1
|
Wu Y, Yao Y, Shen Y, Bai H, Zhang L, Zhang C. Nanoplastics Chronic Toxicity in Mice: Disturbing the Homeostasis of Tryptophan Metabolism in Gut-Lung-Microbiota Axis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412286. [PMID: 40351096 DOI: 10.1002/smll.202412286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/02/2025] [Indexed: 05/14/2025]
Abstract
Long-term exposure to nanoplastics causes chronic toxicity in mammals, particularly in the gut and lung tissues. The gut-lung-microbiota axis plays a pivotal role in organisms through the management of gut bacteria amino acid metabolic homeostasis. However, chronic toxicity of nanoplastics from gut to lungs have yet to be fully elucidated. In this study, nanoplastics exposure not only causes colon inflammation but also results in lung fibrosis. The abundance of Akkermansia muciniphila (AKK) is decreased after nanoplastics exposure. Interestingly, a positive correlation is observed between AKK and indole-3-lactic (ILA). Supplementation with AKK or ILA ameliorated nanoplastics-induced gut-derived lung injury by restoring the balance of tryptophan metabolism. Furthermore, knocking down indoleamine 2,3-dioxygenase 1 (ido1) upregulated ILA levels, contributing to defense against damage from nanoplastics. These results suggest that regulating ido1 expression and AKK abundance, involved in tryptophan metabolic homeostasis (especially ILA production), maybe a strategy to reduce the biological toxicity induced by nanoplastics. Mogroside V, a natural product, is found to promote AKK growth and inhibit ido1, thereby ameliorating chronic toxicity induced by nanoplastics. The study offers a new understanding of how nanoplastics cause chronic toxicity by dysregulating gut-lung-microbiota axis, as well as strategies for preventing and treating nanoplastics.
Collapse
Affiliation(s)
- Yanliang Wu
- Sino-Jan Joint Lab of Natural Health Products Research, Department of Chinese Medicine Resources, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yongrong Yao
- School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ye Shen
- Sino-Jan Joint Lab of Natural Health Products Research, Department of Chinese Medicine Resources, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hangjia Bai
- Sino-Jan Joint Lab of Natural Health Products Research, Department of Chinese Medicine Resources, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Louqian Zhang
- Department of Thoratic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, Department of Chinese Medicine Resources, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
2
|
Tian X, Xiao P, Li M, Li N, Huang Y, Yang C, Zheng H, Yang X, Shang J, Liang X. Mogroside III improves bovine oocyte in vitro maturation by regulating autophagy in cumulus cells. Theriogenology 2025; 237:1-12. [PMID: 39956032 DOI: 10.1016/j.theriogenology.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
In vitro maturation (IVM) of oocytes is pivotal for successful embryo production. Cumulus cells (CCs) contribute to oocyte maturation through the secretion of hormones and nutrients, with proper autophagic activity being crucial for this process. However, the role of autophagy in CCs remains underexplored. Siraitia grosvenorii extract Mogroside III (MIII), known for its antioxidant properties, has yet to be extensively studied for its impact on bovine oocyte IVM and its potential regulatory effects on autophagy. This study assessed the influence of MIII on autophagic activity in CCs and its subsequent effects on oocyte developmental potential. The results demonstrated that MIII enhanced bovine oocyte IVM, promoted CC expansion, and supported embryonic development. Transcriptomic analysis indicated that MIII upregulated the expression of autophagy-related genes. In vitro experiments on CCs revealed that MIII increased LC3B protein levels, reduced SQSTM1 accumulation, and upregulated the gene expression of LC3, Beclin1, and ATG5. In co-culture systems, autophagy inhibition in CCs impaired oocyte IVM and embryonic development, but MIII alleviated these effects, restoring oocyte developmental capacity compromised by 3-MA-induced autophagy inhibition. Mechanistically, MIII facilitated the degradation of WT1 by upregulating LC3B, influencing CC differentiation, enhancing FSHR synthesis, and increasing estrogen and progesterone secretion. In conclusion, MIII enhances oocyte developmental potential by modulating autophagy in CCs.
Collapse
Affiliation(s)
- Xinru Tian
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning, 530001, China; Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, 530001, China
| | - Peng Xiao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning, 530001, China; Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, 530001, China
| | - Mengqi Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning, 530001, China; Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, 530001, China
| | - Nannan Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning, 530001, China; Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, 530001, China
| | - Yilin Huang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning, 530001, China; Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, 530001, China
| | - Chunyan Yang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning, 530001, China; Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, 530001, China
| | - Haiying Zheng
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning, 530001, China; Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, 530001, China
| | - Xiaogan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jianghua Shang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Nanning, 530001, China; Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, 530001, China.
| | - Xingwei Liang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
3
|
Díaz-Fuster L, Sáez-Espinosa P, Moya I, Peinado I, Gómez-Torres MJ. Updating the Role of JUNO and Factors Involved in Its Function during Fertilization. Cells Tissues Organs 2025:1-16. [PMID: 40168958 DOI: 10.1159/000545000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
INTRODUCTION The final step of the fertilization process involves gametes adhesion and fusion. JUNO is an essential folate receptor 4 protein present in the ooplasm of oocytes, which binds to IZUMO1, its receptor on the sperm surface. Both proteins are indispensable for the sperm-oocyte interaction, and their absence results in infertility. Despite the importance of JUNO in reproduction, there is still controversy about how different factors affect the functionality of JUNO. Therefore, the goal of this study was to provide a comprehensive overview of what we know so far about the presence and functionality of JUNO. METHODS In order to accomplish this, a total of 198 articles were identified. Based on both inclusion and exclusion criteria, 40 articles were finally included in this study. RESULTS The results showed that during oocyte maturation, the expression levels of JUNO undergo alterations and, in some instances, cross-species gamete fusion is possible. Additionally, it has been observed that exposure of oocytes to factors such as bisphenol A, 17α-ethynylestradiol, diazinon, benzo(a)pyrene, butylparaben, bis(2-ethylhexyl) phthalate, hydroxyurea, dichlorophenol, isoniazid, and para-phenylenediamine disrupt JUNO and decrease the fertilization process rates. Moreover, exposure to ionic radiation, vitrification, and synthetic materials as microplastics has the same effect. Nonetheless, other compounds such as melatonin, mogroside V, cholesterol-loaded methyl-β-cyclodextrin, methyl-β-cyclodextrin, protocatechuic acid, coenzyme Q10, resveratrol, and Shoutai pills have been shown to enhance female fertility in terms of JUNO functionality. CONCLUSION In summary, this update highlights the crucial role of JUNO during fertilization and reveals how different factors and experimental procedures affect its activity.
Collapse
Affiliation(s)
- Lucía Díaz-Fuster
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Paula Sáez-Espinosa
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain,
| | - Isabel Moya
- Unidad de Reproducción Asistida Humana, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Irene Peinado
- Unidad de Reproducción Asistida Humana, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - María José Gómez-Torres
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
- Cátedra Human Fertility, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
4
|
Wang PX, Wu SL, Ju JQ, Jiao L, Zou YJ, Zhang KH, Sun SC, Hu LL, Zheng XB. Benzo[a]pyrene exposure disrupts the organelle distribution and function of mouse oocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116630. [PMID: 38917590 DOI: 10.1016/j.ecoenv.2024.116630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon compound that is generated during combustion processes, and is present in various substances such as foods, tobacco smoke, and burning emissions. BaP is extensively acknowledged as a highly carcinogenic substance to induce multiple forms of cancer, such as lung cancer, skin cancer, and stomach cancer. Recently it is shown to adversely affect the reproductive system. Nevertheless, the potential toxicity of BaP on oocyte quality remains unclear. In this study, we established a BaP exposure model via mouse oral gavage and found that BaP exposure resulted in a notable decrease in the ovarian weight, number of GV oocytes in ovarian, and oocyte maturation competence. BaP exposure caused ribosomal dysfunction, characterized by a decrease in the expression of RPS3 and HPG in oocytes. BaP exposure also caused abnormal distribution of the endoplasmic reticulum (ER) and induced ER stress, as indicated by increased expression of GRP78. Besides, the Golgi apparatus exhibited an abnormal localization pattern, which was confirmed by the GM130 localization. Disruption of vesicle transport processes was observed by the abnormal expression and localization of Rab10. Additionally, an enhanced lysosome and LC3 fluorescence intensity indicated the occurrence of protein degradation in oocytes. In summary, our results suggested that BaP exposure disrupted the distribution and functioning of organelles, consequently affecting the developmental competence of mouse oocytes.
Collapse
Affiliation(s)
- Peng-Xia Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, Nanning 530004, China
| | - Si-Le Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Jiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun-Huan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Xi-Bang Zheng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Tan YR, Shen SY, Li XY, Yi PF, Fu BD, Peng LY. Mogroside V reduced the excessive endoplasmic reticulum stress and mitigated the Ulcerative colitis induced by dextran sulfate sodium in mice. J Transl Med 2024; 22:488. [PMID: 38773576 PMCID: PMC11110204 DOI: 10.1186/s12967-024-05285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
Ulcerative colitis (UC) is an idiopathic, chronic inflammatory condition of the colon, characterized by repeated attacks, a lack of effective treatment options, and significant physical and mental health complications for patients. The endoplasmic reticulum (ER) is a vital intracellular organelle in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) is induced when the body is exposed to adverse external stimuli. Numerous studies have shown that ERS-induced apoptosis plays a vital role in the pathogenesis of UC. Mogroside V (MV), an active ingredient of Monk fruit, has demonstrated excellent anti-inflammatory and antioxidant effects. In this study, we investigated the therapeutic effects of MV on dextran sulfate sodium (DSS)-induced UC and its potential mechanisms based on ERS. The results showed that MV exerted a protective effect against DSS-induced UC in mice as reflected by reduced DAI scores, increased colon length, reduced histological scores of the colon, and levels of pro-inflammatory cytokines, as well as decreased intestinal permeability. In addition, the expression of ERS pathway including BIP, PERK, eIF2α, ATF4, CHOP, as well as the apoptosis-related protein including Caspase-12, Bcl-2 and Bax, was found to be elevated in UC. However, MV treatment significantly inhibited the UC and reversed the expression of inflammation signaling pathway including ERS and ERS-induced apoptosis. Additionally, the addition of tunicamycin (Tm), an ERS activator, significantly weakened the therapeutic effect of MV on UC in mice. These findings suggest that MV may be a therapeutic agent for the treatment of DSS-induced UC by inhibiting the activation of the ERS-apoptosis pathway, and may provide a novel avenue for the treatment of UC.
Collapse
Affiliation(s)
- Yue-Rong Tan
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Si-Yang Shen
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Xin-Yi Li
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Peng-Fei Yi
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Ben-Dong Fu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China.
| | - Lu-Yuan Peng
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin, 130062, China.
| |
Collapse
|
6
|
Nie J, Xiao P, Xiong Q, Liang X, Zhao X. Smart seq2 revealed distinct molecular responses during in vitro porcine oocyte maturation before or after the addition of mogroside V. Reprod Domest Anim 2024; 59:e14595. [PMID: 38773768 DOI: 10.1111/rda.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/24/2024]
Abstract
Oocyte maturation involves both nuclear and cytoplasmic maturation. Mogroside V (MV) has been shown to enhance nuclear maturation, mitochondrial content, and developmental potential of porcine oocyte during in vitro maturation (IVM). However, the impact of MV on cytoplasmic maturation and its underlying mechanisms are not understood. This study aimed to assess the effect of MV on cytoplasmic maturation. Germinal vesicle (GV) oocytes treated with MV exhibited a noticeable increase in cortical granules (CGs) formation. Additionally, MV enhanced the expression of NNAT and improved glucose uptake in mature oocytes. Further insights were gained through Smart-seq2 analysis of RNA isolated from 100 oocytes. A total of 11,274 and 11,185 transcripts were identified in oocytes treated with and without MV, respectively. Among quantified genes, 438 differentially expressed genes (DEGs) were identified for further analysis. Gene Ontology (GO) enrichment analysis indicated that these DEGs were primarily involved in DNA repair regulation, cellular response to DNA damage, intracellular components, and organelles. Furthermore, the DEGs were significantly enriched in three KEGG pathways: fatty acid synthesis, pyruvate metabolism, and WNT signalling. To validate the results, lipid droplets (LD) and triglyceride (TG) were examined. MV led to an increase in the accumulation of LD and TG production in mature oocytes. These findings suggest that MV enhances cytoplasmic maturation by promoting lipid droplet synthesis. Overall, this study provides valuable insights into the mechanisms through which MV improves oocyte quality during IVM. The results have significant implications for research in livestock reproduction and offer guidance for future studies in this field.
Collapse
Affiliation(s)
- Junyu Nie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
| | - Peng Xiao
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
| | - Qianqian Xiong
- Department of Neurology, Fengcheng People's Hospital, Fengcheng, Jiangxi, China
| | - Xingwei Liang
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
| | - Xiuling Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
- Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Guo Y, Chen X, Gong P, Long H, Wang J, Yang W, Yao W. Siraitia grosvenorii As a Homologue of Food and Medicine: A Review of Biological Activity, Mechanisms of Action, Synthetic Biology, and Applications in Future Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6850-6870. [PMID: 38513114 DOI: 10.1021/acs.jafc.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Siraitia grosvenorii (SG), also known as Luo Han Guo or Monk fruit, boasts a significant history in food and medicine. This review delves into SG's historical role and varied applications in traditional Chinese culture, examining its phytochemical composition and the health benefits of its bioactive compounds. It further explores SG's biological activities, including antioxidant, anti-inflammatory, and antidiabetic properties and elucidates the mechanisms behind these effects. The review also highlights recent synthetic biology advances in enhancing the production of SG's bioactive compounds, presenting new opportunities for broadening their availability. Ultimately, this review emphasizes SG's value in food and medicine, showcasing its historical and cultural importance, phytochemistry, biological functions, action mechanisms, and the role of synthetic biology in its sustainable use.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hui Long
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiating Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
8
|
Peng K, Cui K, Li P, Liu X, Du Y, Xu H, Yang X, Lu S, Liang X. Mogroside V alleviates the heat stress-induced disruption of the porcine oocyte in vitro maturation. Theriogenology 2024; 217:37-50. [PMID: 38244353 DOI: 10.1016/j.theriogenology.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Heat stress (HS) is a stressor that negatively affect female reproduction. Specially, oocytes are very sensitive to HS. It has been demonstrated that some active compounds can protect oocyte from HS. We previously found that Mogroside V (MV), extracted from Siraitia grosvenorii (Luo Han Guo), can protect oocyte from many kinds of stresses. However, how MV alleviates HS-induced disruption of oocyte maturation remains unknown. In this study, we treated the HS-induced porcine oocytes with MV to examine their maturation and quality. Our findings demonstrate that MV can effectively alleviate HS-induced porcine oocyte abnormal cumulus cell expansion, decrease of first polar body extrusion rate, spindle assembly and chromosome separation abnormalities, indicating MV attenuates oocyte mature defects. We further observed that MV can effectively alleviate HS-induced cortical granule distribution abnormality and decrease of blastocyst formation rate after parthenogenesis activation. In addition, MV treatment reversed mitochondrial dysfunction and lipid droplet content decrease, reduced reactive oxygen species levels, early apoptosis and DNA damage in porcine oocytes after HS. Collectively, this study suggests that MV can effectively protect porcine oocytes from HS.
Collapse
Affiliation(s)
- Ke Peng
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Kexin Cui
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Pan Li
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Xinxin Liu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Ya Du
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Huiyan Xu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiaogan Yang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Shengsheng Lu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Xingwei Liang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
9
|
Xu X, Hao T, Komba E, Yang B, Hao H, Du W, Zhu H, Zhang H, Zhao X. Improvement of Fertilization Capacity and Developmental Ability of Vitrified Bovine Oocytes by JUNO mRNA Microinjection and Cholesterol-Loaded Methyl-β-Cyclodextrin Treatment. Int J Mol Sci 2022; 24:ijms24010590. [PMID: 36614032 PMCID: PMC9820539 DOI: 10.3390/ijms24010590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/31/2022] Open
Abstract
Vitrification of oocytes is crucial for embryo biotechnologies, germplasm cryopreservation of endangered and excellent female animals, and the fertility of humans. However, vitrification significantly impairs the fertilization ability of oocytes, which significantly limits its widely used application. JUNO protein, a receptor for Izumo1, is involved in sperm-oocyte fusion and is an indispensable protein for mammalian fertilization, and its abundance is susceptible to vitrification. However, it is still unclear how vitrification reduces the fertilization capacity of bovine oocytes by affecting JUNO protein. This study was designed to investigate the effect of vitrification on the abundance and post-translational modifications of JUNO protein in bovine oocytes. Our results showed that vitrification did not alter the amino acid sequence of JUNO protein in bovine oocytes. Furthermore, the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis results showed that vitrification significantly reduced the number and changed the location of disulfide bonds, and increased the number of both phosphorylation and glycosylation sites of JUNO protein in bovine oocytes. Finally, the fertilization capacity and development ability of vitrified oocytes treated with 200 pg JUNO mRNA microinjection and cholesterol-loaded methyl-β-cyclodextrin (CLC/MβCD) were similar to those of fresh oocytes. In conclusion, our results showed that vitrification of bovine oocytes did not alter the protein sequence of JUNO, but induced post-translational modifications and changed protein abundance. Moreover, the fertilization and development ability of vitrified bovine oocytes were improved by the combination treatment of JUNO mRNA microinjection and CLC/MβCD.
Collapse
|
10
|
Therapeutic effects of aqueous extract of bioactive active component of Ageratum conyzoides on the ovarian-uterine and hypophysis-gonadal axis in rat with polycystic ovary syndrome: Histomorphometric evaluation and biochemical assessment. Metabol Open 2022; 15:100201. [PMID: 35958118 PMCID: PMC9361322 DOI: 10.1016/j.metop.2022.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is an endocrine disorder, affecting women of reproductive age. Ageratum conyzoïdes (AGC) is used traditionally in the treatment of fever, rheumatism, and ulcer. This study investigates the effects of AGC on ovarian-uterine in PCOS rats. Methods Female rats were randomized into four groups (n = 6). Group A control received 2 ml distilled water. Group B received a single dose of 4 mg/kg body weight (bwt) i.p estradiol valerate (EV). Group C received 500 mg/kg bwt AGC and group D received a single dose of 4 mg/kg bwt i.p EV followed by 500 mg/kg bwt AGC orally for 30 days. Parameters tested include follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), estradiol (E2), progesterone (P), C-reactive protein (CRP), interleukin (IL)-6, IL-18 and tumor necrosis factor (TNF)- α, malondialdehyde (MDA), superoxide dismutase (SOD), Catalase (CAT), total protein (TP), total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and ovary and uterus histomorphometric. Results Ageratum conyzoides decrease insulin resistance, obesity indices, TC, TG, LDL, MDA, T, LH, FSH, CRP, IL-6, IL-18, and TNF- α in PCOS rats. And increase HDL, E2, P, TP, CAT, and SOD in PCOS rats. AGC improved ovary and uterus histo-architecture, tertiary, and Graafian follicles, corpus luteum and endometrial thickness increased,and cystic and atretic follicles decreased. Conclusion Ageratum conyzoides improved insulin sensitivity, antioxidant activities, hormonal imbalance, inflammatory makers, and histological changes in PCOS rats. Therefore AGC can be used as a potential adjuvant agent in the treatment of PCOS.
Collapse
|
11
|
Wang S, Cui K, Liu J, Hu J, Yan K, Xiao P, Lu Y, Yang X, Liang X. Mogroside-Rich Extract From Siraitia grosvenorii Fruits Ameliorates High-Fat Diet-Induced Obesity Associated With the Modulation of Gut Microbiota in Mice. Front Nutr 2022; 9:870394. [PMID: 35769373 PMCID: PMC9234556 DOI: 10.3389/fnut.2022.870394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/05/2022] [Indexed: 12/29/2022] Open
Abstract
Siraitia grosvenorii is a kind of medicinal food plant. The mogroside-rich extract (MGE) of its fruits can effectively ameliorate obesity, but the underlying mechanisms remain underexplored. In this study, we aimed to determine whether MGE can ameliorate obesity by protecting against the divergences of gut microbiota. Mice were challenged with a high-fat diet (HFD) and treated with MGE by oral gavage. Then, the characteristics of the gut microbiota were determined by 16S rDNA analysis. Our findings showed that MGE could significantly reduce body weight gain and fat tissue weight of the mice fed with HFD. Moreover, MGE markedly attenuated fatty liver, and improved glucose tolerance and insulin sensitivity. We further found that the gut microbiota structures were disturbed by HFD feeding. In particular, the abundance of Firmicutes was increased and the abundance of Bacteroidetes was decreased, resulting in an increased proportion of Firmicutes to Bacteroidetes (F/B), which contributes to obesity. Interestingly, the abnormal proportion of F/B of HFD feeding mice was restored to the level of control mice by MGE treatment. Additionally, the abundances of obesogenic microbiota, such as Ruminiclostridium and Oscillibacter were also decreased after MGE treatment. In summary, our findings demonstrate that MGE can modulate gut microbiota in obese mice and shed new light on how it alleviates obesity.
Collapse
Affiliation(s)
- Siyuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kexin Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiahao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiahao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Peng Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Xiaogan Yang,
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Xingwei Liang,
| |
Collapse
|
12
|
Pan C, Chen J, Chen Y, Lu Y, Liang X, Xiong B, Lu Y. Mogroside V ameliorates the oxidative stress-induced meiotic defects in porcine oocytes in vitro. Reprod Toxicol 2022; 111:148-157. [PMID: 35597324 DOI: 10.1016/j.reprotox.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/18/2023]
Abstract
It has been reported that environmental factors, such as industrial pollution, environmental toxins, environmental hormones, and global warming contribute to the oxidative stress-induced deterioration of oocyte quality and female fertility. However, the prevention or improvement approaches have not been fully elucidated. Here, we explored the mechanism regarding how Mogroside V (MV), a main extract of Siraitia grosvenorii, improves the oxidative stress-induced meiotic defects in porcine oocytes. Our results showed that MV supplementation restores the defective oocyte maturation and cumulus cell expansion caused by H2O2 treatment. We further found that MV supplementation promoted the oocyte cytoplasmic maturation through preventing cortical granules from the aberrant distribution, and drove the nuclear maturation by maintaining the cytoskeleton structure. Notably, our single-cell RNA sequencing data indicated that H2O2-treated oocytes led to the oxidative stress primarily through two pathways 'meiosis' and 'oxidative phosphorylation'. Lastly, we evaluated the effects of MV supplementation on the mitochondrial distribution pattern and membrane potential in H2O2-treated oocytes, revealing that MV supplementation eliminated the excessive ROS induced by the mitochondrial abnormalities and consequently suppressed the apoptosis. In conclusion, our study demonstrates that MV supplementation is an effective approach to ameliorate the oxidative stress-induced meiotic defects via recovering the mitochondrial integrity in porcine oocytes.
Collapse
Affiliation(s)
- Chen Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jingyue Chen
- State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Ying Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
13
|
Du Y, Liu J, Liu S, Hu J, Wang S, Cui K, Yan K, Liu X, Wu NR, Yang X, Liang X. Mogroside-rich extract from Siraitia grosvenorii fruits protects against the depletion of ovarian reserves in aging mice by ameliorating inflammatory stress. Food Funct 2022; 13:121-130. [PMID: 34897342 DOI: 10.1039/d1fo03194e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mogroside-rich extract (MGE), the main bioactive component of dried Siraitia grosvenorii fruit, has long been used as a natural sweetener and traditional Chinese medicine. This extract possesses various types of pharmacological activities, such as anti-inflammatory, antioxidative, hypoglycemic and hypolipemic activities. Moreover, we recently revealed that MGE has beneficial effects on female reproduction. Increasing maternal age leads to a rapid reduction in female fertility; in particular, it dramatically decreases ovarian function. Nevertheless, whether MGE can alleviate ovarian aging and the underlying mechanisms have not yet been explored. In this study, mice were treated with MGE by supplementation in drinking water from 10 to 44 weeks of age. Then, ovarian function and molecular changes were determined. Our findings showed that MGE treatment protected aged mice from estrous cycle disorder. Moreover, MGE treatment significantly increased the ovarian reserves of aged mice. RNA-seq data showed that MGE upregulated the expression of genes related to gonad development, follicular development, and hormone secretion in ovarian tissue. Additionally, inflammatory stress was induced, as indicated by upregulation of inflammation-related gene expression and elevated TNF-α levels in the ovarian tissues of aged mice; however, MGE treatment attenuated inflammatory stress. In summary, our findings demonstrate that MGE can ameliorate age-related estrous cycle disorder and ovarian reserve decline in mice, possibly by alleviating ovarian inflammatory stress.
Collapse
Affiliation(s)
- Ya Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiahao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Shaoyuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiahao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Siyuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Kexin Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xinxin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Nian-Rong Wu
- Rid Testing & Certification (Guangxi) Inc., No.19-1 South of Renmin Road, Lingui District, Guilin, Guangxi, 541100, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
14
|
Huang L, Liang A, Li T, Lei X, Chen X, Liao B, Tang J, Cao X, Chen G, Chen F, Wang Y, Hu L, He W, Li M. Mogroside V Improves Follicular Development and Ovulation in Young-Adult PCOS Rats Induced by Letrozole and High-Fat Diet Through Promoting Glycolysis. Front Endocrinol (Lausanne) 2022; 13:838204. [PMID: 35418943 PMCID: PMC8995474 DOI: 10.3389/fendo.2022.838204] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries. In this study, we induced a young-adult PCOS rat model by oral administration of letrozole combined with a high-fat diet and then treated with mogroside V (MV) to evaluate the protective effects of MV on endocrine and follicle development in young-adult PCOS rats. MV (600 mg/kg/day) administration not only significantly reduced the body weight and ovary weight, but also attenuated the disrupted estrous cycle and decreased the level of testosterone. MV restored the follicular development, especially by increasing the number of corpus luteum and the thickness of the granular layer in young-adult POCS rats. Moreover, metabolomics showed that MV markedly increased the levels of D-Glucose 6-phosphate, lactate and GTP, while decreased the level of pyruvate. Bioinformatic analysis revealed that MV recovered multiple metabolism-related processes including gluconeogenesis, glycolysis and glucose metabolic process. Further real-time quantitative PCR analysis showed that MV upregulated the expression of lactate dehydrogenase A (Ldha), hexokinase 2 (Hk2) and pyruvate kinase M2 (Pkm2). Western blotting and immunohistochemistry analysis showed that MV restored the expression of lactate dehydrogenase A (Ldha), hexokinase 2 (Hk2) and pyruvate kinase M2 (Pkm2). Collectively, these findings indicated that MV could effectively improve the ovarian microenvironment by upregulating the expression of LDHA, HK2 and PKM2 in granulosa cells and enhancing lactate and energy production, which may contribute to follicle development and ovulation of young-adult PCOS rats.
Collapse
Affiliation(s)
- Lan’e Huang
- Department of Histoembryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Aihong Liang
- Department of Histoembryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Tianlong Li
- Department of Histoembryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaocan Lei
- Department of Histoembryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Xi Chen
- Department of Histoembryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Biyun Liao
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jinru Tang
- Department of Histoembryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiting Cao
- Department of Histoembryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Gang Chen
- Department of Histoembryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Fengyu Chen
- Department of Histoembryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Yiyao Wang
- Department of Histoembryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Linlin Hu
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- *Correspondence: Meixiang Li, ; Weiguo He, ; Linlin Hu,
| | - Weiguo He
- Department of Histoembryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Meixiang Li, ; Weiguo He, ; Linlin Hu,
| | - Meixiang Li
- Department of Histoembryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Meixiang Li, ; Weiguo He, ; Linlin Hu,
| |
Collapse
|