1
|
Ma XH, Dai H, Liu SY, Liu XN, Zhang J, Meng XL. Protection of dauricine and daurisoline on PC12 cells damaged by glutamate or Aβ 25-35. Brain Res 2025; 1857:149609. [PMID: 40185223 DOI: 10.1016/j.brainres.2025.149609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/08/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Glutamate (Glu) excitotoxicity and amyloid-β (Aβ) deposition are significant factors in the occurrence and development of Alzheimer's disease (AD). Dauricine and daurisoline are two alkaloid components of Menispermum dauricum DC. that have a protective effect on the nervous system. The protection of dauricine and daurisoline on Glu-injured PC12 cells and the protection dauricine on Aβ25-35-injured PC12 cells were investigated in this study. The results of the study demonstrated that on PC12 cells damaged by Glu (20 mM), dauricine and daurisoline (3 and 10 μM) increased the cell viability, reduced cell apoptosis, and enhanced mitochondrial membrane potential (MMP) levels. Dauricine and daurisoline can also reduce the levels of intracellular ROS and free Ca2+, and suppression the expression of CaM, p-CaMKII, and p-Tau in Glu-damaged PC12 cells. In addition, on PC12 cells damaged by Aβ25-35 (30 μM), dauricine (3 and 10 μM) can also significantly increase the cell viability and MMP levels, inhibit cell apoptosis, reduce intracellular ROS and free Ca2+ levels, and down-regulate protein expression of CaM, p-CaMKII, and p-Tau. This study demonstrates for the first time that dauricine and daurisoline may inhibit the excessive phosphorylation of Tau protein and subsequent cell apoptosis by suppressing the Ca2+-CaM/CaMKII pathway, thereby protecting PC12 cells damaged Glu or Aβ25-35in vitro. Dauricine and daurisoline have the potential to treat AD effectively and have further research value.
Collapse
Affiliation(s)
- Xiao-Han Ma
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Hui Dai
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Song-Yao Liu
- Translational Medicine Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiao-Na Liu
- School of Basic Medical Sciences, Gansu Medical College, Pingliang, China
| | - Jing Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Xue-Lian Meng
- School of Pharmaceutical Science, Liaoning University, Shenyang, China.
| |
Collapse
|
2
|
Chen KQ, Wang SZ, Lei HB, Liu X. Dauricine: Review of Pharmacological Activity. Drug Des Devel Ther 2024; 18:4371-4385. [PMID: 39355570 PMCID: PMC11444063 DOI: 10.2147/dddt.s471352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Background Dauricine is an important natural organic compound in Menispermum dauricum, which often has significant biological activity. Purpose The purpose of this review is to systemically summarize and discuss the pharmacological activity and underlying mechanisms of dauricine in recent years. Methods Web of Science (121 articles) and PubMed databases (97 articles) were used to search for articles related to "dauricine" published from 2000 to 2024. Meanwhile, we classified the pharmacological activity of dauricine by screening these articles. Results Emerging evidence suggests that dauricine possesses numerous pharmacological activities, including neuroprotection, anti-cancer, anti-arrhythmia, anti-inflammatory and anti-diabetes. Conclusion Dauricine has a potential value in the treatment of many diseases. We hope that this review will contribute to therapeutic development and future studies of dauricine.
Collapse
Affiliation(s)
- Ke-Qian Chen
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, 411100, People's Republic of China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Hai-Bo Lei
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, 411100, People's Republic of China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, 411100, People's Republic of China
| |
Collapse
|
3
|
Zhang R, Huang X, Zhou C, Zhang Q, Jia D, Xie X, Zhang J. Network pharmacology-based mechanism analysis of dauricine on the alleviating Aβ-induced neurotoxicity in Caenorhabditis elegans. BMC Complement Med Ther 2024; 24:321. [PMID: 39215261 PMCID: PMC11363685 DOI: 10.1186/s12906-024-04589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Dauricine (DAU), a benzyl tetrahydroisoquinoline alkaloid isolated from the root of Menispermum dauricum DC, exhibits promising anti-Alzheimer's disease (AD) effects, but its underlying mechanisms remain inadequately investigated. This paper aims to identify potential targets and molecular mechanisms of DAU in AD treatment. METHODS Network pharmacology and molecular docking simulation method were used to screen and focus core targets. Various transgenic Caenorhabditis elegans models were chosen to validate the anti-AD efficacy and mechanism of DAU. RESULTS There are 66 potential DAU-AD target intersections identified from 100 DAU and 3036 AD-related targets. Subsequent protein-protein interaction (PPI) network analysis identified 16 core targets of DAU for anti-AD. PIK3CA, AKT1 and mTOR were predicted to be the central targets with the best connectivity through the analysis of "compound-target-biological process-pathway network". Molecular docking revealed strong binding affinities between DAU and PIK3CA, AKT1, and mTOR. In vivo experiments demonstrated that DAU effectively reduced paralysis in AD nematodes caused by Aβ aggregation toxicity, downregulated expression of PIK3CA, AKT1, and mTOR homologues (age-1, akt-1, let-363), and upregulated expression of autophagy genes and the marker protein LGG-1. Simultaneously, DAU increased lysosomal content and enhanced degradation of the autophagy-related substrate protein P62. Thioflavin T(Th-T)staining experiment revealed that DAU decreased Aβ accumulation in AD nematodes. Further experiments also confirmed DAU's protein scavenging activity in polyglutamine (polyQ) aggregation nematodes. CONCLUSION Collectively, the mechanism of DAU against AD may be related to the activation of the autophagy-lysosomal protein clearance pathway, which contributes to the decrease of Aβ aggregation and the restoration of protein homeostasis.
Collapse
Affiliation(s)
- Ranran Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Xiaoyan Huang
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Chunling Zhou
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Qian Zhang
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Dongsheng Jia
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiaoliang Xie
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Ju Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China.
- College of Bioscience and Engineering, Hebei University of Economics and Business, Shijiazhuang, China.
| |
Collapse
|
4
|
He H, Zhang W, Jiang L, Tong X, Zheng Y, Xia Z. Endothelial Cell Dysfunction Due to Molecules Secreted by Macrophages in Sepsis. Biomolecules 2024; 14:980. [PMID: 39199368 PMCID: PMC11352357 DOI: 10.3390/biom14080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Sepsis is recognized as a syndrome of systemic inflammatory reaction induced by dysregulation of the body's immunity against infection. The multiple organ dysfunction associated with sepsis is a serious threat to the patient's life. Endothelial cell dysfunction has been extensively studied in sepsis. However, the role of macrophages in sepsis is not well understood and the intrinsic link between the two cells has not been elucidated. Macrophages are first-line cells of the immune response, whereas endothelial cells are a class of cells that are highly altered in function and morphology. In sepsis, various cytokines secreted by macrophages and endothelial cell dysfunction are inextricably linked. Therefore, investigating how macrophages affect endothelial cells could offer a theoretical foundation for the treatment of sepsis. This review links molecules (TNF-α, CCL2, ROS, VEGF, MMP-9, and NO) secreted by macrophages under inflammatory conditions to endothelial cell dysfunction (adhesion, permeability, and coagulability), refining the pathophysiologic mechanisms of sepsis. At the same time, multiple approaches (a variety of miRNA and medicines) regulating macrophage polarization are also summarized, providing new insights into reversing endothelial cell dysfunction and improving the outcome of sepsis treatment.
Collapse
Affiliation(s)
- Heng He
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| |
Collapse
|
5
|
Li N, Yi Y, Chen J, Huang Y, Peng J, Li Z, Wang Y, Zhang J, Xu C, Liu H, Li J, Liu X. Anthrahydroquinone‑2,6‑disulfonate attenuates PQ‑induced acute lung injury through decreasing pulmonary microvascular permeability via inhibition of the PI3K/AKT/eNOS pathway. Int J Mol Med 2024; 54:63. [PMID: 38874017 PMCID: PMC11188976 DOI: 10.3892/ijmm.2024.5387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
In paraquat (PQ)‑induced acute lung injury (ALI)/ acute respiratory distress syndrome, PQ disrupts endothelial cell function and vascular integrity, which leads to increased pulmonary leakage. Anthrahydroquinone‑2,6‑disulfonate (AH2QDS) is a reducing agent that attenuates the extent of renal injury and improves survival in PQ‑intoxicated Sprague‑Dawley (SD) rats. The present study aimed to explore the beneficial role of AH2QDS in PQ‑induced ALI and its related mechanisms. A PQ‑intoxicated ALI model was established using PQ gavage in SD rats. Human pulmonary microvascular endothelial cells (HPMECs) were challenged with PQ. Superoxide dismutase, malondialdehyde, reactive oxygen species and nitric oxide (NO) fluorescence were examined to detect the level of oxidative stress in HPMECs. The levels of TNF‑α, IL‑1β and IL‑6 were assessed using an ELISA. Transwell and Cell Counting Kit‑8 assays were performed to detect the migration and proliferation of the cells. The pathological changes in lung tissues and blood vessels were examined by haematoxylin and eosin staining. Evans blue staining was used to detect pulmonary microvascular permeability. Western blotting was performed to detect target protein levels. Immunofluorescence and immunohistochemical staining were used to detect the expression levels of target proteins in HPMECs and lung tissues. AH2QDS inhibited inflammatory responses in lung tissues and HPMECs, and promoted the proliferation and migration of HPMECs. In addition, AH2QDS reduced pulmonary microvascular permeability by upregulating the levels of vascular endothelial‑cadherin, zonula occludens‑1 and CD31, thereby attenuating pathological changes in the lungs in rats. Finally, these effects may be related to the suppression of the phosphatidylinositol‑3‑kinase (PI3K)/protein kinase B (AKT)/endothelial‑type NO synthase (eNOS) signalling pathway in endothelial cells. In conclusion, AH2QDS ameliorated PQ‑induced ALI by improving alveolar endothelial barrier disruption via modulation of the PI3K/AKT/eNOS signalling pathway, which may be an effective candidate for the treatment of PQ‑induced ALI.
Collapse
Affiliation(s)
- Nan Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Yang Yi
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jun Chen
- Emergency Department of Danzhou People's Hospital, Danzhou, Hainan 571799, P.R. China
| | - Yue Huang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jichao Peng
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Zhao Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Ying Wang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jiadong Zhang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Chaoqun Xu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Haoran Liu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jinghua Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Xiaoran Liu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
6
|
Xia GQ, Zhu MP, Li JW, Huang H. An alkaloid from Menispermum dauricum, dauricine mediates Ca 2+ influx and inhibits NF-κB pathway to protect chondrocytes from IL-1β-induced inflammation and catabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117560. [PMID: 38081396 DOI: 10.1016/j.jep.2023.117560] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dauricine (DA) is a natural plant-derived alkaloid extracted from Menispermum dauricum. Menispermum dauricum has been used in traditional Chinese medicine as a classic remedy for rheumatoid arthropathy and is believed to be effective in alleviating swelling and pain in the limbs. AIM OF THE STUDY Osteoarthritis (OA) is a classic degenerative disease involving chondrocyte death, and there is still a lack of effective therapeutic agents that can reverse the progression of the disease. Here we explored the therapeutic effects of DA against OA and further explored the mechanism. MATERIALS AND METHODS The effect of DA on cell viability was assessed by CCK-8. IL-1β-treated mouse chondrocytes were used as an in vitro model of OA, and apoptosis was detected by flow cytometry. QRT-PCR, western blotting, cell staining, and immunofluorescence were used to detect relevant inflammatory factors and cartilage-specific expression. RNA sequencing was used to identify pertinent signaling pathways. The therapeutic effect of DA was verified by micro-CT, histological analysis and immunohistochemical analysis in a mouse OA model. RESULTS DA demonstrated a high safety profile on chondrocytes, significantly reversing the inflammatory response induced by IL-1β, and promoting factors associated with cartilage regeneration. Moreover, DA exhibited a significant protective effect on the knee joints of mice undergoing ACLT-DMM, effectively preventing cartilage degeneration and subchondral bone tissue destruction. These positive therapeutic effects were achieved through the modulation of the NF-κB pathway and the Ca2+ signaling pathway by DA. CONCLUSION Being derived from a traditional herb, DA exhibits remarkable therapeutic potential and safety in OA treatment, presenting a promising option for patients dealing with osteoarthritis.
Collapse
Affiliation(s)
- Gan-Qing Xia
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, Hu bei Province, PR China
| | - Mei-Peng Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, Hu bei Province, PR China
| | - Jian-Wen Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, Hu bei Province, PR China
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430060, Hu bei Province, PR China.
| |
Collapse
|
7
|
Zeng F, Li Y, Zhang X, Feng J, Gu W, Shen L, Huang W. Arctium lappa L. roots inhibit the intestinal inflammation of dietary obese rats through TLR4/NF-κB pathway. Heliyon 2023; 9:e21562. [PMID: 38027866 PMCID: PMC10663856 DOI: 10.1016/j.heliyon.2023.e21562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Long-term consumption of Arctium lappa L. roots can lead to weight loss. To explore the relationship between anti-obesity and anti-inflammation, the effects and mechanism of A. lappa L. root powder (ARP) on intestinal inflammation in obese rats were investigated. Dietary obese rats were successfully established by feeding a high-fat and high-sugar diet. The control group (n = 6) consumed a normal diet. The intestines were compared among the groups (each n = 6) with and without the administration of ARP (intragastric 7.5 g/kg·bw/d). Real-time quantitative reverse transcription-polymerase chain reaction and western blotting analysis revealed that ARP effectively inhibited the expression of pro-inflammatory and inflammatory cytokines in the colons of obese rats. These cytokines included interleukin (IL)-1β, IL-8, IL-6, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1. The inhibition rates for all these cytokines exceeded 88 %. Moreover, ARP demonstrated the ability to down-regulate key genes involved in Toll-like receptor 4 (TLR4) complexes, namely Tlr4, myeloid differentiation protein-2 (Md2), and myeloid differentiation factor 88 (Myd88), along with downstream signaling molecules such as tumor necrosis factor receptor associated factor 6 (TRAF6) and nuclear factor-κB (NF-κB), with inhibition rates over 81 %. Additionally, ARP was observed to inhibit protein levels of TLR4, NF-κB, IL-1β, and TNF-α in the colons of obese rats, with inhibition rates of 65.6 ± 10.9 %, 84.4 ± 19.9 %, 80.8 ± 14.4 %, and 68.4 ± 17.5 %, respectively. This study confirmed the effectiveness of ARP in inhibiting intestinal inflammation through the blockade of the TLR4/NF-κB signaling pathway. It also suggested that ARP holds potential in improving intestinal health in the context of obesity, implying its possible application in the prevention and treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Feng Zeng
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225000, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Ying Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Xiaoxiao Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Jin Feng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Li Shen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225000, PR China
| | - Wuyang Huang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225000, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
- School of Food and Bioengineering, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
8
|
Shi L, Wang S, Zhang S, Wang J, Chen Y, Li Y, Liu Z, Zhao S, Wei B, Zhang L. Research progress on pharmacological effects and mechanisms of cepharanthine and its derivatives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2843-2860. [PMID: 37338575 DOI: 10.1007/s00210-023-02537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Cepharanthine (CEP) is a bisbenzylisoquinoline alkaloid compound found in plants of the Stephania genus, which has biological functions such as regulating autophagy, inhibiting inflammation, oxidative stress, and apoptosis. It is often used for the treatment of inflammatory diseases, viral infections, cancer, and immune disorders and has great clinical translational value. However, there is no detailed research on its specific mechanism and dosage and administration methods, especially clinical research is limited. In recent years, CEP has shown significant effects in the prevention and treatment of COVID-19, suggesting its potential medicinal value waiting to be discovered. In this article, we comprehensively introduce the molecular structure of CEP and its derivatives, describe in detail the pharmacological mechanisms of CEP in various diseases, and discuss how to chemically modify and design CEP to improve its bioavailability. In summary, this work will provide a reference for further research and clinical application of CEP.
Collapse
Affiliation(s)
- Liangliang Shi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shuaizhe Wang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jiawei Wang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yaping Chen
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhiwei Liu
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Sichen Zhao
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Benjun Wei
- Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, China.
| | - Liying Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Key Laboratory of Traditional Chinese Medicine Exploration and Innovation Transformation in Gansu Province, Lanzhou, China.
| |
Collapse
|
9
|
Zhang X, Wang T, Miao Y, Lin W, Zhu L, Meng X, Zhang F. Dauricine exhibits anti-inflammatory property against acute ulcerative colitis via the regulation of NF-κB pathway. Cell Biochem Funct 2023; 41:713-721. [PMID: 37470500 DOI: 10.1002/cbf.3826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/01/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
We aim to investigate the therapeutic effect of dauricine on ulcerative colitis (UC). Our results indicated that dauricine attenuated the reduction of colonic length, weight loss, disease activity index, colonic tissue damage, and inflammatory cytokine levels in dextran sulfate sodium mice. In addition, dauricine reduced lipopolysaccharide-induced inflammation in HT-29 cells. Mechanically, dauricine docked with p65, a member of nuclear transcription factor kappaB (NF-κB) family, through which reduced the inflammatory cytokine release from HT-29 cells. Together, the above results inferred that dauricine had therapeutic effect for UC by suppressing NF-κB pathway, which provided a promising mean for UC treatment.
Collapse
Affiliation(s)
- Xu Zhang
- Gastroenterology Department, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| | - Ting Wang
- Group Office, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| | - Yu Miao
- Gastroenterology Department, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| | - Wan Lin
- Gastroenterology Department, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| | - Litao Zhu
- Outpatient Department, Ningxia Yinchuan Prison Hospital, Yinchuan, Ningxia, China
| | - Xiangkun Meng
- Gastroenterology Department, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| | - Feixiong Zhang
- Gastroenterology Department, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| |
Collapse
|
10
|
Regulation of Microglia-Activation-Mediated Neuroinflammation to Ameliorate Ischemia-Reperfusion Injury via the STAT5-NF-κB Pathway in Ischemic Stroke. Brain Sci 2022; 12:brainsci12091153. [PMID: 36138889 PMCID: PMC9496994 DOI: 10.3390/brainsci12091153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammatory reaction after ischemia-reperfusion contributes significantly to a worsened prognosis, and microglia activation is the main resource of inflammation in the nervous system. Targeting STAT5 has been shown to be a highly effective anti-inflammatory therapy; however, the mechanism by which the STAT5 signaling pathway regulates neuroinflammation following brain injury induced by ischemia-reperfusion remains unclear. Dauricine is an effective agent in anti-inflammation and neuroprotection, but the mechanism by which dauricine acts in ischemia-reperfusion remained unknown. This study is the first to find that the anti-inflammation mechanism of dauricine mainly occurs through the STAT5-NF-κB pathway and that it might act as a STAT5 inhibitor. Dauricine suppresses the inflammation caused by cytokines Eotaxin, KC, TNF-α, IL-1α, IL-1β, IL-6, IL-12β, and IL-17α, as well as inhibiting microglia activation. The STAT5b mutant at Tyr-699 reverses the protective effect of dauricine on the oxygen-glucose deprivation-reperfusion injury of neurons and reactivates the P-NF-κB expression in microglia. These results suggest that dauricine might be able to suppress the neuroinflammation and protect the neurons from the injury of post-ischemia-reperfusion injury via mediating the microglia activation through the STAT5-NF-κB pathway. As a potential therapeutic target for neuroinflammation, STAT5 needs to be given further attention regarding its role in ischemic stroke.
Collapse
|
11
|
Li X, Shi S, Yang Y, Lou Y, Chen S, Guo Y, Qi X, Wang Y, Liu Z, Cheng Y. The anticardiac fibrosis of total alkaloids of Plumula nelumbinis by regulating circulating lipidomic profile: In vivo study. J Food Biochem 2022; 46:e14194. [PMID: 35502470 DOI: 10.1111/jfbc.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
Plumula nelumbinis has great medicinal potential as a herbal tea and traditional drug in China. This study was aimed to evaluate the anticardiac fibrosis of the total alkaloids of P. nelumbinis (TAP). TAP at 50 mg/kg/day significantly ameliorated isoproterenol-induced cardiac fibrosis in mice (p < .05). The circulating lipidomics study revealed that TAP improved the lipid metabolism dysfunction in cardiac fibrosis. Meanwhile, TAP suppressed the lipid accumulation, decreased MDA level (p < .01) in heart, and increased FFA level (p < .01). Furthermore, integrating lipidomics, chemical profiles and pharmacology network analysis found that AMPK and PI3K/Akt signaling pathways were the potential targeted pathway by TAP to regulate lipid metabolism dysfunction including glycerophospholipid metabolism. Above all, TAP provided a potential anticardiac fibrosis effect partly through regulation of lipid profiles. PRACTICAL APPLICATIONS: The total alkaloids of Plumula nelumbinis (TAP) suppressed ISO-induced cardiac fibrosis in mice. Network pharmacology analysis and experiments revealed that TAP-regulated AMPK and PI3K/Akt signaling pathway to improve lipid metabolism disorder in cardiac fibrosis. This study provides evidence to the therapeutic potential of TAP in the treatment of ISO-induced cardiac fibrosis and could be a drug candidate for prevention and treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Xuping Li
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuotao Shi
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Yang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanmei Lou
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sixuan Chen
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yixin Guo
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Cheng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|