1
|
Yang Y, Liu J, Wang L, Wu W, Wang Q, Zhao Y, Qian X, Wang Z, Fu N, Wang Y, Qian J. Oxytocin attenuates cardiac hypertrophy by improving cardiac glucose metabolism and regulating OXTR/JAK2/STAT3 axis. Peptides 2024; 182:171323. [PMID: 39613260 DOI: 10.1016/j.peptides.2024.171323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND The progress of cardiac hypertrophy is modulated by JAK2/STAT3 signaling pathway. Cardiac glucose metabolism derangement exacerbates the progression of cardiac hypertrophy. Oxytocin (OT) has emerged as a significant hormone involved in cardiovascular homeostasis, especially in protecting against cardiac hypertrophy. The present study aims to explore whether the anti-hypertrophy effect of oxytocin is related to the JAK2/STAT3 signaling pathway and cardiac glucose metablism. METHODS Cardiac hypertrophy model was induced by angiotensin II (Ang II) in H9c2 cells and in mice with or without oxytocin treatment. Changes in cardiac histopathology were evaluated by hematoxylin and eosin (H&E), Masson staining, and wheat germ agglutinin (WGA) staining. The hypertrophy-related genes and JAK2/STAT3 pathway signaling molecules were analyzed by qRT-PCR and western blotting. The levels of glucose, pyruvic acid, lactic acid, and lactate dehydrogenase activity in H9c2 cells using the corresponding assay kits. RESULTS The results showed that OT inhibited hypertrophic and fibrotic changes. Furthermore, OT increased intracellular levels of glucose and pyruvic acid, and decreased lactate dehydrogenase activity and lactic acid levels. Mechanistically, Ang II decreased oxytocin receptors (OXTR) expression and facilitated JAK2 and STAT3 phosphorylation. OT treatment increased OXTR expression and blocked JAK2 and STAT3 phosphorylation The OXTR-specific siRNA-mediated depleted expression could abrogate OT-induced anti-hypertrophic effects in H9c2 cells following angiotensin II insult. However, the JAK2/STAT3 inhibitor AG490 rescued the protective effects of OT against cardiac hypertrophy under OXTR downregulation. CONCLUSION OT exerts its protective effects against cardiac hypertrophy by improving cardiac glucose metabolism and regulating OXTR/JAK2/STAT3 axis.
Collapse
Affiliation(s)
- Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jin Liu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lingyan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wen Wu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Quan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu Zhao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xi Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhuoran Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Na Fu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yanqiong Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Wang T, Ye J, Zhang Y, Li J, Yang T, Wang Y, Jiang X, Yao Q. Role of oxytocin in bone. Front Endocrinol (Lausanne) 2024; 15:1450007. [PMID: 39290327 PMCID: PMC11405241 DOI: 10.3389/fendo.2024.1450007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Oxytocin (OT) is a posterior pituitary hormone that, in addition to its role in regulating childbirth and lactation, also exerts direct regulatory effects on the skeleton through peripheral OT and oxytocin receptor (OTR). Bone marrow mesenchymal stem cells (BMSCs), osteoblasts (OB), osteoclasts (OC), chondrocytes, and adipocytes all express OT and OTR. OT upregulates RUNX2, BMP2, ALP, and OCN, thereby enhancing the activity of BMSCs and promoting their differentiation towards OB rather than adipocytes. OT also directly regulates OPG/RANKL to inhibit adipocyte generation, increase the expression of SOX9 and COMP, and enhance chondrocyte differentiation. OB can secrete OT, exerting influence on the surrounding environment through autocrine and paracrine mechanisms. OT directly increases OC formation through the NκB/MAP kinase signaling pathway, inhibits osteoclast proliferation by triggering cytoplasmic Ca2+ release and nitric oxide synthesis, and has a dual regulatory effect on OCs. Under the stimulation of estrogen, OB synthesizes OT, amplifying the biological effects of estrogen and OT. Mediated by estrogen, the OT/OTR forms a feedforward loop with OB. Apart from estrogen, OT also interacts with arginine vasopressin (AVP), prostaglandins (PGE2), leptin, and adiponectin to regulate bone metabolism. This review summarizes recent research on the regulation of bone metabolism by OT and OTR, aiming to provide insights into their clinical applications and further research.
Collapse
Affiliation(s)
- Tianming Wang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianya Ye
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Orthopedic Surgery, Huaian Hospital of Huaian City, Huaian, China
| | - Yongqiang Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiayi Li
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tianxiao Yang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yufeng Wang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Jiang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Li R, Zhang K, Xu Z, Yu Y, Wang D, Li K, Liu W, Pan J. Liraglutide ameliorates TAC-induced cardiac hypertrophy and heart failure by upregulating expression level of ANP expression. Heliyon 2024; 10:e32229. [PMID: 38868006 PMCID: PMC11168427 DOI: 10.1016/j.heliyon.2024.e32229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Recent studies have underscored the cardioprotective properties of liraglutide. This research explores its impact on cardiac hypertrophy and heart failure following transverse aortic constriction (TAC). We found that liraglutide administration markedly ameliorated cardiac hypertrophy, fibrosis, and function. These benefits correlated with increased ANP expression and reduced activity in the calcineurin A/NFATc3 signaling pathway. Moreover, liraglutide mitigated ER stress and cardiomyocyte apoptosis, and enhanced autophagy. Notably, the positive effects of liraglutide diminished when co-administered with A71915, an ANP inhibitor, suggesting that ANP upregulation is critical to its cardioprotective mechanism.
Collapse
Affiliation(s)
- Ruisha Li
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Keyin Zhang
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhenjun Xu
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yanrong Yu
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongjin Wang
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Kai Li
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenxue Liu
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jun Pan
- Institute of Cardiothoracic Vascular Disease, Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Chen J, Yang X, Li W, Lin Y, Lin R, Cai X, Yan B, Xie B, Li J. Potential molecular and cellular mechanisms of the effects of cuproptosis-related genes in the cardiomyocytes of patients with diabetic heart failure: a bioinformatics analysis. Front Endocrinol (Lausanne) 2024; 15:1370387. [PMID: 38883603 PMCID: PMC11176466 DOI: 10.3389/fendo.2024.1370387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Background Diabetes mellitus is an independent risk factor for heart failure, and diabetes-induced heart failure severely affects patients' health and quality of life. Cuproptosis is a newly defined type of programmed cell death that is thought to be involved in the pathogenesis and progression of cardiovascular disease, but the molecular mechanisms involved are not well understood. Therefore, we aimed to identify biomarkers associated with cuproptosis in diabetes mellitus-associated heart failure and the potential pathological mechanisms in cardiomyocytes. Materials Cuproptosis-associated genes were identified from the previous publication. The GSE26887 dataset was downloaded from the GEO database. Methods The consistency clustering was performed according to the cuproptosis gene expression. Differentially expressed genes were identified using the limma package, key genes were identified using the weighted gene co-expression network analysis(WGCNA) method, and these were subjected to immune infiltration analysis, enrichment analysis, and prediction of the key associated transcription factors. Consistency clustering identified three cuproptosis clusters. The differentially expressed genes for each were identified using limma and the most critical MEantiquewhite4 module was obtained using WGCNA. We then evaluated the intersection of the MEantiquewhite4 output with the three clusters, and obtained the key genes. Results There were four key genes: HSDL2, BCO2, CORIN, and SNORA80E. HSDL2, BCO2, and CORIN were negatively associated with multiple immune factors, while SNORA80E was positively associated, and T-cells accounted for a major proportion of this relationship with the immune system. Four enriched pathways were found to be associated: arachidonic acid metabolism, peroxisomes, fatty acid metabolism, and dorsoventral axis formation, which may be regulated by the transcription factor MECOM, through a change in protein structure. Conclusion HSDL2, BCO2, CORIN, and SNORA80E may regulate cardiomyocyte cuproptosis in patients with diabetes mellitus-associated heart failure through effects on the immune system. The product of the cuproptosis-associated gene LOXL2 is probably involved in myocardial fibrosis in patients with diabetes, which leads to the development of cardiac insufficiency.
Collapse
Affiliation(s)
- Jinhao Chen
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xu Yang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Weiwen Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Ying Lin
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Run Lin
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xianzhen Cai
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Baoxin Yan
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Bin Xie
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jilin Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
5
|
Gui LK, Liu HJ, Jin LJ, Peng XC. Krüpple-like factors in cardiomyopathy: emerging player and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1342173. [PMID: 38516000 PMCID: PMC10955087 DOI: 10.3389/fcvm.2024.1342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors. Cardiomyopathies manifest in various ways ranging from microscopic alterations in cardiomyocytes, to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the setting and development of cardiomyopathies, and play critical roles in associated biological processes, including Oxidative Stress (OS), inflammatory reactions, myocardial hypertrophy and fibrosis, and cellular autophagy and apoptosis, particularly in diabetic cardiomyopathy. However, research into KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic mechanisms of some KLF members in various types of cardiomyopathies remain unclear. This article reviews the roles and recent research advances in KLFs, specifically those targeting and regulating several cardiomyopathy-associated processes.
Collapse
Affiliation(s)
- Le-Kun Gui
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Huang-Jun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Li-Jun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
6
|
Du B, Zhang J, Kong L, Shi H, Zhang D, Wang X, Yang C, Li P, Yao R, Liang C, Wu L, Huang Z. Ovarian Tumor Domain-Containing 7B Attenuates Pathological Cardiac Hypertrophy by Inhibiting Ubiquitination and Degradation of Krüppel-Like Factor 4. J Am Heart Assoc 2023; 12:e029745. [PMID: 38084712 PMCID: PMC10863784 DOI: 10.1161/jaha.123.029745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/15/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Cardiac hypertrophy (CH) is a well-established risk factor for many cardiovascular diseases and a primary cause of mortality and morbidity among older adults. Currently, no pharmacological interventions have been specifically tailored to treat CH. OTUD7B (ovarian tumor domain-containing 7B) is a member of the ovarian tumor-related protease (OTU) family that regulates many important cell signaling pathways. However, the role of OTUD7B in the development of CH is unclear. Therefore, we investigated the role of OTUD7B in CH. METHODS AND RESULTS OTUD7B knockout mice were used to assay the role of OTUD7B in CH after transverse aortic coarctation surgery. We further assayed the specific functions of OTUD7B in isolated neonatal rat cardiomyocytes. We found that OTUD7B expression decreased in hypertrophic mice hearts and phenylephrine-stimulated neonatal rat cardiomyocytes. Furthermore, OTUD7B deficiency exacerbated transverse aortic coarctation surgery-induced myocardial hypertrophy, abnormal cardiac function, and fibrosis. In cardiac myocytes, OTUD7B knockdown promoted phenylephrine stimulation-induced myocardial hypertrophy, whereas OTUD7B overexpression had the opposite effect. An immunoprecipitation-mass spectrometry analysis showed that OTUD7B directly binds to KLF4 (Krüppel-like factor 4). Additional molecular experiments showed that OTUD7B impedes KLF4 degradation by inhibiting lysine residue at 48 site-linked ubiquitination and suppressing myocardial hypertrophy by activating the serine/threonine kinase pathway. CONCLUSIONS These results demonstrate that the OTUD7B-KLF4 axis is a novel molecular target for CH treatment.
Collapse
Affiliation(s)
- Bin‐Bin Du
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Jie‐Lei Zhang
- Department of EndocrinologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Ling‐Yao Kong
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Hui‐Ting Shi
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Dian‐Hong Zhang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Xing Wang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Chun‐Lei Yang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Peng‐Cheng Li
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Rui Yao
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Cui Liang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Lei‐Ming Wu
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Zhen Huang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
7
|
Oxytocin ameliorates high glucose- and ischemia/reperfusion-induced myocardial injury by suppressing pyroptosis via AMPK signaling pathway. Biomed Pharmacother 2022; 153:113498. [DOI: 10.1016/j.biopha.2022.113498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/23/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022] Open
|
8
|
Roohaninasab M, Yavari SF, Babazadeh M, Hagh RA, Pazoki M, Amrovani M. Evaluating the Role of lncRNAs in the Incidence of Cardiovascular Diseases in Androgenetic Alopecia Patients. Cardiovasc Toxicol 2022; 22:603-619. [PMID: 35507254 DOI: 10.1007/s12012-022-09742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
Hair loss occurs in patients with Androgenetic Alopecia (AGA). The pattern of hair loss is different between men and women. The main cause of hair loss is increased cell apoptosis and decreased regeneration, proliferation and differentiation processes in hair follicles. Long Non-Coding RNAs (lncRNAs) are one of the most important molecules that regulate the processes of apoptosis, regeneration, proliferation and differentiation in hair follicles. Since studies have shown that lncRNAs can be effective in the development of cardiotoxicity and induction of cardiovascular disease (CVD); so effective lncRNAs in the regulation of regeneration, proliferation, differentiation and apoptosis of hair follicles can be involved in the development of CVD in AGA patients with. Therefore, this study investigated the lncRNAs involved in increasing apoptosis and reducing the processes of regeneration, proliferation and differentiation of hair follicles. The aim of the current study was to evaluate the role of lncRNAs as a risk factor in the incidence of CVD in AGA patients; it will help to design treatment strategies by targeting signaling pathways without any cardiotoxicity complications.
Collapse
Affiliation(s)
- Masoumeh Roohaninasab
- Department of Dermatology, Rasool Akram Medical Complex, Iran University of Medical Sciences, Sattarkhan St, Tehran, 1445613131, Iran
| | - Shadnaz Fakhteh Yavari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,Parvaz Research Ideas Supporter Institute, Tehran, Iran
| | - Motahareh Babazadeh
- Department of Dermatology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahboubeh Pazoki
- Department of Cardiology, Rasoul Akram General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehran Amrovani
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|