1
|
Galvez B. Pedreira J, Woelffing P, Schwarz M, Ebner S, Rudalska R, Masberg B, Esposito A, Rashidian A, Schevchenko E, Smutna L, Pavek P, Kublbeck J, Kronenberger T, Zender L, Lämmerhofer M, Dauch D, Laufer SA. Uncovering α-Selectivity for Liver X Receptor Agonists for Lipotoxic Cancer Therapies. J Med Chem 2025; 68:7180-7196. [PMID: 40127224 PMCID: PMC11997999 DOI: 10.1021/acs.jmedchem.4c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/07/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent causes of cancer-related deaths worldwide. We recently showed that pharmacologically induced lipotoxicity represents a promising therapeutic strategy for the treatment of HCC. Synthetic LXRα agonists induce the production of toxic saturated fatty acids in tumor cells. When combined with DFG-out Raf inhibitors, which block fatty acid desaturation by inducing proteasomal degradation of stearoyl-CoA desaturase (SCD1), LXRα activation can trigger lipotoxicity-induced cancer cell death. However, the clinical translation of this therapeutic strategy is limited by the lack of specific LXRα agonists for clinical use. Here, we have developed a series of promising maleimide LXR agonists with increased potency for LXRα and enhanced specificity. Our agonist frontrunner 40 shows high selectivity for LXRα and strong therapeutic efficacy in HCC organoids, therefore illustrating a strong potential for advancing this lipotoxic treatment strategy to clinical application.
Collapse
Affiliation(s)
- Júlia Galvez B. Pedreira
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
- IFIT Cluster
of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed
Tumor Therapies’, University of Tuebingen, Tuebingen 72076, Germany
| | - Pascal Woelffing
- IFIT Cluster
of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed
Tumor Therapies’, University of Tuebingen, Tuebingen 72076, Germany
- Department
of Medical Oncology and Pneumology, University
Hospital Tuebingen, Otfried-Mueller-Strasse
14, Tuebingen 72076, Germany
| | - Moritz Schwarz
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Simon Ebner
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Ramona Rudalska
- IFIT Cluster
of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed
Tumor Therapies’, University of Tuebingen, Tuebingen 72076, Germany
- Department
of Medical Oncology and Pneumology, University
Hospital Tuebingen, Otfried-Mueller-Strasse
14, Tuebingen 72076, Germany
| | - Benedikt Masberg
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard-Karls University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Aylin Esposito
- IFIT Cluster
of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed
Tumor Therapies’, University of Tuebingen, Tuebingen 72076, Germany
- Department
of Medical Oncology and Pneumology, University
Hospital Tuebingen, Otfried-Mueller-Strasse
14, Tuebingen 72076, Germany
| | - Azam Rashidian
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Ekaterina Schevchenko
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Lucie Smutna
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Petr Pavek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Jenni Kublbeck
- School
of
Pharmacy, Faculty of Health Sciences, University
of Eastern Finland, P.O. Box 1627, Kuopio FI-70210, Finland
- A.I. Virtanen
Institute for Molecular Sciences, University
of Eastern Finland, P.O. Box 1627, Kuopio FI-70210, Finland
| | - Thales Kronenberger
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
- School
of
Pharmacy, Faculty of Health Sciences, University
of Eastern Finland, P.O. Box 1627, Kuopio FI-70210, Finland
- Partner-site
Tuebingen, German Center for Infection Research
(DZIF), Elfriede-Aulhorn-Str.
6, Tuebingen 72076, Germany
| | - Lars Zender
- IFIT Cluster
of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed
Tumor Therapies’, University of Tuebingen, Tuebingen 72076, Germany
- Department
of Medical Oncology and Pneumology, University
Hospital Tuebingen, Otfried-Mueller-Strasse
14, Tuebingen 72076, Germany
- Tuebingen
Center for Academic Drug Discovery & Development (TüCAD2), Auf der Morgenstelle 8, Tuebingen 72076, Germany
- German
Cancer Research Consortium (DKTK), Partner Site Tuebingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Michael Lämmerhofer
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard-Karls University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Daniel Dauch
- IFIT Cluster
of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed
Tumor Therapies’, University of Tuebingen, Tuebingen 72076, Germany
- Department
of Medical Oncology and Pneumology, University
Hospital Tuebingen, Otfried-Mueller-Strasse
14, Tuebingen 72076, Germany
- Tuebingen
Center for Academic Drug Discovery & Development (TüCAD2), Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Stefan A. Laufer
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
- IFIT Cluster
of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed
Tumor Therapies’, University of Tuebingen, Tuebingen 72076, Germany
- Partner-site
Tuebingen, German Center for Infection Research
(DZIF), Elfriede-Aulhorn-Str.
6, Tuebingen 72076, Germany
- Tuebingen
Center for Academic Drug Discovery & Development (TüCAD2), Auf der Morgenstelle 8, Tuebingen 72076, Germany
| |
Collapse
|
2
|
Salam R, Bakker M, Krutáková M, Štefela A, Pávek P, Duintjer Tebbens J, Zitko J. The discovery of a new nonbile acid modulator of Takeda G protein-coupled receptor 5: An integrated computational approach. Arch Pharm (Weinheim) 2025; 358:e2400423. [PMID: 39801251 PMCID: PMC11726147 DOI: 10.1002/ardp.202400423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
The Takeda G protein-coupled receptor 5 (TGR5), also known as GPBAR1 (G protein-coupled bile acid receptor), is a membrane-type bile acid receptor that regulates blood glucose levels and energy expenditure. These essential functions make TGR5 a promising target for the treatment of type 2 diabetes and metabolic disorders. Currently, most research on developing TGR5 agonists focuses on modifying the structure of bile acids, which are the endogenous ligands of TGR5. However, TGR5 agonists with nonsteroidal structures have not been widely explored. This study aimed at discovering new TGR5 agonists using bile acid derivatives as a basis for a computational approach. We applied a combination of pharmacophore-based, molecular docking, and molecular dynamic (MD) simulation to identify potential compounds as new TGR5 agonists. Through pharmacophore screening and molecular docking, we identified 41 candidate compounds. From these, five candidates were selected based on criteria including pharmacophore features, a docking score of less than 9.2 kcal/mol, and similarity in essential interaction patterns with a reference ligand. Biological assays of the five hits confirmed that Hit-3 activates TGR5 similarly to the bile acid control. This was supported by MD simulation results, which indicated that a hydrogen bond interaction with Tyr240 is involved in TGR5 activation. Hit-3 (CSC089939231) represents a new nonsteroidal lead that can be further optimized to design potent TGR5 agonists.
Collapse
Affiliation(s)
- Rudy Salam
- Department of Biophysics and Physical Chemistry, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic
- Department of Pharmacy, Faculty of MedicineUniversitas BrawijayaMalangIndonesia
| | - Michael Bakker
- Department of Biophysics and Physical Chemistry, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic
| | - Mária Krutáková
- Department of Pharmacology and Toxicology, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic
| | - Alžbeta Štefela
- Department of Pharmacology and Toxicology, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic
| | - Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic
| | - Jan Zitko
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of PharmacyCharles UniversityHradec KrálovéCzech Republic
| |
Collapse
|
3
|
Lastuvkova H, Nova Z, Hroch M, Alaei Faradonbeh F, Schreiberova J, Mokry J, Faistova H, Stefela A, Dusek J, Kucera O, Hyspler R, Dohnalkova E, Bayer RL, Hirsova P, Pavek P, Micuda S. Carvedilol impairs bile acid homeostasis in mice: implication for nonalcoholic steatohepatitis. Toxicol Sci 2023; 196:200-217. [PMID: 37632784 PMCID: PMC10682974 DOI: 10.1093/toxsci/kfad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023] Open
Abstract
Carvedilol is a widely used beta-adrenoreceptor antagonist for multiple cardiovascular indications; however, it may induce cholestasis in patients, but the mechanism for this effect is unclear. Carvedilol also prevents the development of various forms of experimental liver injury, but its effect on nonalcoholic steatohepatitis (NASH) is largely unknown. In this study, we determined the effect of carvedilol (10 mg/kg/day p.o.) on bile formation and bile acid (BA) turnover in male C57BL/6 mice consuming either a chow diet or a western-type NASH-inducing diet. BAs were profiled by liquid chromatography-mass spectrometry and BA-related enzymes, transporters, and regulators were evaluated by western blot analysis and qRT-PCR. In chow diet-fed mice, carvedilol increased plasma concentrations of BAs resulting from reduced BA uptake to hepatocytes via Ntcp transporter downregulation. Inhibition of the β-adrenoreceptor-cAMP-Epac1-Ntcp pathway by carvedilol may be the post-transcriptional mechanism underlying this effect. In contrast, carvedilol did not worsen the deterioration of BA homeostasis accompanying NASH; however, it shifted the spectra of BAs toward more hydrophilic and less toxic α-muricholic and hyocholic acids. This positive effect of carvedilol was associated with a significant attenuation of liver steatosis, inflammation, and fibrosis in NASH mice. In conclusion, our results indicate that carvedilol may increase BAs in plasma by modifying their liver transport. In addition, carvedilol provided significant hepatoprotection in a NASH murine model without worsening BA accumulation. These data suggest beneficial effects of carvedilol in patients at high risk for developing NASH.
Collapse
Affiliation(s)
- Hana Lastuvkova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Zuzana Nova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Milos Hroch
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Fatemeh Alaei Faradonbeh
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jolana Schreiberova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jaroslav Mokry
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Hana Faistova
- Department of Pathology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Alzbeta Stefela
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Otto Kucera
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Radomír Hyspler
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Hradec Kralove, Czech Republic
| | - Ester Dohnalkova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Rachel L Bayer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Fiorucci S, Sepe V, Biagioli M, Fiorillo B, Rapacciuolo P, Distrutti E, Zampella A. Development of bile acid activated receptors hybrid molecules for the treatment of inflammatory and metabolic disorders. Biochem Pharmacol 2023; 216:115776. [PMID: 37659739 DOI: 10.1016/j.bcp.2023.115776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The farnesoid-x-receptor (FXR) and the G protein bile acid activated receptor (GPBAR)1 are two bile acid activated receptors highly expressed in entero-hepatic, immune, adipose and cardiovascular tissues. FXR and GPBAR1 are clinically validated targets in the treatment of metabolic disorders and FXR agonists are currently trialled in patients with non-alcoholic steato-hepatitis (NASH). Results of these trials, however, have raised concerns over safety and efficacy of selective FXR ligands suggesting that the development of novel agent designed to impact on multiple targets might have utility in the treatment of complex, multigenic, disorders. Harnessing on FXR and GPBAR1 agonists, several novel hybrid molecules have been developed, including dual FXR and GPBAR1 agonists and antagonists, while exploiting the flexibility of FXR agonists toward other nuclear receptors, dual FXR and peroxisome proliferators-activated receptors (PPARs) and liver-X-receptors (LXRs) and Pregnane-X-receptor (PXR) agonists have been reported. In addition, modifications of FXR agonists has led to the discovery of dual FXR agonists and fatty acid binding protein (FABP)1 and Leukotriene B4 hydrolase (LTB4H) inhibitors. The GPBAR1 binding site has also proven flexible to accommodate hybrid molecules functioning as GPBAR1 agonist and cysteinyl leukotriene receptor (CYSLTR)1 antagonists, as well as dual GPBAR1 agonists and retinoid-related orphan receptor (ROR)γt antagonists, dual GPBAR1 agonist and LXR antagonists and dual GPBAR1 agonists endowed with inhibitory activity on dipeptidyl peptidase 4 (DPP4). In this review we have revised the current landscape of FXR and GPBAR1 based hybrid agents focusing on their utility in the treatment of metabolic associated liver disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Valentina Sepe
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Bianca Fiorillo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pasquale Rapacciuolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| |
Collapse
|
5
|
Mejdrová I, Dušek J, Škach K, Stefela A, Skoda J, Chalupský K, Dohnalová K, Pavkova I, Kronenberger T, Rashidian A, Smutná L, Duchoslav V, Smutny T, Pávek P, Nencka R. Discovery of Novel Human Constitutive Androstane Receptor Agonists with the Imidazo[1,2- a]pyridine Structure. J Med Chem 2023; 66:2422-2456. [PMID: 36756805 PMCID: PMC10017030 DOI: 10.1021/acs.jmedchem.2c01140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The nuclear constitutive androstane receptor (CAR, NR1I3) plays significant roles in many hepatic functions, such as fatty acid oxidation, biotransformation, liver regeneration, as well as clearance of steroid hormones, cholesterol, and bilirubin. CAR has been proposed as a hypothetical target receptor for metabolic or liver disease therapy. Currently known prototype high-affinity human CAR agonists such as CITCO (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) have limited selectivity, activating the pregnane X receptor (PXR) receptor, a related receptor of the NR1I subfamily. We have discovered several derivatives of 3-(1H-1,2,3-triazol-4-yl)imidazo[1,2-a]pyridine that directly activate human CAR in nanomolar concentrations. While compound 39 regulates CAR target genes in humanized CAR mice as well as human hepatocytes, it does not activate other nuclear receptors and is nontoxic in cellular and genotoxic assays as well as in rodent toxicity studies. Our findings concerning potent human CAR agonists with in vivo activity reinforce the role of CAR as a possible therapeutic target.
Collapse
Affiliation(s)
- Ivana Mejdrová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jan Dušek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Kryštof Škach
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Alžbeta Stefela
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Josef Skoda
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Karel Chalupský
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- Czech
Centre for Phenogenomics, Institute of Molecular
Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Klára Dohnalová
- Czech
Centre for Phenogenomics, Institute of Molecular
Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- 1st
Medical Faculty, Charles University, Katerinska 32, 112 08 Prague, Czech Republic
| | - Ivona Pavkova
- Faculty
of Military Health Sciences, University
of Defense, Trebeska
1575, 500 01 Hradec
Kralove, Czech Republic
| | - Thales Kronenberger
- Department
of Internal Medicine VIII, University Hospital
of Tübingen, 72076 Tübingen, Germany
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität, 72076 Tübingen, Germany
| | - Azam Rashidian
- Department
of Internal Medicine VIII, University Hospital
of Tübingen, 72076 Tübingen, Germany
| | - Lucie Smutná
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Vojtěch Duchoslav
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Tomas Smutny
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Petr Pávek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Radim Nencka
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
6
|
Díaz-Holguín A, Rashidian A, Pijnenburg D, Monteiro Ferreira G, Stefela A, Kaspar M, Kudova E, Poso A, van Beuningen R, Pavek P, Kronenberger T. When Two Become One: Conformational Changes in FXR/RXR Heterodimers Bound to Steroidal Antagonists. ChemMedChem 2023; 18:e202200556. [PMID: 36398403 DOI: 10.1002/cmdc.202200556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor with an essential role in regulating bile acid synthesis and cholesterol homeostasis. FXR activation by agonists is explained by an αAF-2-trapping mechanism; however, antagonism mechanisms are diverse. We discuss microsecond molecular dynamics (MD) simulations investigating our recently reported FXR antagonists 2a and 2 h. We study the antagonist-induced conformational changes in the FXR ligand-binding domain, when compared to the synthetic (GW4064) or steroidal (chenodeoxycholic acid, CDCA) FXR agonists in the FXR monomer or FXR/RXR heterodimer r, and in the presence and absence of the coactivator. Our MD data suggest ligand-specific influence on conformations of different FXR-LBD regions, including the α5/α6 region, αAF-2, and α9-11. Changes in the heterodimerization interface induced by antagonists seem to be associated with αAF-2 destabilization, which prevents both co-activator and co-repressor recruitment. Our results provide new insights into the conformational behaviour of FXR, suggesting that FXR antagonism/agonism shift requires a deeper assessment than originally proposed by crystal structures.
Collapse
Affiliation(s)
- Alejandro Díaz-Holguín
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland.,Current address: Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Azam Rashidian
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.,Department of Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076, Tübingen, Germany
| | - Dirk Pijnenburg
- PamGene International B.V., Wolvenhoek 10, 5211HH, 's-Hertogenbosch, Netherlands
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, 05508-000, São Paulo, Brazil
| | - Alzbeta Stefela
- Department of Pharmacology and Toxicology, Charles University, Heyrovskeho 1203, 50005, Hradec Kralove, Czechia
| | - Miroslav Kaspar
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 16000, Prague, Czechia.,Faculty of Sciences, Charles University in Prague, Albertov 6, Prague 2, 12843, Czechia
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 16000, Prague, Czechia
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.,Department of Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076, Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Rinie van Beuningen
- PamGene International B.V., Wolvenhoek 10, 5211HH, 's-Hertogenbosch, Netherlands
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Charles University, Heyrovskeho 1203, 50005, Hradec Kralove, Czechia
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.,Department of Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076, Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| |
Collapse
|
7
|
Sheng W, Ji G, Zhang L. The Effect of Lithocholic Acid on the Gut-Liver Axis. Front Pharmacol 2022; 13:910493. [PMID: 35873546 PMCID: PMC9301130 DOI: 10.3389/fphar.2022.910493] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/16/2022] [Indexed: 11/14/2022] Open
Abstract
Lithocholic acid (LCA) is a monohydroxy bile acid produced by intestinal flora, which has been found to be associated with a variety of hepatic and intestinal diseases. LCA is previously considered to be toxic, however, recent studies revealed that LCA and its derivatives may exert anti-inflammatory and anti-tumor effects under certain conditions. LCA goes through enterohepatic circulation along with other bile acids, here, we mainly discuss the effects of LCA on the gut-liver axis, including the regulation of gut microbiota, intestinal barrier, and relevant nuclear receptors (VDR, PXR) and G protein-coupled receptor five in related diseases. In addition, we also find that some natural ingredients are involved in regulating the detoxification and excretion of LCA, and the interaction with LCA also mediates its own biological activity.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|