1
|
Cichalewska-Studzinska M, Szymanski J, Stec-Martyna E, Perdas E, Studzinska M, Jerczynska H, Kulczycka-Wojdala D, Stawski R, Mycko MP. The Role of miR-155 in Modulating Gene Expression in CD4+ T Cells: Insights into Alternative Immune Pathways in Autoimmune Encephalomyelitis. Int J Mol Sci 2024; 25:11355. [PMID: 39518908 PMCID: PMC11545458 DOI: 10.3390/ijms252111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
CD4+ T cells are considered the main orchestrators of autoimmune diseases. Their disruptive effect on CD4+ T cell differentiation and the imbalance between T helper cell populations can be most accurately determined using experimental autoimmune encephalomyelitis (EAE) as an animal model of multiple sclerosis (MS). One epigenetic factor known to promote autoimmune inflammation is miRNA-155 (miR-155), which is significantly upregulated in inflammatory T cells. The aim of the present study was to profile the transcriptome of immunized mice and determine their gene expression levels based on mRNA and miRNA sequencing. No statistically significant differences in miRNA profile were observed; however, substantial changes in gene expression between miRNA-155 knockout (KO) mice and WT were noted. In miR-155 KO mice, mRNA expression in CD4+ T cells changed in response to immunization with the myeloid antigen MOG35-55. After restimulation with MOG35-55, increased Ffar1 (free fatty acid receptor 1) and Scg2 (secretogranin-2) expression were noted in the CD4+ T cells of miR-155-deficient mice; this is an example of an alternative response to antigen stimulation.
Collapse
Affiliation(s)
- Maria Cichalewska-Studzinska
- Research Laboratory CoreLab, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.S.-M.); (M.S.); (H.J.); (D.K.-W.)
| | - Jacek Szymanski
- Research Laboratory CoreLab, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.S.-M.); (M.S.); (H.J.); (D.K.-W.)
| | - Emilia Stec-Martyna
- Research Laboratory CoreLab, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.S.-M.); (M.S.); (H.J.); (D.K.-W.)
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Miroslawa Studzinska
- Research Laboratory CoreLab, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.S.-M.); (M.S.); (H.J.); (D.K.-W.)
| | - Hanna Jerczynska
- Research Laboratory CoreLab, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.S.-M.); (M.S.); (H.J.); (D.K.-W.)
| | - Dominika Kulczycka-Wojdala
- Research Laboratory CoreLab, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.S.-M.); (M.S.); (H.J.); (D.K.-W.)
| | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Marcin P. Mycko
- Department of Neurology, Laboratory of Neuroimmunology, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| |
Collapse
|
2
|
Huang J, Suzuki M, Endo A, Watanabe A, Sakata I. The role of free fatty acid receptor-1 in gastric contractions in Suncus murinus. Food Funct 2024; 15:2221-2233. [PMID: 38318756 DOI: 10.1039/d3fo03565d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Motilin is an important hormonal regulator in the migrating motor complex (MMC). Free fatty acid receptor-1 (FFAR1, also known as GPR40) has been reported to stimulate motilin release in human duodenal organoids. However, how FFAR1 regulates gastric motility in vivo is unclear. This study investigated the role of FFAR1 in the regulation of gastric contractions and its possible mechanism of action using Suncus murinus. Firstly, intragastric administration of oleic acid (C18:1, OA), a natural ligand for FFAR1, stimulated phase II-like contractions, followed by phase III-like contractions in the fasted state, and the gastric emptying rate was accelerated. The administration of GW1100, an FFAR1 antagonist, inhibited the effects of OA-induced gastric contractions. Intravenous infusion of a ghrelin receptor antagonist (DLS) or serotonin 4 (5-HT4) receptor antagonist (GR125487) inhibited phase II-like contractions and prolonged the onset of phase III-like contractions induced by OA. MA-2029, a motilin receptor antagonist, delayed the occurrence of phase III-like contractions. In vagotomized suncus, OA did not induce phase II-like contractions. In addition, OA promoted gastric emptying through a vagal pathway during the postprandial period. However, OA did not directly act on the gastric body to induce contractions in vitro. In summary, this study indicates that ghrelin, motilin, 5-HT, and the vagus nerve are involved in the role of FFAR1 regulating MMC. Our findings provide novel evidence for the involvement of nutritional factors in the regulation of gastric motility.
Collapse
Affiliation(s)
- Jin Huang
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Miu Suzuki
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Ami Endo
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Ayumi Watanabe
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
- Research Area of Evolutionary Molecular Design, Strategic Research Center, Saitama University, Saitama, Japan
| |
Collapse
|
3
|
Nakamoto K, Tokuyama S. [A long chain fatty acid receptor signaling as a new therapeutic target for stress-induced chronic pain]. Nihon Yakurigaku Zasshi 2024; 159:354-356. [PMID: 39496406 DOI: 10.1254/fpj.24047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Psychological and social stresses are known to be risk factors for psychiatric disorders, including depression and anxiety. On the other hand, exposure to these stresses can also cause prolonged and severe pain. However, the pathological mechanism for stress-induced chronic pain is complex, and there are many unresolved aspects, and no effective therapeutic drugs have been established. Since the discovery of the long-chain fatty acid receptor GPR40/FFAR1 about 20 years ago, research on the mechanism that promotes insulin secretion in the pancreas has progressed. Previously, we have worked to elucidate the physiological effects of GPR40/FFAR1 in the central nervous system and has found that it is involved in the regulation of pain and emotion. Based on these findings, they are now investigating the involvement of fatty acid receptors signaling in the development of stress-related chronic pain. In this review, we discuss the status of psychological stress-related chronic pain and the GPR40/FFAR1-mediated and -striking regulatory mechanisms of stress-induced chronic pain, based on our findings using a mouse model of chronic pain created by loading postoperative pain to a social defeat stress model mouse that mimics psychosocial stress. We summarized about the involvement of fatty acid receptor signaling as a new therapeutic candidate for chronic pain in this review.
Collapse
Affiliation(s)
- Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
4
|
Gerace E, Baldi S, Salimova M, Di Gloria L, Curini L, Cimino V, Nannini G, Russo E, Pallecchi M, Ramazzotti M, Bartolucci G, Occupati B, Lanzi C, Scarpino M, Lanzo G, Grippo A, Lolli F, Mannaioni G, Amedei A. Oral and fecal microbiota perturbance in cocaine users: Can rTMS-induced cocaine abstinence support eubiosis restoration? iScience 2023; 26:106627. [PMID: 37250301 PMCID: PMC10214473 DOI: 10.1016/j.isci.2023.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
The effects of cocaine on microbiota have been scarcely explored. Here, we investigated the gut (GM) and oral (OM) microbiota composition of cocaine use disorder (CUD) patients and the effects of repetitive transcranial magnetic stimulation (rTMS). 16S rRNA sequencing was used to characterize GM and OM, whereas PICRUST2 assessed functional changes in microbial communities, and gas-chromatography was used to evaluate fecal short and medium chain fatty acids. CUD patients reported a significant decrease in alpha diversity and modification of the abundances of several taxa in both GM and OM. Furthermore, many predicted metabolic pathways were differentially expressed in CUD patients' stool and saliva samples, as well as reduced levels of butyric acid that appear restored to normal amounts after rTMS treatment. In conclusion, CUD patients showed a profound dysbiotic fecal and oral microbiota composition and function and rTMS-induced cocaine abstinence determined the restoration of eubiotic microbiota.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, 50139 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Maya Salimova
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Virginia Cimino
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Brunella Occupati
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Cecilia Lanzi
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Maenia Scarpino
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Giovanni Lanzo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Antonello Grippo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Francesco Lolli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|