1
|
de Zeeuw CI, Yu SY, Chen J, van Hoogstraten WS, van den Maagdenberg AMJM, Bosman LWJ, Kros L. The modified elevated gap interaction test: a novel paradigm to assess social preference. Open Biol 2024; 14:240250. [PMID: 39689857 DOI: 10.1098/rsob.240250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Social deficits play a role in numerous psychiatric, neurological and neurodevelopmental disorders. Relating complex behaviour, such as social interaction, to brain activity remains one of the biggest goals and challenges in neuroscience. Availability of standardized tests that assess social preference is however, limited. Here, we present a novel behavioural paradigm that we developed to measure social behaviour, the modified elevated gap interaction test (MEGIT). In this test, animals are placed on one of two elevated platforms separated by a gap, in which they can engage in whisker interaction with either a conspecific or an object. This allows quantification of social preference in real interaction rather than just proximity and forms an ideal setup for social behaviour-related neuronal recordings. We provide a detailed description of the paradigm and its highly reliable, deep-learning based analysis, and show results obtained from wild-type animals as well as mouse models for disorders characterized by either hyposocial (autism spectrum disorder; ASD) or hypersocial (Williams Beuren syndrome; WBS) behaviour. Wild-type animals show a clear social preference. This preference is significantly smaller in an ASD mouse model, whereas it is larger in WBS mice. The results indicate that MEGIT is a sensitive and reliable test for detecting social phenotypes.
Collapse
Affiliation(s)
- Chris I de Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam 3015GD, The Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts and Sciences, Amsterdam 1105BA, The Netherlands
| | - Si-Yang Yu
- Department of Neuroscience, Erasmus MC, Rotterdam 3015GD, The Netherlands
| | - Jiawei Chen
- Department of Neuroscience, Erasmus MC, Rotterdam 3015GD, The Netherlands
| | | | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus MC, Rotterdam 3015GD, The Netherlands
| | - Lieke Kros
- Department of Neuroscience, Erasmus MC, Rotterdam 3015GD, The Netherlands
| |
Collapse
|
2
|
Bar E, Fischer I, Rokach M, Elad-Sfadia G, Shirenova S, Ophir O, Trangle SS, Okun E, Barak B. Neuronal deletion of Gtf2i results in developmental microglial alterations in a mouse model related to Williams syndrome. Glia 2024; 72:1117-1135. [PMID: 38450767 DOI: 10.1002/glia.24519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Williams syndrome (WS) is a genetic neurodevelopmental disorder caused by a heterozygous microdeletion, characterized by hypersociability and unique neurocognitive abnormalities. Of the deleted genes, GTF2I has been linked to hypersociability in WS. We have recently shown that Gtf2i deletion from forebrain excitatory neurons, referred to as Gtf2i conditional knockout (cKO) mice leads to multi-faceted myelination deficits associated with the social behaviors affected in WS. These deficits were potentially mediated also by microglia, as they present a close relationship with oligodendrocytes. To study the impact of altered myelination, we characterized these mice in terms of microglia over the course of development. In postnatal day 30 (P30) Gtf2i cKO mice, cortical microglia displayed a more ramified state, as compared with wild type (controls). However, postnatal day 4 (P4) microglia exhibited high proliferation rates and an elevated activation state, demonstrating altered properties related to activation and inflammation in Gtf2i cKO mice compared with control. Intriguingly, P4 Gtf2i cKO-derived microglial cells exhibited significantly elevated myelin phagocytosis in vitro compared to control mice. Lastly, systemic injection of clemastine to P4 Gtf2i cKO and control mice until P30, led to a significant interaction between genotypes and treatments on the expression levels of the phagocytic marker CD68, and a significant reduction of the macrophage/microglial marker Iba1 transcript levels in the cortex of the Gtf2i cKO treated mice. Our data thus implicate microglia as important players in WS, and that early postnatal manipulation of microglia might be beneficial in treating inflammatory and myelin-related pathologies.
Collapse
Affiliation(s)
- Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad-Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sophie Shirenova
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Boaz Barak
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Forrest MP, Penzes P. Mechanisms of copy number variants in neuropsychiatric disorders: From genes to therapeutics. Curr Opin Neurobiol 2023; 82:102750. [PMID: 37515924 PMCID: PMC10529795 DOI: 10.1016/j.conb.2023.102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/31/2023]
Abstract
Copy number variants (CNVs) are genomic imbalances strongly linked to the aetiology of neuropsychiatric disorders such as schizophrenia and autism. By virtue of their large size, CNVs often contain many genes, providing a multi-genic view of disease processes that can be dissected in model systems. Thus, CNV research provides an important stepping stone towards understanding polygenic disease mechanisms, positioned between monogenic and polygenic risk models. In this review, we will outline hypothetical models for gene interactions occurring within CNVs and discuss different approaches used to study rodent and stem cell disease models. We highlight recent work showing that genetic and pharmacological strategies can be used to rescue important aspects of CNV-mediated pathophysiology, which often converges onto synaptic pathways. We propose that using a rescue approach in complete CNV models provides a new path forward for precise mechanistic understanding of complex disorders and a tangible route towards therapeutic development.
Collapse
Affiliation(s)
- Marc P Forrest
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Autism and Neurodevelopment, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Abdalla N, Tobías-Baraja E, Gonzalez A, Garrabou G, Egea G, Campuzano V. Dysfunctional Mitochondria in the Cardiac Fibers of a Williams-Beuren Syndrome Mouse Model. Int J Mol Sci 2023; 24:10071. [PMID: 37373217 DOI: 10.3390/ijms241210071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Williams-Beuren syndrome (WBS) is a rare neurodevelopmental disorder that, together with a rather characteristic neurocognitive profile, presents a strong cardiovascular phenotype. The cardiovascular features of WBS are mainly related to a gene dosage effect due to hemizygosity of the elastin (ELN) gene; however, the phenotypic variability between WBS patients indicates the presence of important modulators of the clinical impact of elastin deficiency. Recently, two genes within the WBS region have been linked to mitochondrial dysfunction. Numerous cardiovascular diseases are related to mitochondrial dysfunction; therefore, it could be a modulator of the phenotype present in WBS. Here, we analyze mitochondrial function and dynamics in cardiac tissue from a WBS complete deletion (CD) model. Our research reveals that cardiac fiber mitochondria from CD animals have altered mitochondrial dynamics, accompanied by respiratory chain dysfunction with decreased ATP production, reproducing alterations observed in fibroblasts from WBS patients. Our results highlight two major factors: on the one hand, that mitochondrial dysfunction is probably a relevant mechanism underlying several risk factors associated with WBS disease; on the other, the CD murine model mimics the mitochondrial phenotype of WBS and could be a great model for carrying out preclinical tests on drugs targeting the mitochondria.
Collapse
Affiliation(s)
- Noura Abdalla
- Department de Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Ester Tobías-Baraja
- Department of Internal Medicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Alejandro Gonzalez
- Department de Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Gloria Garrabou
- Department of Internal Medicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Gustavo Egea
- Department de Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Center of Medical Genetics, University of Antwerp, 2650 Antwerp, Belgium
| | - Victoria Campuzano
- Department de Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
5
|
Abdalla N, Ortiz-Romero P, Rodriguez-Rovira I, Pérez-Jurado LA, Egea G, Campuzano V. The Combined Treatment of Curcumin with Verapamil Ameliorates the Cardiovascular Pathology in a Williams-Beuren Syndrome Mouse Model. Int J Mol Sci 2023; 24:ijms24043261. [PMID: 36834670 PMCID: PMC9961051 DOI: 10.3390/ijms24043261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Williams-Beuren syndrome (WBS) is a rare disorder caused by a recurrent microdeletion with hallmarks of cardiovascular manifestations, mainly supra-valvular aortic stenosis (SVAS). Unfortunately, there is currently no efficient treatment. We investigated the effect of chronic oral treatment with curcumin and verapamil on the cardiovascular phenotype of a murine model of WBS harbouring a similar deletion, CD (complete deletion) mice. We analysed systolic blood pressure in vivo and the histopathology of the ascending aorta and the left ventricular myocardium to determine the effects of treatments and their underlying mechanism. Molecular analysis showed significantly upregulated xanthine oxidoreductase (XOR) expression in the aorta and left ventricular myocardium of CD mice. This overexpression is concomitant with increased levels of nitrated proteins as a result of byproduct-mediated oxidative stress damage, indicating that XOR-generated oxidative stress impacts the pathophysiology of cardiovascular manifestations in WBS. Only the combined therapy of curcumin and verapamil resulted in a significant improvement of cardiovascular parameters via activation of the nuclear factor erythroid 2 (NRF2) and reduction of XOR and nitrated protein levels. Our data suggested that the inhibition of XOR and oxidative stress damage could help prevent the severe cardiovascular injuries of this disorder.
Collapse
Affiliation(s)
- Noura Abdalla
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Paula Ortiz-Romero
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Isaac Rodriguez-Rovira
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Luis A. Pérez-Jurado
- Department of Medicine and Life Sciences, University Pompeu Fabra, 08003 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Genetics Service, Hospital del Mar & Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Gustavo Egea
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Victoria Campuzano
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|