1
|
Steinbuch KB, Cong D, Rodriguez AJ, Tor Y. Emissive Guanosine Analog Applicable for Real-Time Live Cell Imaging. ACS Chem Biol 2024; 19:1836-1841. [PMID: 39101365 PMCID: PMC11334113 DOI: 10.1021/acschembio.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
A new emissive guanosine analog CF3thG, constructed by a single trifluoromethylation step from the previously reported thG, displays red-shifted absorption and emission spectra compared to its precursor. The impact of solvent type and polarity on the photophysical properties of CF3thG suggests that the electronic effects of the trifluoromethyl group dominate its behavior and demonstrates its susceptibility to microenvironmental polarity changes. In vitro transcription initiations using T7 RNA polymerase, initiated with CF3thG, result in highly emissive 5'-labeled RNA transcripts, demonstrating the tolerance of the enzyme toward the analog. Viability assays with HEK293T cells displayed no detrimental effects at tested concentrations, indicating the safety of the analog for cellular applications. Live cell imaging of the free emissive guanosine analog using confocal microscopy was facilitated by its red-shifted absorption and emission and adequate brightness. Real-time live cell imaging demonstrated the release of the guanosine analog from HEK293T cells at concentration-gradient conditions, which was suppressed by the addition of guanosine.
Collapse
Affiliation(s)
- Kfir B. Steinbuch
- Department of Chemistry and
Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, United
States
| | - Deyuan Cong
- Department of Chemistry and
Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, United
States
| | - Anthony J. Rodriguez
- Department of Chemistry and
Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, United
States
| | - Yitzhak Tor
- Department of Chemistry and
Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0358, United
States
| |
Collapse
|
2
|
Keren G, Yehezkel G, Satish L, Adamov Z, Barak Z, Ben-Shabat S, Kagan-Zur V, Sitrit Y. Root-secreted nucleosides: signaling chemoattractants of rhizosphere bacteria. FRONTIERS IN PLANT SCIENCE 2024; 15:1388384. [PMID: 38799096 PMCID: PMC11120975 DOI: 10.3389/fpls.2024.1388384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024]
Abstract
The rhizosphere is a complex ecosystem, consisting of a narrow soil zone influenced by plant roots and inhabited by soil-borne microorganisms. Plants actively shape the rhizosphere microbiome through root exudates. Some metabolites are signaling molecules specifically functioning as chemoattractants rather than nutrients. These elusive signaling molecules have been sought for several decades, and yet little progress has been made. Root-secreted nucleosides and deoxynucleosides were detected in exudates of various plants by targeted ultra-performance liquid chromatography-mass spectrometry/mass spectrometry. Rhizobacteria were isolated from the roots of Helianthemum sessiliflorum carrying the mycorrhizal desert truffle Terfezia boudieri. Chemotaxis was determined by a glass capillary assay or plate assays on semisolid agar and through a soil plate assay. Nucleosides were identified in root exudates of plants that inhabit diverse ecological niches. Nucleosides induced positive chemotaxis in plant beneficial bacteria Bacillus pumilus, Bacillus subtilis, Pseudomonas turukhanskensis spp., Serratia marcescens, and the pathogenic rhizobacterium Xanthomonas campestris and E coli. In a soil plate assay, nucleosides diffused to substantial distances and evoked chemotaxis under conditions as close as possible to natural environments. This study implies that root-secreted nucleosides are involved in the assembly of the rhizosphere bacterial community by inducing chemotaxis toward plant roots. In animals, nucleoside secretion known as "purinergic signaling" is involved in communication between cells, physiological processes, diseases, phagocytic cell migration, and bacterial activity. The coliform bacterium E. coli that inhabits the lower intestine of warm-blooded organisms also attracted to nucleosides, implying that nucleosides may serve as a common signal for bacterial species inhabiting distinct habitats. Taken together, all these may indicate that chemotaxis signaling by nucleosides is a conserved universal mechanism that encompasses living kingdoms and environments and should be given further attention in plant rhizosphere microbiome research.
Collapse
Affiliation(s)
- Guy Keren
- The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Galit Yehezkel
- The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lakkakula Satish
- The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zahar Adamov
- The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ze’ev Barak
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Varda Kagan-Zur
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yaron Sitrit
- The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Katif Research Center for Research & Development, Netivot, Israel
| |
Collapse
|
3
|
Pietrangelo T, Cagnin S, Bondi D, Santangelo C, Marramiero L, Purcaro C, Bonadio RS, Di Filippo ES, Mancinelli R, Fulle S, Verratti V, Cheng X. Myalgic encephalomyelitis/chronic fatigue syndrome from current evidence to new diagnostic perspectives through skeletal muscle and metabolic disturbances. Acta Physiol (Oxf) 2024; 240:e14122. [PMID: 38483046 DOI: 10.1111/apha.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a demanding medical condition for patients and society. It has raised much more public awareness after the COVID-19 pandemic since ME/CFS and long-COVID patients share many clinical symptoms such as debilitating chronic fatigue. However, unlike long COVID, the etiopathology of ME/CFS remains a mystery despite several decades' research. This review moves from pathophysiology of ME/CFS through the compelling evidence and most interesting hypotheses. It focuses on the pathophysiology of skeletal muscle by proposing the hypothesis that skeletal muscle tissue offers novel opportunities for diagnosis and treatment of this syndrome and that new evidence can help resolve the long-standing debate on terminology.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padua, Padova, Italy
- CIR-Myo Myology Center, University of Padua, Padova, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Cristina Purcaro
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Xuanhong Cheng
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
4
|
Pietrangelo T, Santangelo C, Bondi D, Cocci P, Piccinelli R, Piacenza F, Rosato E, Azman SNA, Binetti E, Farina M, Locatelli M, Brunetti V, Le Donne C, Marramiero L, Di Filippo ES, Verratti V, Fulle S, Scollo V, Palermo F. Endurance-dependent urinary extracellular vesicle signature: shape, metabolic miRNAs, and purine content distinguish triathletes from inactive people. Pflugers Arch 2023; 475:691-709. [PMID: 37156970 PMCID: PMC10185655 DOI: 10.1007/s00424-023-02815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Extracellular vesicles (EVs) enriched with bioactive molecules have gained considerable attention in nanotechnology because they are critical to intercellular communication while maintaining low immunological impact. Among biological matrices, urine has emerged as a noninvasive source of extracellular-contained liquid biopsy, currently of interest as a readout for physiological adaptations. Therefore, we aimed to evaluate chronic adaptations of endurance sport practice in terms of urinary EV parameters and evaluated by food consumption assessment. Two balanced groups of 13 inactive controls vs. triathlon athletes were enrolled; their urinary EVs were obtained by differential ultracentrifugation and analyzed by dynamic light scattering and transmission electron and atomic force microscopy. The cargo was analyzed by means of purine and miRNA content through HPLC-UV and qRT-PCR. Specific urinary EV signatures differentiated inactive versus endurance-trained in terms of peculiar shape. Particularly, a spheroid shape, smaller size, and lower roughness characterize EVs from triathletes. Metabolic and regulatory miRNAs often associated with skeletal muscle (i.e., miR378a-5p, miR27a-3p, miR133a, and miR206) also accounted for a differential signature. These miRNAs and guanosine in urinary EVs can be used as a readout for metabolic status along with the shape and roughness of EVs, novel informative parameters that are rarely considered. The network models allow scholars to entangle nutritional and exercise factors related to EVs' miRNA and purine content to depict metabolic signatures. All in all, multiplex biophysical and molecular analyses of urinary EVs may serve as promising prospects for research in exercise physiology.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
| | - Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Raffaela Piccinelli
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Roma, Italy
| | - Francesco Piacenza
- IRCCS-Istituto Nazionale di Riposo e Cura per Anziani, Polo Scientifico e Tecnologico, Centro di Tecnologie Avanzate nell'Invecchiamento, Ancona, Italy
| | - Enrica Rosato
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - S N Afifa Azman
- Department of Information Engineering, Polytechnic University of Marche, Ancona, Italy
| | - Enrico Binetti
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, Lecce, Italy
- Institute for Microelectronics and Microsystems, National Research Council of Italy, Lecce, Italy
| | - Marco Farina
- Department of Information Engineering, Polytechnic University of Marche, Ancona, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Virgilio Brunetti
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, Lecce, Italy
| | - Cinzia Le Donne
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Roma, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Valentina Scollo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Francesco Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|