hospital Deyang China
| | - Jinghong Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Yang Bi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Stem Cell Biology and Therapy Laboratory of the Pediatric Research Institute, the National Clinical Research Center for Child Health and Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders The Children's Hospital of Chongqing Medical University Chongqing China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Orthopaedic Surgery The Affiliated Hospital of the University of Chinese Academy of Sciences, and Chongqing General Hospital Chongqing China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Orthopaedic Surgery The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Andrew Youssef
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery The University of Chicago Medical Center Chicago Illinois USA
- Department of Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| |
Collapse
|
12
|
Tao W, Yue X, Ye R, Nabi F, Shang Y, Zhu Z, Ahmed BZ, Liu J. Hepatoprotective Effect of the Penthorum Chinense Pursh Extract against the CCl 4-Induced Acute Liver Injury via NF-κB and p38-MAPK PATHWAYS in Dogs. Animals (Basel) 2022; 12:ani12050569. [PMID: 35268138 PMCID: PMC8909057 DOI: 10.3390/ani12050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Acute liver injury (ALI), manifested by acute hepatocellular damages and necrosis, is a life-threatening clinical syndrome and Penthorum Chinense Pursh (PCP) is a well-known folk medicine practiced for liver-related diseases. This study aimed to investigate the ameliorative effects of PCP extract (PCPE) on carbon tetrachloride (CCl4) induced ALI in dogs via mitogen-activated protein kinase (MAPK) and Nuclear factor κB (NF-κB) signaling pathway. Healthy dogs were induced by CCl4 and treated with different dosage regimes of PCPE for 7 days. CCl4 produced acute liver injury and induced both oxidative stress and an inflammatory response in dogs. The PCPE significantly ameliorated and improved vacuolar inflammatory lesions in liver tissues during ALI, enhanced activity of superoxide dismutase, and restored glutathione peroxidase, further significantly reducing the indices of malondialdehyde and nitric oxide in serum. Inflammatory factors (IL-1β, IL-6, and TNF-α) were declined and anti-inflammatory factors (IL-10) were increased by the application of PCPE. PCPE treatment, down-regulated the MEKK4, MKK3, p38MAPK, MSK1, and NF-κB, and upregulated the IkB mRNA levels (p < 0.01) in ALI affected dogs. In conclusion, PCPE repaired acute liver injury by improving antioxidant enzymes and by reducing oxidation products. Furthermore, the PCPE inhibited the MAPK/NF-κB signaling pathway, which resulted in anti-inflammatory and antioxidant effects on ALI-induced dogs. In the future, PCPE could be a useful ethnomedicine in veterinary clinical practices for the treatment of liver injuries or failures.
Collapse
Affiliation(s)
- Weilai Tao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Xin Yue
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Ruiling Ye
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Fazul Nabi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Yangfei Shang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
| | - Zhaorong Zhu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
- Chinese Veterinary Herbal Drugs Innovation Research Lab, University Veterinary Science Engineering Research Center in Chongqing, Chongqing 402460, China
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Bhutto Zohaib Ahmed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water, and Marine Sciences, Uthal 90150, Pakistan;
| | - Juan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (W.T.); (X.Y.); (R.Y.); (F.N.); (Y.S.); (Z.Z.)
- Chinese Veterinary Herbal Drugs Innovation Research Lab, University Veterinary Science Engineering Research Center in Chongqing, Chongqing 402460, China
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence:
| |
Collapse
|
13
|
Lonati C, Schlegel A, Battistin M, Merighi R, Carbonaro M, Dongiovanni P, Leonardi P, Zanella A, Dondossola D. Effluent Molecular Analysis Guides Liver Graft Allocation to Clinical Hypothermic Oxygenated Machine Perfusion. Biomedicines 2021; 9:1444. [PMID: 34680561 PMCID: PMC8533371 DOI: 10.3390/biomedicines9101444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/14/2023] Open
Abstract
Hypothermic-oxygenated-machine-perfusion (HOPE) allows assessment/reconditioning of livers procured from high-risk donors before transplantation. Graft referral to HOPE mostly depends on surgeons' subjective judgment, as objective criteria are still insufficient. We investigated whether analysis of effluent fluids collected upon organ flush during static-cold-storage can improve selection criteria for HOPE utilization. Effluents were analyzed to determine cytolysis enzymes, metabolites, inflammation-related mediators, and damage-associated-molecular-patterns. Molecular profiles were assessed by unsupervised cluster analysis. Differences between "machine perfusion (MP)-yes" vs. "MP-no"; "brain-death (DBD) vs. donation-after-circulatory-death (DCD)"; "early-allograft-dysfunction (EAD)-yes" vs. "EAD-no" groups, as well as correlation between effluent variables and transplantation outcome, were investigated. Livers assigned to HOPE (n = 18) showed a different molecular profile relative to grafts transplanted without this procedure (n = 21, p = 0.021). Increases in the inflammatory mediators PTX3 (p = 0.048), CXCL8/IL-8 (p = 0.017), TNF-α (p = 0.038), and ANGPTL4 (p = 0.010) were observed, whereas the anti-inflammatory cytokine IL-10 was reduced (p = 0.007). Peculiar inflammation, cell death, and coagulation signatures were observed in fluids collected from DCD livers compared to those from DBD grafts. AST (p = 0.034), ALT (p = 0.047), and LDH (p = 0.047) were higher in the "EAD-yes" compared to the "EAD-no" group. Cytolysis markers and hyaluronan correlated with recipient creatinine, AST, and ICU stay. The study demonstrates that effluent molecular analysis can provide directions about the use of HOPE.
Collapse
Affiliation(s)
- Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (R.M.); (D.D.)
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, 50139 Florence, Italy;
- Swiss HPB and Transplant Center, Department of Visceral Surgery and Transplantation, University Hospital Zurich, 8000 Zurich, Switzerland
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (R.M.); (D.D.)
| | - Riccardo Merighi
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (R.M.); (D.D.)
| | - Margherita Carbonaro
- General and Liver Transplant Sugery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy;
| | - Patrizia Leonardi
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (P.L.); (A.Z.)
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (P.L.); (A.Z.)
- Department of Anesthesia and Critical Care, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Daniele Dondossola
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.B.); (R.M.); (D.D.)
- General and Liver Transplant Sugery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (P.L.); (A.Z.)
| |
Collapse
|
14
|
Yan Y, Zeng J, Xing L, Li C. Extra- and Intra-Cellular Mechanisms of Hepatic Stellate Cell Activation. Biomedicines 2021; 9:biomedicines9081014. [PMID: 34440218 PMCID: PMC8391653 DOI: 10.3390/biomedicines9081014] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatic fibrosis is characterized by the pathological accumulation of extracellular matrix (ECM) in the liver resulting from the persistent liver injury and wound-healing reaction induced by various insults. Although hepatic fibrosis is considered reversible after eliminating the cause of injury, chronic injury left unchecked can progress to cirrhosis and liver cancer. A better understanding of the cellular and molecular mechanisms controlling the fibrotic response is needed to develop novel clinical strategies. It is well documented that activated hepatic stellate cells (HSCs) is the most principal cellular players promoting synthesis and deposition of ECM components. In the current review, we discuss pathways of HSC activation, emphasizing emerging extra- and intra-cellular signals that drive this important cellular response to hepatic fibrosis. A number of cell types and external stimuli converge upon HSCs to promote their activation, including hepatocytes, liver sinusoidal endothelial cells, macrophages, cytokines, altered ECM, hepatitis viral infection, enteric dysbiosis, lipid metabolism disorder, exosomes, microRNAs, alcohol, drugs and parasites. We also discuss the emerging signaling pathways and intracellular events that individually or synergistically drive HSC activation, including TGFβ/Smad, Notch, Wnt/β-catenin, Hedgehog and Hippo signaling pathways. These findings will provide novel potential therapeutic targets to arrest or reverse fibrosis and cirrhosis.
Collapse
|