1
|
Lin L, Sun C, Ye Y, Zhu P, Pan K, Chen L. Transcriptome analysis revealed that ischemic post-conditioning suppressed the expression of inflammatory genes in lung ischemia-reperfusion injury. Front Genet 2024; 15:1425420. [PMID: 39655220 PMCID: PMC11625726 DOI: 10.3389/fgene.2024.1425420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Ischemic post-conditioning (I-post C) is a recognized therapeutic strategy for lung ischemia/reperfusion injury (LIRI). However, the specific mechanisms underlying the lung protection conferred by I-post C remain unclear. This study aimed to investigate the protective mechanisms and potential molecular regulatory networks of I-post C on lung tissue. Methods Transcriptome analysis was performed on rat lung tissues obtained from Sham, ischemia-reperfusion (IR), and I-post C groups using RNA-seq to identify differentially expressed genes (DEGs). Subsequently, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and gene set enrichment analysis (GSEA) were conducted to elucidate significantly enriched pathways in the IR and I-post C groups. Additionally, protein-protein interaction (PPI) network analysis was carried out to examine associations among the DEGs. Pathological changes in lung tissues were assessed using hematoxylin-eosin (H&E) staining. The expression levels of CXCL1 and CXCL6 in the IR and I-post C groups were evaluated through immunofluorescence and Western blotting. Results Our results showed that I-post C significantly attenuated both pulmonary edema and inflammatory cell infiltration. Transcriptome analysis identified 38 DEGs in the I-post C group compared to the IR group, comprising 21 upregulated and 17 downregulated genes. Among these, seven inflammation-related DEGs exhibited co-expression patterns with the Sham and IR groups, with notable downregulation of Cxcl1 and Cxcl6. GO analysis primarily linked these DEGs to neutrophil activation, chemotaxis, cytokine activity, and CCR chemokine receptor binding. KEGG analysis revealed enriched pathways, including the IL-17, TNF, and NF-κB signaling pathways. GSEA indicated downregulation of neutrophil chemotaxis and the IL-17 signaling pathway, correlating with reduced expression of Cxcl1 and Cxcl6. Validation of Cxcl1 and Cxcl6 mRNA expression via immunofluorescence and Western blotting supported the RNA-seq findings. Furthermore, a PPI network was constructed to elucidate interactions among the 29 DEGs. Conclusions Through RNA-Seq analysis, we concluded that I-post C may reduce inflammation and suppress the IL-17 signaling pathway, thereby protecting against lung damage caused by LIRI, potentially involving neutrophil extracellular traps.
Collapse
Affiliation(s)
- Liangen Lin
- Department of Emergency, Wenzhou People’s Hospital, The Third Affiliated to Shanghai University, Wenzhou, Zhejiang, China
| | - Congcong Sun
- Department of Scientific Research Center, Wenzhou People’s Hospital, The Third Affiliated to Shanghai University, Wenzhou, Zhejiang, China
| | - Yuanwen Ye
- Department of Emergency, Wenzhou People’s Hospital, The Third Affiliated to Shanghai University, Wenzhou, Zhejiang, China
| | - Peng Zhu
- Department of Emergency, Wenzhou People’s Hospital, The Third Affiliated to Shanghai University, Wenzhou, Zhejiang, China
| | - Keyue Pan
- Department of Emergency, Wenzhou People’s Hospital, The Third Affiliated to Shanghai University, Wenzhou, Zhejiang, China
| | - Linglong Chen
- Department of Emergency, Wenzhou People’s Hospital, The Third Affiliated to Shanghai University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Oliveira-Melo P, Nepomuceno NA, Ruiz LM, Correia AT, Vilela VS, de Oliveira Braga KA, Manzuti GM, Feitosa DDM, Kennedy-Feitosa E, Wang A, Cypel M, Fernandes PMP. Angiotensin-converting enzyme 2 activation attenuates inflammation and oxidative stress in brain death donor followed by rat lung transplantation. Sci Rep 2024; 14:23567. [PMID: 39384890 PMCID: PMC11464679 DOI: 10.1038/s41598-024-75043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
Brain death (BD) provides most of the donor organs destined for lung transplantation (LTx). However, the organs may be affected by inflammatory and oxidative processes. Based on this, we hypothesize that the angiotensin-converting enzyme 2 (ACE2) activation can reduce the lung injury associated with LTx. 3 h after BD induction, rats were injected with saline (BD group) or an ACE2 activator (ACE2a group; 15 mg/kg-1) and kept on mechanical ventilation for additional 3 h. A third group included a control ventilation (Control group) prior to transplant. After BD protocol, left LTx were performed, followed by 2 h-reperfusion. ACE2 activation was associated with better oxygenation after BD management (p = 0.01), attenuating edema (p = 0.05) followed by the reduction in tissue resistance (p = 0.01) and increase of respiratory compliance (p = 0.02). Nrf2 expression was also upregulated in the ACE2a group (p = 0.03). After transplantation, ACE2a group showed lower levels of TNF-α (p = 0.02), IL-6 (p = 0.001), IL-1β (p = 0.01), ROS (p = 0.004) and MDA (p = 0.002), in addition to higher CAT activity (p = 0.04). In conclusion, our study suggests that ACE2 activation improves anti-inflammatory and antioxidant activity in a model of LTx.
Collapse
Affiliation(s)
- Paolo Oliveira-Melo
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Natalia Aparecida Nepomuceno
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Liliane Moreira Ruiz
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Aristides Tadeu Correia
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Vanessa Sana Vilela
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Karina Andrighetti de Oliveira Braga
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Giovana Maria Manzuti
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Emanuel Kennedy-Feitosa
- Departamento de Ciências da Saúde, Laboratório de Morfofisiofarmacologia, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil
| | - Aizhou Wang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Marcelo Cypel
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Paulo Manuel Pêgo Fernandes
- Departamento de Cardiopneumologia, Laboratório de Pesquisa em Cirurgia Torácica, Faculdade de Medicina HCFMUSP, Instituto do Coração, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
3
|
Dai P, He J, Wei Y, Xu M, Zhao J, Zhou X, Tang H. High Dose of Estrogen Protects the Lungs from Ischemia-Reperfusion Injury by Downregulating the Angiotensin II Signaling Pathway. Inflammation 2024; 47:1248-1261. [PMID: 38386131 DOI: 10.1007/s10753-024-01973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
We explored the sex difference in lung ischemia-reperfusion injury (LIRI) and the role and mechanism of estrogen (E2) and angiotensin II (Ang II) in LIRI. We established a model of LIRI in mice. E2, Ang II, E2 inhibitor (fulvestrant), and angiotensin II receptor blocker (losartan) were grouped for treatment. The lung wet/dry weight ratio, natural killer (NK) cells (by flow cytometry), neutrophils (by flow cytometry), expression of key proteins (by Western blot, immunohistochemistry, ELISA, and immunofluorescence), and expression of related protein mRNA (by qPCR) were detected. The ultrastructure of the alveolar epithelial cells was observed by transmission electron microscopy. We found that E2 and Ang II played an important role in the progression of LIRI. The two signaling pathways showed obvious antagonism, and E2 regulates LIRI in the different sexes by downregulating Ang II, leading to a better prognosis. E2 and losartan reduced the inflammatory cell infiltration in lung tissue and key inflammatory factors in serum while fulvestrant and Ang II had the opposite effect. The protective effect of E2 was related with AKT, p38, COX2, and HIF-1α.
Collapse
Affiliation(s)
- Peng Dai
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jutong He
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yanhong Wei
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Xu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinping Zhao
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xuefeng Zhou
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Hexiao Tang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
4
|
He Y, Gang B, Zhang M, Bai Y, Wan Z, Pan J, Liu J, Liu G, Gu W. ACE2 improves endothelial cell function and reduces acute lung injury by downregulating FAK expression. Int Immunopharmacol 2024; 128:111535. [PMID: 38246001 DOI: 10.1016/j.intimp.2024.111535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Endothelial cell (EC) barrier dysfunction and increased adhesion of immune inflammatory cells to ECs crucially contribute to acute lung injury (ALI). Angiotensin-converting enzyme 2 (ACE2) is an essential regulator of the renin-angiotensin system (RAS) and exerts characteristic vasodilatory and anti-inflammatory effects. SARS-COV-2 infects the lungs by binding to ACE2, which can lead to dysregulation of ACE2 expression, further leading to ALI with predominantly vascular inflammation and eventually to more severe acute respiratory distress syndrome (ARDS). Therefore, restoration of ACE2 expression represents a valuable therapeutic approach for SARS-COV-2-related ALI/ARDS. In this study, we used polyinosinic-polycytidylic acid (Poly(I:C)), a double-stranded RNA analog, to construct a mouse ALI model that mimics virus infection. After Poly(I:C) exposure, ACE2 was downregulated in mouse lung tissues and in cultured ECs. Treatment with DIZE, an ACE2-activating compound, upregulated ACE2 expression and relieved ALI in mice. DIZE also improved barrier function and reduced the number of THP-1 monocytes adhering to cultured ECs. Focal adhesion kinase (FAK) and phosphorylated FAK (p-FAK) levels were increased in lung tissues of ALI mice as well as in Poly(I:C)-treated ECs in vitro. Both DIZE and the FAK inhibitor PF562271 decreased FAK/p-FAK expression in both ALI models, attenuating ALI severity in vivo and increasing barrier function and reducing monocyte adhesion in cultured ECs. Furthermore, in vivo experiments using ANG 1-7 and the MAS inhibitor A779 corroborated that DIZE-mediated ACE2 activation stimulated the activity of the ANG 1-7/MAS axis, which inhibited FAK/p-FAK expression in the mouse lung. These findings provide further evidence that activation of ACE2 in ECs may be a valuable therapeutic strategy for ALI.
Collapse
Affiliation(s)
- Yixuan He
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Baocai Gang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Yuting Bai
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Ziyu Wan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Jiesong Pan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Jie Liu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan Province, PR China
| | - Guoquan Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China.
| | - Wei Gu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China.
| |
Collapse
|
5
|
Gharbaran R, Sayibou Z, Atamturktur S, Ofosu-Mensah JJ, Soto J, Boodhan N, Kolya S, Onwumere O, Chang L, Somenarain L, Redenti S. Diminazene aceturate-induced cytotoxicity is associated with the deregulation of cell cycle signaling and downregulation of oncogenes Furin, c-MYC, and FOXM1 in human cervical carcinoma Hela cells. J Biochem Mol Toxicol 2024; 38:e23527. [PMID: 37681557 DOI: 10.1002/jbt.23527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
Diminazene aceturate (DIZE) is an FDA-listed small molecule known for the treatment of African sleeping sickness. In vivo studies showed that DIZE may be beneficial for a range of human ailments. However, there is very limited information on the effects of DIZE on human cancer cells. The current study aimed to investigate the cytotoxic responses of DIZE, using the human carcinoma Hela cell line. WST-1 cell proliferation assay showed that DIZE inhibited the viability of Hela cells in a dose-dependent manner and the observed response was associated with the downregulation of Ki67 and PCNA cell proliferation markers. DIZE-treated cells stained with acridine orange-ethidium and JC-10 dye revealed cell death and loss of mitochondrial membrane potential (Ψm), compared with DMSO (vehicle) control, respectively. Cellular immunofluorescence staining of DIZE-treated cells showed upregulation of caspase 3 activities. DIZE-treated cells showed downregulation of mRNA for G1/S genes CCNA2 and CDC25A, S-phase genes MCM3 and PLK4, and G2/S phase transition/mitosis genes Aurka and PLK1. These effects were associated with decreased mRNA expression of Furin, c-Myc, and FOXM1 oncogenes. These results suggested that DIZE may be considered for its effects on other cancer types. To the best of our knowledge, this is the first study to evaluate the effect of DIZE on human cervical cancer cells.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Department of Biological Sciences, Bronx Community College/City University of New York, Bronx, New York, USA
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
| | - Zouberou Sayibou
- Department of Biological Sciences, Bronx Community College/City University of New York, Bronx, New York, USA
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Seher Atamturktur
- Department of Biological Sciences, Bronx Community College/City University of New York, Bronx, New York, USA
| | - Jeithy Jason Ofosu-Mensah
- Department of Biological Sciences, Bronx Community College/City University of New York, Bronx, New York, USA
| | - John Soto
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
| | - Nicholas Boodhan
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
| | - Saaimah Kolya
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
| | - Onyekwere Onwumere
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, New York, USA
| | - Lynne Chang
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
| | - Latchman Somenarain
- Department of Biological Sciences, Bronx Community College/City University of New York, Bronx, New York, USA
| | - Stephen Redenti
- Department of Biological Sciences, Lehman College/City University of New York, Bronx, New York, USA
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, New York, USA
| |
Collapse
|
6
|
Morsi AA, Mersal EA, Abdelmoneim AM, Faruk EM, Sofii MM, Sadek NA, Ibrahim KE, Aljanfawe HJ, Elmadhoun I, Mubarak W, Mahmoud MM, Salim MS. ACE2/ACE imbalance mediates bisphenol A-induced lung injury in Wistar rats: Results from captopril versus losartan histo-biochemical study. Heliyon 2023; 9:e22056. [PMID: 38027817 PMCID: PMC10661530 DOI: 10.1016/j.heliyon.2023.e22056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Bisphenol-A (BPA) is a synthetic chemical compound broadly used in the plastic and epoxy resin industries with a considerable potential for food contamination. Literary reports have suggested that the altered renin-angiotensin system (RAS) is a mechanism for lung injury and inflammation caused by variable agents. The current study sought to investigate the contribution of RAS to BPA-induced lung damage. Moreover, the study assessed whether angiotensin II and/or bradykinin pathways were involved. For this aim, the angiotensin-converting enzyme (ACE) inhibitor captopril (Cap), either alone or combined with bradykinin receptor antagonist icatibant (Icat), was attempted versus the angiotensin receptor blocker losartan (Los). An eight-week study was conducted on forty Wistar male albino rats randomly divided into five equal groups: control, BPA, BPA/Cap, BPA/Los, and BPA/Cap/Icat groups. Captopril (100 mg/mL) and losartan (200 mg/mL) were given orally in drinking water, but icatibant (Icat) was injected subcutaneously (250 μg/kg) during the last two weeks of captopril treatment. Biochemical analysis of bronchoalveolar lavage fluid (BALF) and lung tissues, polymerase chain reaction (PCR) assay for ACE, ACE2, and caspase-3 genes expression, and histological and immunohistochemical studies were carried out to evaluate BPA-mediated pulmonary inflammation/apoptosis. BPA impaired the histological structure of the lungs, increased ACE, ACE2, and caspase-3 expressions at both gene/protein levels, and increased BALF inflammatory cytokines and lung oxidative markers. Inhibiting the ACE activity by captopril maintained the histological lung injury score, restored inflammation and the ACE2/ACE balance, and decreased apoptosis. Further improvement was obtained by the angiotensin II receptor (ATR1) blocker losartan. Icatibant (bradykinin B2 receptor blocker) didn't counteract the observed captopril effects. It was strongly suggested that RAS contributed to BPA-induced lung damage via alteration of ACE2 and ACE expression mediating angiotensin II generation rather than bradykinin.
Collapse
Affiliation(s)
- Ahmed A. Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Ezat A. Mersal
- Biochemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
- Department of Basic Medical Sciences, Vision Colleges, Riyadh, Saudi Arabia
| | | | - Eman Mohamed Faruk
- Anatomy Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Histology and Cytology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed M. Sofii
- Department of Anatomy and Embryology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Nehad Ahmed Sadek
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | | | | | | - Mohamed S. Salim
- Medical Laboratory Technology Department, Higher Technological Institute of Applied Health Sciences, Beni-Suef, Egypt
| |
Collapse
|
7
|
Mailisa W, Annisa WD, Permatasari FA, Amalia R, Ivansyah AL, Iskandar F, Rachmawati H. In Vitro and Silico Studies on the N-Doped Carbon Dots Potential in ACE2 Expression Modulation. ACS OMEGA 2023; 8:10077-10085. [PMID: 36969408 PMCID: PMC10035003 DOI: 10.1021/acsomega.2c07398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The alteration of ACE2 expression level, which has been studied in many diseases, makes the topic of ACE2 inducer potential crucial to be explored. The ACE2 inducer could further be designed to control the ACE2 expression level, which is appropriate to a specific case. An in vitro study of well-characterized carbon dots (CDs), made from citric acid and urea, was performed to determine their ability to modulate the ACE2 receptor. Gene expression of ACE2 was quantified using concentrations adjusted for IC50 results from CDs viability assays in HEK 293 and A549 cell lines. RT-qPCR was used to assess the expression of the ACE2 gene and its induction effect in normal cell lines (HEK-293A). According to the results of the tests, ACE2 is expressed in HEK-293A cell lines, and diminazene aceturate can increase ACE2 expression. The effect of CDs on ACE2 gene expression was further examined on the cell lines that had previously been induced with diminazene aceturate, which resulted in upregulation of the ACE2 expression level. An in silico study has been done by using a molecular docking approach. The molecular docking results show that CDs can make strong interactions with ACE2 amino acid residues through hydrophobic interaction, π-π interaction, π-cation interaction, and ionic interaction.
Collapse
Affiliation(s)
- Wiska Mailisa
- Research
Group of Pharmaceutics - School of Pharmacy, Institut Teknologi Bandung, Ganesa 10, Bandung 40132, Indonesia
| | - Windy Dwi Annisa
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Ganesa 10, Bandung 40132, Indonesia
| | - Fitri Aulia Permatasari
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Research
Center for Chemistry, National Research
and Innovation Agency, BRIN, Kawasan
Puspiptek 15314, Banten, Indonesia
| | - Riezki Amalia
- Department
of Pharmacology and Clinical Pharmacy, Padjadjaran
University, Jl. Raya Bandung - Sumedang KM 21, Jatinangor 45363, Indonesia
| | - Atthar Luqman Ivansyah
- Analytical
Chemistry Research Group, Department of Chemistry, Faculty of Mathematics
and Natural Sciences, Institut Teknologi
Bandung, Jalan Ganesha
No.10, Bandung 40132, West Java, Indonesia
| | - Ferry Iskandar
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Ganesa 10, Bandung 40132, Indonesia
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Collaboration
Research Center for Advanced Energy Materials, National Research and Innovation Agency - Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Heni Rachmawati
- Research
Group of Pharmaceutics - School of Pharmacy, Institut Teknologi Bandung, Ganesa 10, Bandung 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Ganesa 10, Bandung 40132, Indonesia
| |
Collapse
|
8
|
Esfahani SH, Jayaraman S, Karamyan VT. Is Diminazene an Angiotensin-Converting Enzyme 2 (ACE2) Activator? Experimental Evidence and Implications. J Pharmacol Exp Ther 2022; 383:149-156. [PMID: 36507848 PMCID: PMC9553104 DOI: 10.1124/jpet.122.001339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023] Open
Abstract
Antiprotozoal veterinary drug diminazene aceturate (DIZE) has been proposed to be an angiotensin-converting enzyme 2 (ACE2) activator. Since then, DIZE was used in dozens of experimental studies, but its mechanism of action attributed to ACE2 activation and enhanced formation of angiontensin-(1-7) [Ang-(1-7)] from Ang II was not carefully verified. The aim of this study was to confirm the effect of DIZE on catalytic activity of ACE2 and extend it to other peptidases involved in formation and degradation of Ang-(1-7). Concentration-dependent effect of DIZE on the initial rate of a fluorogenic substrate hydrolysis by human and mouse recombinant ACE2 was measured at assay conditions imitating that of the original report, but no activation of ACE2 was documented. Similar results were obtained with a more physiologically relevant assay buffer. In addition, DIZE did not affect activity of recombinant neprilysin, neurolysin, thimet oligopeptidase, and ACE. Efficiency of the fluorogenic substrate hydrolysis (Vmax/Km value) by ACE2 in response to different concentrations of DIZE was also measured, but no substantial effects were documented. Likewise, DIZE failed to enhance the hydrolysis of ACE2 endogenous substrate Ang II. Identity of the commercial recombinant ACE2 variants used in these experiments was confirmed by inhibition with two well characterized inhibitors (DX600 and MLN4760), activation by NaCl, and Western Blotting using validated antibodies. These observations challenge the widely accepted notion about the molecular mechanism of DIZE action and call for not ascribing this molecule as an ACE2 activator. SIGNIFICANCE STATEMENT: DIZE has been proposed and widely used in experimental studies as an ACE2 activator. The detailed in vitro pharmacological studies failed to confirm that DIZE is an ACE2 activator. In addition, DIZE did not substantially affect the activity of other peptidases involved in formation and degradation of angiotensin-(1-7). Researchers should refrain from calling DIZE an ACE2 activator. Other mechanisms are responsible for the therapeutic benefits attributed to DIZE.
Collapse
Affiliation(s)
- Shiva Hadi Esfahani
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Srinidhi Jayaraman
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| |
Collapse
|
9
|
Luo W, Tao Y, Chen S, Luo H, Li X, Qu S, Chen K, Zeng C. Rosmarinic Acid Ameliorates Pulmonary Ischemia/Reperfusion Injury by Activating the PI3K/Akt Signaling Pathway. Front Pharmacol 2022; 13:860944. [PMID: 35645792 PMCID: PMC9132383 DOI: 10.3389/fphar.2022.860944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 01/01/2023] Open
Abstract
Pulmonary ischemia/reperfusion (IR) injury is the leading cause of acute lung injury, which is mainly attributed to reactive oxygen species (ROS) induced cell injuries and apoptosis. Since rosmarinic acid (RA) has been identified as an antioxidant natural ester, this natural compound might protect against pulmonary IR injury. In this study, the mice were given RA daily (50, 75, or 100 mg/kg) by gavage for 7 days before the pulmonary IR injury. We found that hypoxemia, pulmonary edema, and serum inflammation cytokines were aggravated in pulmonary IR injury. RA pretreatment (75 and 100 mg/kg) effectively reversed these parameters, while 50 mg/kg RA pretreatment was less pronounced. Our data also indicated RA pretreatment mitigated the upregulation of pro-oxidant NADPH oxidases (NOX2 and NOX4) and the downregulation of anti-oxidant superoxide dismutases (SOD1 and SOD2) upon IR injury. In vitro studies showed RA preserved the viability of anoxia/reoxygenation (AR)-treated A549 cells (a human lung epithelial cell line), and the results showed the protective effect of RA started at 5 μM concentration, reached its maximum at 15 μM, and gradually decreased at 20–25 μM. Besides, RA pretreatment (15 μM) greatly reduced the lactate dehydrogenase release levels subjected to AR treatment. Moreover, the results of our research revealed that RA eliminated ROS production and reduced alveolar epithelial cell apoptosis through activating the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway, which was supported by using wortmannin, because in the presence of wortmannin, the RA-mediated protection was blocked. Meanwhile, wortmannin also reversed the protective effects of RA in mice. Together, our results demonstrate the beneficial role of RA in pulmonary IR injury via PI3K/Akt-mediated anti-oxidation and anti-apoptosis, which could be a promising therapeutic intervention for pulmonary IR injury.
Collapse
Affiliation(s)
- Wenbin Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Tao
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Shengnan Chen
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China
- Department of Cardiology, Chongqing General Hospital, Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoping Li
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuang Qu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Ken Chen
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Ken Chen, ; Chunyu Zeng,
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China
- Department of Cardiology, Chongqing General Hospital, Chongqing, China
- Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, China
- *Correspondence: Ken Chen, ; Chunyu Zeng,
| |
Collapse
|