1
|
Chandramoorthy HC, Saleh RO, Altalbawy FMA, Mohammed JS, Ganesan S, Kundlas M, Premkumar J, Ray S, Mustafa YF, Abbas JK. Deciphering cGAS-STING signaling: implications for tumor immunity and hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04240-6. [PMID: 40332552 DOI: 10.1007/s00210-025-04240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer and poses a significant global health challenge due to its rising incidence and associated mortality. Recent advancements in understanding the cytosolic DNA sensing, the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway have illuminated its critical role in the immune response to HCC. This narrative review deciphers the multifaceted involvement of cGAS-STING in HCC, mainly its function in detecting cytosolic DNA and initiating type I interferon (IFN-I) responses, which are pivotal for antitumor immunity. This immune response is crucial for combating pathogens and can play a role in tumor surveillance. In the context of HCC, the tumor microenvironment (TME) can exhibit immune resistance, which complicates the effectiveness of therapies like immune checkpoint blockade. However, activation of the cGAS-STING pathway has been shown to stimulate antitumor immune responses, enhancing the activity of dendritic cells and cytotoxic T lymphocytes. There is ongoing research into STING agonists as a treatment strategy for HCC, with some studies indicating promising results in prolonging survival and enhancing the immune response against tumors. By summarizing current knowledge and identifying research gaps, this review aims to provide a comprehensive overview of cGAS-STING signaling in HCC and its future directions, emphasizing its potential as a therapeutic target in the fight against HCC. Understanding these mechanisms could pave the way for innovative immunotherapeutic approaches that enhance the efficacy of existing treatments and improve patient prognosis.
Collapse
Affiliation(s)
- Harish C Chandramoorthy
- Department of Microbiology & Clinical Parasitology, College of Medicine & Central Research Laboratories, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Department of Medical Laboratories Techniques, College of Health and Medical Techniques, University of Al Maarif, Al Anbar, 31001, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Jaafaru Sani Mohammed
- Medical Analysis Department, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - J Premkumar
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Jamal K Abbas
- Department of Pharmaceutical, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
2
|
Xue F, Liu YK, Chen XY, Chen SS, Yu XR, Li HW, Lu LG, Chen MH. Targeting cGAS-STING: modulating the immune landscape of hepatic diseases. Front Immunol 2025; 16:1498323. [PMID: 40098962 PMCID: PMC11911377 DOI: 10.3389/fimmu.2025.1498323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Liver diseases, including viral hepatitis, alcoholic liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and hepatocellular carcinoma (HCC), represent a significant threat to global health due to their high mortality rates. The cGAS-STING pathway, a critical part of the innate immune system, plays a crucial role in detecting cytoplasmic DNA and initiating immune responses, including autoimmune inflammation and antitumor immunity. Genomic instability during cancer progression can trigger this pathway by releasing DNA into the cytoplasm. Emerging research indicates that cGAS-STING signaling is intricately involved in maintaining liver homeostasis and contributes to the pathogenesis of various liver diseases. This review outlines the cGAS-STING pathway, with a particular focus on its activation mechanism and its roles in several notable liver conditions. Specifically, we explore the complex interplay of cGAS-STING signaling in viral hepatitis, ALD, MASLD, and HCC, and discuss its potential as a therapeutic target. For example, in HCC, strategies targeting cGAS-STING include using nanomaterials to deliver STING agonists, combining radiofrequency ablation (RFA) with cGAS-STING activation, and leveraging radiotherapy to enhance pathway activation. Furthermore, modulating cGAS-STING activity may offer therapeutic avenues for viral hepatitis and chronic liver diseases like MASLD and ALD, either by boosting antiviral responses or mitigating inflammation. This review highlights the complex role of cGAS-STING signaling in these specific liver diseases and underscores the need for further research to fully realize its therapeutic potential.
Collapse
Affiliation(s)
- Feng Xue
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai, Guangdong, China
| | - Yong-Kang Liu
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiao-Ying Chen
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Shan-Shan Chen
- Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Xiang-Rong Yu
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Hua-Wen Li
- Department of Gynecology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Li-Gong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai, Guangdong, China
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mu-He Chen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai, Guangdong, China
- Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| |
Collapse
|
3
|
Liu C, Tang L, Yang W, Gu Y, Xu W, Liang Z, Jiang J. cGAS/STING pathway and gastrointestinal cancer: Mechanisms and diagnostic and therapeutic targets (Review). Oncol Rep 2025; 53:15. [PMID: 39611480 PMCID: PMC11632663 DOI: 10.3892/or.2024.8848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
The health of individuals is seriously threatened by intestinal cancer, which includes pancreatic, colorectal, esophageal, gastric and gallbladder cancer. Most gastrointestinal cancers do not have typical and specific early symptoms, and lack specific and effective diagnostic markers and treatment methods. It is critical to understand the etiology of gastrointestinal cancer and develop more efficient methods of diagnosis and treatment. The cyclic GMP‑AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway serves a crucial role in the occurrence, progression and treatment of gastrointestinal cancer. The present review focuses on the latest progress regarding the role and mechanism of the cGAS/STING pathway in gastrointestinal cancer, and discusses treatment approaches and related applications based on the cGAS/STING signaling pathway. In order to improve the knowledge of the connection between the cGAS/STING pathway and gastrointestinal cancer, aid the diagnosis and treatment of gastrointestinal cancer, and lessen the burden on patients and society, the present review also discusses future research directions and existing challenges regarding cGAS/STING in the study of gastrointestinal cancer.
Collapse
Affiliation(s)
- Chang Liu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Li Tang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenhui Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuning Gu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhaofeng Liang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
4
|
Zhang X, Yang Z, Fu C, Yao R, Li H, Peng F, Li N. Emerging roles of liquid-liquid phase separation in liver innate immunity. Cell Commun Signal 2024; 22:430. [PMID: 39227829 PMCID: PMC11373118 DOI: 10.1186/s12964-024-01787-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024] Open
Abstract
Biomolecular condensates formed by liquid-liquid phase separation (LLPS) have become an extensive mechanism of macromolecular metabolism and biochemical reactions in cells. Large molecules like proteins and nucleic acids will spontaneously aggregate and assemble into droplet-like structures driven by LLPS when the physical and chemical properties of cells are altered. LLPS provides a mature molecular platform for innate immune response, which tightly regulates key signaling in liver immune response spatially and physically, including DNA and RNA sensing pathways, inflammasome activation, and autophagy. Take this, LLPS plays a promoting or protecting role in a range of liver diseases, such as viral hepatitis, non-alcoholic fatty liver disease, liver fibrosis, hepatic ischemia-reperfusion injury, autoimmune liver disease, and liver cancer. This review systematically describes the whole landscape of LLPS in liver innate immunity. It will help us to guide a better-personalized approach to LLPS-targeted immunotherapy for liver diseases.
Collapse
Affiliation(s)
- Xinying Zhang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan Province, China
| | - Ziyue Yang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Chunmeng Fu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Run Yao
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Huan Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
5
|
Ma J, Xin Y, Wang Q, Ding L. Roles of cGAS-STING Pathway in Radiotherapy Combined with Immunotherapy for Hepatocellular Carcinoma. Mol Cancer Ther 2024; 23:447-453. [PMID: 38049087 DOI: 10.1158/1535-7163.mct-23-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/14/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Although great strides have been made in the management and treatment of hepatocellular carcinoma (HCC), its prognosis is still poor yielding a high mortality. Immunotherapy is recommended for treating advanced HCC, but its efficiency is hampered because of hepatic immunosuppression. Stimulator of interferon genes (STING) pathway, serving as a critical cytoplasmic DNA-sensing process, is reported to initiate the antitumor immune response, and link the innate immunity to the adaptive immune system. Radiotherapy has been well acknowledged to induce destruction and release of tumor-derived DNA into the cytoplasm, which then activates the cGAS-STING pathway. On this basis, radiotherapy can be used as a sensitizer for immunotherapy, and its combination with immunotherapy may bring in changes to the suboptimal efficacy of immune checkpoint inhibitor monotherapy. In this review, we summarized the roles of cGAS-STING pathway in regulation of radiotherapy combined with immunotherapy for treating HCC.
Collapse
Affiliation(s)
- Jianing Ma
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yuning Xin
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Qiang Wang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Lijuan Ding
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
6
|
Wu Z, Zhao X, Li R, Wen X, Xiu Y, Long M, Li J, Huang X, Wen J, Dong X, Xu Y, Bai Z, Zhan X, Xiao X. The combination of Schisandrin C and Luteolin synergistically attenuates hepatitis B virus infection via repressing HBV replication and promoting cGAS-STING pathway activation in macrophages. Chin Med 2024; 19:48. [PMID: 38500179 PMCID: PMC10946137 DOI: 10.1186/s13020-024-00888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/16/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND HBV infection can result in severe liver diseases and is one of the primary causes of liver cell carcinoma-related mortality. Liuwei Wuling tablet (LWWL) is a traditional Chinese medicine formula, with a protecting liver and decreasing enzyme activity, usually used to treat chronic hepatitis B with NAs in clinic. However, its main active ingredients and mechanism of action have not been fully investigated. Hence, we aimed to screen the active ingredient and effective ingredient combinations from Liuwei Wuling tablet to explore the anti-herpatitis B virus activity and mechanism. METHODS Analysis and screening of effective antiviral components in LWWL by network pharmacology, luteolin (Lut) may be a compound with significant antiviral activity. The mechanism of antiviral action of Lut was also found by real-time PCR detection and western blotting. Meanwhile, we established a co-culture model to investigate the antiviral mechanism of Schisandrin C (SC), one of the main active components of Schisandra chinensis fructus (the sovereign drug of LWWL). Next, HBV-infected mice were established by tail vein injection of pAAV-HBV1.2 plasmid and administered continuously for 20 days. And their antiviral capacity was evaluated by checking serum levels of HBsAg, HBeAg, levels of HBV DNA, and liver levels of HBcAg. RESULTS In this study, we conducted network pharmacology analysis on LWWL, and through in vitro experimental validation and data analysis, we found that luteolin (Lut) possessed obviously anti-HBV activity, inhibiting HBV replication by downregulating hepatocyte nuclear factor 4α (HNF4α) via the ERK pathway. Additionally, we established a co-culture system and proved that SC promoted activation of cGAS-STINIG pathway and IFN-β production in THP-1 cells to inhibit HBV replication in HepG2.2.15 cells. Moreover, we found the combination of SC and Lut shows a greater effect in inhibiting HBV compared to SC or Lut alone in HBV-infected mice. CONCLUSION Taken together, our study suggests that combination of SC and Lut may be potential candidate drug for the prevention and treatment of chronic hepatitis B.
Collapse
Affiliation(s)
- Zhixin Wu
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaomei Zhao
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ruisheng Li
- Research Institute of Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xinru Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ye Xiu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Minjuan Long
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Junjie Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiuqin Huang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jincai Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xu Dong
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yingjie Xu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- National Key Laboratory of Kidney Diseases, Beijing, China.
| | - Xiaoyan Zhan
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- National Key Laboratory of Kidney Diseases, Beijing, China.
| | - Xiaohe Xiao
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, 410208, China.
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- National Key Laboratory of Kidney Diseases, Beijing, China.
| |
Collapse
|
7
|
Tarantino G, Citro V. What are the common downstream molecular events between alcoholic and nonalcoholic fatty liver? Lipids Health Dis 2024; 23:41. [PMID: 38331795 PMCID: PMC10851522 DOI: 10.1186/s12944-024-02031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Liver fat storage, also called hepatic steatosis, is increasingly common and represents a very frequent diagnosis in the medical field. Excess fat is not without consequences. In fact, hepatic steatosis contributes to the progression toward liver fibrosis. There are two main types of fatty liver disease, alcoholic fatty liver disease (AFLD) and nonalcoholic fatty liver disease (NAFLD). Although AFLD and NAFLD are similar in their initial morphological features, both conditions involve the same evolutive forms. Moreover, there are various common mechanisms underlying both diseases, including alcoholic liver disease and NAFLD, which are commonalities. In this Review, the authors explore similar downstream signaling events involved in the onset and progression of the two entities but not completely different entities, predominantly focusing on the gut microbiome. Downstream molecular events, such as the roles of sirtuins, cytokeratins, adipokines and others, should be considered. Finally, to complete the feature, some new tendencies in the therapeutic approach are presented.
Collapse
Affiliation(s)
| | - Vincenzo Citro
- Department of General Medicine, Umberto I Hospital, Nocera Inferiore, SA, 84014, Italy
| |
Collapse
|
8
|
Nguyen T, Chen PC, Pham J, Kaur K, Raman SS, Jewett A, Chiang J. Current and Future States of Natural Killer Cell-Based Immunotherapy in Hepatocellular Carcinoma. Crit Rev Immunol 2024; 44:71-85. [PMID: 38618730 DOI: 10.1615/critrevimmunol.2024052486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Natural killer (NK) cells are innate lymphoid cells that exhibit high levels of cytotoxicity against NK-specific targets. NK cells also produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Moreover, NK cells constitute the second most common immune cell in the liver. These properties have drawn significant attention towards leveraging NK cells in treating liver cancer, especially hepatocellular carcinoma (HCC), which accounts for 75% of all primary liver cancer and is the fourth leading cause of cancer-related death worldwide. Notable anti-cancer functions of NK cells against HCC include activating antibody-dependent cell cytotoxicity (ADCC), facilitating Gasdermin E-mediated pyroptosis of HCC cells, and initiating an antitumor response via the cGAS-STING signaling pathway. In this review, we describe how these mechanisms work in the context of HCC. We will then discuss the existing preclinical and clinical studies that leverage NK cell activity to create single and combined immunotherapies.
Collapse
Affiliation(s)
- Tu Nguyen
- UCLA David Geffen School of Medicine
| | - Po-Chun Chen
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA
| | - Janet Pham
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Kawaljit Kaur
- Division of Oral Biology and Medicine The Jane and Jerry Weintraub Center of Reconstructive Biotechnology University of California School of Dentistry Los Angeles, CA, USA
| | - Steven S Raman
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| | - Jason Chiang
- Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| |
Collapse
|
9
|
García-Giménez J, Córdoba-David G, Rayego-Mateos S, Cannata-Ortiz P, Carrasco S, Ruiz-Ortega M, Fernandez-Fernandez B, Ortiz A, Ramos AM. STING1 deficiency ameliorates immune-mediated crescentic glomerulonephritis in mice. J Pathol 2023; 261:309-322. [PMID: 37650295 DOI: 10.1002/path.6177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
Rapidly progressive/crescentic glomerulonephritis (RPGN/CGN) involves the formation of glomerular crescents by maladaptive differentiation of parietal epithelial cells that leads to rapid loss of renal function. The molecular mechanisms of crescent formation are poorly understood. Therefore, new insights into molecular mechanisms could identify alternative therapeutic targets for RPGN/CGN. Analysis of kidney biopsies from patients with RPGN revealed increased interstitial, glomerular, and tubular expression of STING1, an accessory protein of the c-GAS-dependent DNA-sensing pathway, which was also observed in murine nephrotoxic nephritis induced by an anti-GBM antibody. STING1 was expressed by key cell types involved in RPGN and crescent formation such as glomerular parietal epithelial cells, and tubular cells as well as by inflammation accessory cells. In functional in vivo studies, Sting1-/- mice with nephrotoxic nephritis had lower kidney cytokine expression, milder kidney infiltration by innate and adaptive immune cells, and decreased disease severity. Pharmacological STING1 inhibition mirrored these findings. Direct STING1 agonism in parietal and tubular cells activated the NF-κB-dependent cytokine response and the interferon-induced genes (ISGs) program. These responses were also triggered in a STING1-dependent manner by the pro-inflammatory cytokine TWEAK. These results identify STING1 activation as a pathological mechanism in RPGN/CGN and TWEAK as an activator of STING1. Pharmacological strategies targeting STING1, or upstream regulators may therefore be potential alternatives to treat RPGN. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jorge García-Giménez
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Gina Córdoba-David
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Cannata-Ortiz
- Department of Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Susana Carrasco
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Fernandez-Fernandez
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Pharmacology, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrián M Ramos
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
10
|
Zhou N, Zheng D, You Q, Chen T, Jiang J, Shen W, Zhang D, Liu J, Chen D, Hu K. Therapeutic Potential of Biochanin A in Herpes Simplex Keratitis. Pharmaceuticals (Basel) 2023; 16:1240. [PMID: 37765049 PMCID: PMC10536220 DOI: 10.3390/ph16091240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Herpes simplex keratitis (HSK) is a blinding eye disease that is initiated by the herpes simplex virus type 1 (HSV-1). Resistance to acyclovir (ACV) and the side effects of corticosteroid drugs have become concerning issues, so it is crucial to develop new antivirals for treating HSK. In this study, we report that biochanin A (BCA), a naturally occurring flavonoid compound, provides multifaceted protective effects with anti-viral, anti-inflammatory, anti-oxidative stress and anti-apoptotic activities to alleviate HSK. The results show that BCA significantly inhibited HSV-1 replication in vitro and further proved that BCA principally influenced the early stage of virus infection. We reveal that BCA downregulated the expression of pro-inflammatory factors triggered by HSV-1, including TNF-α, RANTES, IL-1β and IL-6. Furthermore, BCA treatment alleviated oxidative stress and apoptotic arising from HSV-1 infection. Lastly, we induced HSK in male C57BL/6 mice and treated them with either BCA or phosphate buffer solution (PBS) eye drops. We observed the ocular surface lesions; determined the virus load in the tear fluid, corneas as well as trigeminal ganglions (TGs); and detected the levels of inflammation and apoptosis in the corneas simultaneously. These results show that BCA inhibits HSV-1 and alleviates the corneal lesion degree. Our study illustrates that BCA is a promising therapeutic approach for application in treating HSK.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Deyuan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Qiao You
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210093, China
| | - Taige Chen
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Jiaxuan Jiang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Wenhao Shen
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Di Zhang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Junpeng Liu
- Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210093, China
| | - Kai Hu
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| |
Collapse
|
11
|
Hu B, Ma JX, Duerfeldt AS. The cGAS-STING pathway in diabetic retinopathy and age-related macular degeneration. Future Med Chem 2023; 15:717-729. [PMID: 37166075 PMCID: PMC10194038 DOI: 10.4155/fmc-2022-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/28/2023] [Indexed: 05/12/2023] Open
Abstract
Diabetic retinopathy and age-related macular degeneration are common retinal diseases with shared pathophysiology, including oxidative stress-induced inflammation. Cellular mechanisms responsible for converting oxidative stress into retinal damage are ill-defined but have begun to clarify. One common outcome of retinal oxidative stress is mitochondrial damage and subsequent release of mitochondrial DNA into the cytosol. This leads to activation of the cGAS-STING pathway, resulting in interferon release and disease-amplifying inflammation. This review summarizes the evolving link between aberrant cGAS-STING signaling and inflammation in common retinal diseases and provides prospective for targeting this system in diabetic retinopathy and age-related macular degeneration. Further defining the roles of this system in the retina is expected to reveal new disease pathology and novel therapeutic approaches.
Collapse
Affiliation(s)
- Bo Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
12
|
Bertran L, Adalid L, Vilaró-Blay M, Barrientos-Riosalido A, Aguilar C, Martínez S, Sabench F, del Castillo D, Porras JA, Alibalic A, Richart C, Auguet T. Expression of STING in Women with Morbid Obesity and Nonalcoholic Fatty Liver Disease. Metabolites 2023; 13:metabo13040496. [PMID: 37110154 PMCID: PMC10146769 DOI: 10.3390/metabo13040496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disease. Although mostly benign, this disease can evolve into nonalcoholic steatohepatitis (NASH). The stimulator of interferon genes (STING) plays an important role in the immune response against stressed cells, but this protein may also be involved in liver lipogenesis and microbiota composition. In this study, the role of STING in NAFLD was evaluated by RT–qPCR to analyze STING mRNA abundance and by immunohistochemical analysis to evaluate protein expression in liver biopsies from a cohort composed of 69 women with morbid obesity classified according to their liver involvement (normal liver, n = 27; simple steatosis (SS), n = 26; NASH, n = 16). The results showed that STING mRNA expression in the liver increases with the occurrence of NAFLD, specifically in the SS stage in which the degree of steatosis is mild or moderate. Protein analysis corroborated these results. Positive correlations were observed among hepatic STING mRNA abundance and gamma-glutamyl transferase and alkaline phosphatase levels, hepatic Toll-like receptor 9 expression and some circulating microbiota-derived bile acids. In conclusion, STING may be involved in the outcome and progression of NAFLD and may be related to hepatic lipid metabolism. However, further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Laia Adalid
- Servei Anatomia Patològica, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Mercè Vilaró-Blay
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Andrea Barrientos-Riosalido
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Salomé Martínez
- Servei Anatomia Patològica, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Fàtima Sabench
- Servei de Cirurgia i Anestèsia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Daniel del Castillo
- Servei de Cirurgia i Anestèsia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - José Antonio Porras
- Servei de Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guash, 4, 43007 Tarragona, Spain
| | - Ajla Alibalic
- Servei de Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guash, 4, 43007 Tarragona, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)—Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), 43007 Tarragona, Spain
- Servei de Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guash, 4, 43007 Tarragona, Spain
- Correspondence: ; Tel.: +34-977-29-58-33
| |
Collapse
|
13
|
Yu H, Liao K, Hu Y, Lv D, Luo M, Liu Q, Huang L, Luo S. Role of the cGAS-STING Pathway in Aging-related Endothelial Dysfunction. Aging Dis 2022; 13:1901-1918. [PMID: 36465181 PMCID: PMC9662267 DOI: 10.14336/ad.2022.0316] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/16/2022] [Indexed: 07/30/2023] Open
Abstract
Endothelial dysfunction develops gradually with age, and is the foundation of many age-related diseases in the elderly. The purpose of this study was to investigate the role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in aging-related endothelial dysfunction. Endothelial functional parameters and biochemical indices of vascular function were examined in 2-, 6-, 12- and 24-month-old mice. Then, 6-month-old mice were administered RU.521, a specific inhibitor of cGAS, for 6 months, and endothelial functional parameters and biochemical indices of vascular function were re-examined. An in vitro model of cell senescence was established by treating human aortic endothelial cells (HAECs) with D-Galactose (D-GAL). Using inhibitors or siRNA interference, cGAS and STING were suppressed or silenced in senescent HAECs, and changes in the expression of eNOS, the senescence markers, p53, p21 and p16, components of the cGAS-STING pathway and Senescence-Associated β-galactosidase (SA-β-gal) staining were examined. Finally, cGAS, STING and p-IRF3 levels were measured in aorta tissue sections from eight patients. A decline in endothelial function, up-regulation of p53, p21 and p16 expression, and activation of the cGAS-STING pathway were observed in aging mice. Inhibition of cGAS was found to improve endothelial function and reverse the increased expression of aging markers. Our in vitro data demonstrated that D-GAL induced a decrease in eNOS expression and cell senescence, which could be partly reversed by cGAS inhibitor, STING inhibitor, siRNA-cGAS and siRNA-STING treatment. Higher expression levels of cGAS, STING and p-IRF3 were observed in aged human aortic intima tissue compared to young aortic intima tissue. Our study demonstrated that activation of the cGAS-STING pathway played a vital role in aging-related endothelial dysfunction. Thus, the cGAS-STING pathway may be a potential target for the prevention of cardiovascular diseases in the elderly.
Collapse
Affiliation(s)
- Huilin Yu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ke Liao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yu Hu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Qian Liu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Longxiang Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Chen L, Dong J, Liao S, Wang S, Wu Z, Zuo M, Liu B, Yan C, Chen Y, He H, Meng Q, Song Z. Loss of Sam50 in hepatocytes induces cardiolipin-dependent mitochondrial membrane remodeling to trigger mtDNA release and liver injury. Hepatology 2022; 76:1389-1408. [PMID: 35313046 DOI: 10.1002/hep.32471] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Sam50, a key component of the sorting and assembly machinery (SAM) complex, is also involved in bridging mitochondrial outer-membrane and inner-membrane contacts. However, the physiological and pathological functions of Sam50 remain largely unknown. APPROACH AND RESULTS Here we show that Sam50 interacts with MICOS (mitochondrial contact site and cristae organizing system) and ATAD3 (ATPase family AAA domain-containing protein 3) to form the Sam50-MICOS-ATAD3-mtDNA axis, which maintains mtDNA stability. Loss of Sam50 causes mitochondrial DNA (mtDNA) aggregation. Furthermore, Sam50 cooperates with Mic60 to bind to cardiolipin, maintaining the integrity of mitochondrial membranes. Sam50 depletion leads to cardiolipin externalization, which causes mitochondrial outer-membrane and inner-membrane (including crista membrane) remodeling, triggering Bax mitochondrial recruitment, mtDNA aggregation, and release. Physiologically, acetaminophen (an effective antipyretic and analgesic)-caused Sam50 reduction or Sam50 liver-specific knockout induces mtDNA release, leading to activation of the cGAS-STING pathway and liver inflammation in mice. Moreover, exogenous expression of Sam50 remarkably attenuates APAP-induced liver hepatoxicity. CONCLUSIONS Our findings uncover the critical role of Sam50 in maintaining mitochondrial membrane integrity and mtDNA stability in hepatocytes and reveal that Sam50 depletion-induced cardiolipin externalization is a signal of mtDNA release and controls mtDNA-dependent innate immunity.
Collapse
Affiliation(s)
- Li Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Jun Dong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Siyang Liao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Siyou Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Zhida Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Meiling Zuo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Bing Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Chaojun Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yong Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - He He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Qingtao Meng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Chen X, Yu M, Xu W, Kun P, Wan W, Yuhong X, Ye J, Liu Y, Luo J. PCBP2 Reduced Oxidative Stress-Induced Apoptosis in Glioma through cGAS/STING Pathway by METTL3-Mediated m6A Modification. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9049571. [PMID: 36267817 PMCID: PMC9578808 DOI: 10.1155/2022/9049571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
Purpose The most prevalent primary malignant tumor of CNS is glioma, which has a dismal prognosis. The theory of oxidative stress is one of the important theories in the study of its occurrence and development mechanism. In this study, the impacts of PCBP2 on glioma sufferers and the possible mechanisms were examined. Methods Patients with glioma were obtained from May 2017 to July 2018. Quantitative PCR, microarray analysis, western blot analysis, and immunofluorescence were used in this experiment. Results PCBP2 mRNA expression level and protein expression in patients with glioma were upregulated compared with paracancerous tissue. OS and DFS of PCBP2 low expression in patients with glioma were higher than those of PCBP2 high expression. PCBP2 promoted the progression and metastasis of glioma. PCBP2 reduced oxidative stress-induced apoptosis of glioma. PCBP2 suppressed the cGAS/STING pathway of glioma. PCBP2 protein interlinked with cGAS and cGAS was one target for PCBP2. METTL3-mediated m6A modification increases PCBP2 stability. Conclusion Along the cGAS-STING signal pathway, PCBP2 decreased the apoptosis that oxidative stress-induced glioma caused, which might be a potential target to suppress oxidative stress-induced apoptosis of glioma.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, China
| | - Mingchuan Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, China
| | - Wei Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, China
| | - Peng Kun
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, China
| | - Wenbing Wan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, China
| | - Xiao Yuhong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, China
| | - Jing Ye
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, China
| | - Yu Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, China
| |
Collapse
|
16
|
Regulation of cGAS Activity and Downstream Signaling. Cells 2022; 11:cells11182812. [PMID: 36139387 PMCID: PMC9496985 DOI: 10.3390/cells11182812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is a predominant and ubiquitously expressed cytosolic onfirmedDNA sensor that activates innate immune responses by producing a second messenger, cyclic GMP-AMP (cGAMP), and the stimulator of interferon genes (STING). cGAS contains a highly disordered N-terminus, which can sense genomic/chromatin DNA, while the C terminal of cGAS binds dsDNA liberated from various sources, including mitochondria, pathogens, and dead cells. Furthermore, cGAS cellular localization dictates its response to foreign versus self-DNA. Recent evidence has also highlighted the importance of dsDNA-induced post-translational modifications of cGAS in modulating inflammatory responses. This review summarizes and analyzes cGAS activity regulation based on structure, sub-cellular localization, post-translational mechanisms, and Ca2+ signaling. We also discussed the role of cGAS activation in different diseases and clinical outcomes.
Collapse
|
17
|
Wei X, Zhang DQ, Zhang LZ, Liu W, Liu P, Xu Y. Role of STING signaling pathway in liver diseases. Shijie Huaren Xiaohua Zazhi 2022; 30:674-679. [DOI: 10.11569/wcjd.v30.i15.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cGAS-STING signaling pathway is an important part of the innate immune system, which could trigger the expression of a series of inflammatory factors represented by interferon type 1 (IFN-1). This pathway plays an important role in many diseases such as infectious diseases, autoimmune diseases, and tumors. In recent years, it has been found that the cGAS-STING signaling pathway is important in the physiological and pathological processes of the liver, and is closely related to the progression of liver diseases. This paper reviews the role of the cGAS-STING signaling pathway in common liver diseases such as chronic hepatitis B, alcoholic liver disease, nonalcoholic fatty liver disease, and liver cancer, as well as its application in the treatment of liver diseases.
Collapse
Affiliation(s)
- Xia Wei
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ding-Qi Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education) & Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital, Shanghai 201203, China
| | - Lin-Zhang Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education) & Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital, Shanghai 201203, China
| | - Ping Liu
- Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Ministry of Education) & Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital, Shanghai 201203, China
| | - Ying Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
18
|
Yan Y, Qiu Y, Davgadorj C, Zheng C. Novel Molecular Therapeutics Targeting Signaling Pathway to Control Hepatitis B Viral Infection. Front Cell Infect Microbiol 2022; 12:847539. [PMID: 35252042 PMCID: PMC8894711 DOI: 10.3389/fcimb.2022.847539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Numerous canonical cellular signaling pathways modulate hepatitis B virus (HBV) replication. HBV genome products are known to play a significant role in regulating these cellular pathways for the liver’s viral-related pathology and physiology and have been identified as the main factor in hepatocarcinogenesis. Signaling changes during viral replication ultimately affect cellular persistence, multiplication, migration, genome instability, and genome damage, leading to proliferation, evasion of apoptosis, block of differentiation, and immortality. Recent studies have documented that numerous signaling pathway agonists or inhibitors play an important role in reducing HBV replication in vitro and in vivo, and some have been used in phase I or phase II clinical trials. These optional agents as molecular therapeutics target cellular pathways that could limit the replication and transcription of HBV or inhibit the secretion of the small surface antigen of HBV in a signaling-independent manner. As principle-based available information, a combined strategy including antiviral therapy and immunomodulation will be needed to control HBV infection effectively. In this review, we summarize recent findings on interventions of molecular regulators in viral replication and the interactions of HBV proteins with the components of the various targeting cellular pathways, which may assist in designing novel agents to modulate signaling pathways to prevent HBV replication or carcinogenesis.
Collapse
Affiliation(s)
- Yan Yan
- Laboratory for Infection and Immunity, Hepatology Institute of Wuxi, The Fifth People’s Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
- *Correspondence: Yan Yan, ; Chunfu Zheng,
| | - Yuanwang Qiu
- Laboratory for Infection and Immunity, Hepatology Institute of Wuxi, The Fifth People’s Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chantsalmaa Davgadorj
- Laboratory for Infection and Immunity, Hepatology Institute of Wuxi, The Fifth People’s Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: Yan Yan, ; Chunfu Zheng,
| |
Collapse
|
19
|
You H, Qin S, Zhang F, Hu W, Li X, Liu D, Kong F, Pan X, Zheng K, Tang R. Regulation of Pattern-Recognition Receptor Signaling by HBX During Hepatitis B Virus Infection. Front Immunol 2022; 13:829923. [PMID: 35251017 PMCID: PMC8891514 DOI: 10.3389/fimmu.2022.829923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
As a small DNA virus, hepatitis B virus (HBV) plays a pivotal role in the development of various liver diseases, including hepatitis, cirrhosis, and liver cancer. Among the molecules encoded by this virus, the HBV X protein (HBX) is a viral transactivator that plays a vital role in HBV replication and virus-associated diseases. Accumulating evidence so far indicates that pattern recognition receptors (PRRs) are at the front-line of the host defense responses to restrict the virus by inducing the expression of interferons and various inflammatory factors. However, depending on HBX, the virus can control PRR signaling by modulating the expression and activity of essential molecules involved in the toll-like receptor (TLR), retinoic acid inducible gene I (RIG-I)-like receptor (RLR), and NOD-like receptor (NLR) signaling pathways, to not only facilitate HBV replication, but also promote the development of viral diseases. In this review, we provide an overview of the mechanisms that are linked to the regulation of PRR signaling mediated by HBX to inhibit innate immunity, regulation of viral propagation, virus-induced inflammation, and hepatocarcinogenesis. Given the importance of PRRs in the control of HBV replication, we propose that a comprehensive understanding of the modulation of cellular factors involved in PRR signaling induced by the viral protein may open new avenues for the treatment of HBV infection.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Wei Hu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Dongsheng Liu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
20
|
Wu JT, He BW, Cao JL, Yan JB, Chen ZY. Involvement of STING signaling pathway in non-alcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2021; 29:1396-1401. [DOI: 10.11569/wcjd.v29.i24.1396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the major chronic liver diseases worldwide, which seriously threatens human health and has become a major public health problem. Immune mechanism plays a key role in the occurrence and development of NAFLD. Interferon gene stimulating factor (STING) is a key connector protein of the immune system, and its related signaling pathway has become a recent hot research topic. This signaling pathway may be involved in the occurrence and development of NAFLD by mediating liver inflammation, lipid metabolism, apoptosis, and other processes that affect liver metabolic homeostasis. Combining relevant reports and the latest literature, this paper reviews NAFLD and immunity, the composition of STING signaling pathway, and the relationship between the STING signaling pathway and NAFLD, in order to provide ideas for further in-depth study of the complex relationship between the STING signaling pathway and NAFLD and the development of relevant targeted drugs.
Collapse
Affiliation(s)
- Jin-Ting Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Command, Hangzhou 310006, Zhejiang Province, China
| | - Bo-Wu He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Command, Hangzhou 310006, Zhejiang Province, China
| | - Jie-Lu Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Command, Hangzhou 310006, Zhejiang Province, China
| | - Jun-Bin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Command, Hangzhou 310006, Zhejiang Province, China
| | - Zhi-Yun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Command, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|