1
|
Gong R, Long G, Wang Q, Hu X, Luo H, Zhang D, Shang J, Han Y, Huang C, Shang Y. Piplartine alleviates sepsis-induced acute kidney injury by inhibiting TSPO-mediated macrophage pyroptosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167687. [PMID: 39862996 DOI: 10.1016/j.bbadis.2025.167687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Sepsis-induced acute kidney injury (SI-AKI) is the most common organ dysfunction of sepsis, characterized with prolonged hospitalization periods and significantly elevated mortality rates. Piplartine (PLG), an alkaloid extracted from Piper longum within the Piperaceae family, has exhibited diverse pharmacological activities, including anti-inflammatory, anti-atherosclerotic, and anti-tumor effects. Herein, we investigated whether the PLG could reverse SI-AKI and explore its possible anti-inflammatory mechanisms. We constructed an SI-AKI model using cecal ligation and puncture (CLP) and systematically evaluated the protective effect of PLG administered by gavage in the SI-AKI mice. Subsequently, we performed proteomic sequencing of the kidney and integrated data from the GeneCards and SwissTargetPrediction databases to identify potential targets and mechanisms. Immunofluorescence and western blotting were used to examine the expression of relevant targets and pathways in vivo and in vitro. The influence of PLG on the predicted target and pathway was verified using an agonist of the target protein and a series of biochemical experiments. PLG exhibited significant efficacy against pathological damage, neutrophil and macrophage infiltration, and macrophage pyroptosis in kidneys at 30 mg/kg. An integrated analysis of proteomic data identified the translocator protein (TSPO) as a potential target for the renoprotective effects of PLG. Moreover, a TSPO agonist (RO5-4864) prominently reversed the protective effect of PLG in SI-AKI mice, as manifested by a deterioration in renal function, histopathological lesions and macrophage pyroptosis in the kidneys. Our results suggest that PLG may ameliorate SI-AKI, potentially through partial inhibition of the TSPO-macrophage pyroptosis pathway.
Collapse
Affiliation(s)
- Rui Gong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Gangyu Long
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China
| | - Qian Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Xujuan Hu
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China
| | - Hong Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dingyu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Jun Shang
- SpecAlly Life Technology Co., Ltd, Wuhan 430073, Hubei, China
| | - Yang Han
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China.
| | - Chaolin Huang
- Center for Translational Medicine, The Eighth Clinical College, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, Hubei, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.
| |
Collapse
|
2
|
Liu Y, Wu Y, Zhu Y, Li Q, Peng X, Zhang Z, Liu L, Liu L, Li T. Role of Excessive Mitochondrial Fission in Seawater Immersion Aggravated Hemorrhagic Shock-Induced Cardiac Dysfunction and the Protective Effect of Mitochondrial Division Inhibitor-1. Antioxid Redox Signal 2024; 41:462-478. [PMID: 39180289 DOI: 10.1089/ars.2022.0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Aims: Seawater immersion significantly aggravated organ dysfunction following hemorrhagic shock, leading to higher mortality rate. However, the effective treatment is still unavailable in clinic. Mitochondria were involved in the onset and development of multiple organ function disorders; whether mitochondria participate in the cardiac dysfunction following seawater immersion combined with hemorrhagic shock remains poorly understood. Hence, we investigated the role and possible mechanism of mitochondria in seawater immersion combined with hemorrhage shock-induced cardiac dysfunction. Results: Mitochondrial fission protein dynamin-related protein 1 (Drp1) was activated and translocated from the cytoplasm to mitochondria in the heart following seawater immersion combined with hemorrhagic shock, leading to excessive mitochondrial fission. Excessive mitochondrial fission disrupted mitochondrial function and structure and activated mitophagy and apoptosis. At the same time, excessive mitochondrial fission resulted in disturbance of myocardial structure and hemodynamic disorders and ultimately provoked multiple organ dysfunction and high mortality. Further studies showed that the mitochondrial division inhibitor mitochondrial division inhibitor-1 can significantly reverse Drp1 mitochondrial translocation and inhibit mitochondrial fragmentation, reactive oxygen species (ROS) accumulation, mitophagy, and apoptosis and then protect circulation and vital organ functions, prolonging animal survival. Innovation: Our findings indicate that Drp1-mediated mitochondrial fission could be a novel therapeutic targets for the treatment of seawater immersion combined with hemorrhagic shock. Conclusion: Drp1 mitochondrial translocation played an important role in the cardiac dysfunction after seawater immersion combined with hemorrhage shock. Drp1-mediated excessive mitochondrial fission leads to cardiac dysfunction due to the mitochondrial structure and bioenergetics impairment.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, China
- Medical Department, Affiliated Hospital of Non-commissioned Officer School of Army Medical University, Shijiazhuang, China
| | - Yue Wu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Zhu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, China
| | - Qinghui Li
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyong Peng
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, China
| | - Zisen Zhang
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Liu
- Nursing Department, Southwest Hospital, Army Medical University, Chongqing, China
| | - Liangming Liu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Zhou X, Zou L, Deng H, Zhou Y, Wu Y, Ouyang X, Liu L, Wang L, Li T. Protective Effects and Mechanisms of Inhibiting Endoplasmic Reticulum Stress on Cold Seawater Immersion Combined with Hemorrhagic Shock. J Inflamm Res 2024; 17:4923-4940. [PMID: 39070132 PMCID: PMC11283250 DOI: 10.2147/jir.s469622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose Cold seawater immersion aggravates hemorrhagic shock-induced homeostasis imbalance and organ dysfunction, leading to increased mortality. Previous studies have shown that treatments targeting oxidative stress and mitochondrial dysfunction have limited efficacy for cold seawater immersion combined with hemorrhagic shock (SIHS). Thus, the mechanisms responsible for SIHS need further investigation. Methods and Results Data from the hemorrhagic shock transcriptome and cold seawater immersion targets used for bioinformatics analysis revealed the involvement of endoplasmic reticulum stress (ERS) in SIHS occurrence and progression. Based on these findings, the effects and possible mechanism of inhibiting ERS in SIHS rats were investigated. SIHS causes a lethal triad and impairment of vital organ function, leading to death. Compared to lactated Ringer's solution, the ERS inhibitor 4-phenylbutyric acid (PBA)significantly ameliorated acidosis and coagulopathy and protected vital organ function while prolonging survival and the golden treatment time. Through target screening and validation, 7 targets were identified for the ERS inhibitor PBA for the treatment of SIHS, among which S1PR1, MMP8 and CFTR may play more important roles. Conclusion ERS plays a crucial role in the progression of SIHS. Inhibition of ERS caused by SIHS alleviates the lethal triad, protects organ function, and prolongs survival and the golden treatment time. The ERS inhibitor PBA may be an effective therapeutic measure for treating SIHS.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Liyong Zou
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Haoyue Deng
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Yuanqun Zhou
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Yue Wu
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Xingnan Ouyang
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Liangming Liu
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Li Wang
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Tao Li
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
4
|
Zhou Y, Zhu Y, Wu Y, Xiang X, Ouyang X, Liu L, Li T. 4-phenylbutyric acid improves sepsis-induced cardiac dysfunction by modulating amino acid metabolism and lipid metabolism via Comt/Ptgs2/Ppara. Metabolomics 2024; 20:46. [PMID: 38641695 PMCID: PMC11031492 DOI: 10.1007/s11306-024-02112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024]
Abstract
INTRODUCTION Cardiac dysfunction after sepsis the most common and severe sepsis-related organ failure. The severity of cardiac damage in sepsis patients was positively associated to mortality. It is important to look for drugs targeting sepsis-induced cardiac damage. Our previous studies found that 4-phenylbutyric acid (PBA) was beneficial to septic shock by improving cardiovascular function and survival, while the specific mechanism is unclear. OBJECTIVES We aimed to explore the specific mechanism and PBA for protecting cardiac function in sepsis. METHODS The cecal ligation and puncture-induced septic shock models were used to observe the therapeutic effects of PBA on myocardial contractility and the serum levels of cardiac troponin-T. The mechanisms of PBA against sepsis were explored by metabolomics and network pharmacology. RESULTS The results showed that PBA alleviated the sepsis-induced cardiac damage. The metabolomics results showed that there were 28 metabolites involving in the therapeutic effects of PBA against sepsis. According to network pharmacology, 11 hub genes were found that were involved in lipid metabolism and amino acid transport following PBA treatment. The further integrated analysis focused on 7 key targets, including Comt, Slc6a4, Maoa, Ppara, Pparg, Ptgs2 and Trpv1, as well as their core metabolites and pathways. In an in vitro assay, PBA effectively inhibited sepsis-induced reductions in Comt, Ptgs2 and Ppara after sepsis. CONCLUSIONS PBA protects sepsis-induced cardiac injury by targeting Comt/Ptgs2/Ppara, which regulates amino acid metabolism and lipid metabolism. The study reveals the complicated mechanisms of PBA against sepsis.
Collapse
Affiliation(s)
- Yuanqun Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xinming Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xingnan Ouyang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
5
|
Li R, Li F, Wang X, Bai M, Fu H, Yan Z, Yang X, Zhu Y. 4-Phenylbutyric acid may prevent mouse ovarian and uterine damage due to procymidone-induced alteration of circRNA Scar and circZc3h4 levels by controlling excessive unfolded protein response. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105631. [PMID: 37945263 DOI: 10.1016/j.pestbp.2023.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
Procymidone (PCM) below the no-observed-adverse-effect-level (NOAEL) has previously been proven to induce ovarian and uterine damage in adolescent mice due to its raised circRNA Scar, decreased circZc3h4, and overactivated unfolded protein response (UPR). Also, 4-phenylbutyric acid (4-PBA) inhibits histone deacetylase and endoplasmic reticulum stress, reduces UPR, improves metabolism, and ensures homeostasis within the endoplasmic reticulum. In this study, 20, 40 and 80 mM of 4-PBA were utilized respectively to intervene the damage caused by 1.0 × 10-5 M PCM to ovaries and uterus in vitro culture. Besides, 100 mg/kg /d 4-PBA was intraperitoneally injected to female adolescent mice before, during and after oral administration of 100 mg/kg /d PCM for prevention and cure to observe tissue changes in the ovaries and uteri, and levels of circRNA Scar, circZc3h4 and UPR members. Our findings demonstrated that in vitro experiments, all doses of 4-PBA could inhibit ovarian and uterine damage caused by PCM, and the effect of 80 mM was especially noticeable. In the in vivo experiments, the best results were obtained when PCM was given with simultaneous 4-PBA intervention, i.e., minimal ovarian and uterine damage. Both in vivo and in vitro, 4-PBA in the ovary and uterus resulted in decreased circRNA Scar levels, increased circZc3h4 abundance, and moderately elevated levels of UPR members. So, it is suggested that 4-PBA moderately activates UPR, partially or completely antagonizing the elevated circRNA Scar and decreased circZc3h4 and consequently preventing PCM-induced ovarian and uterine damage effectively in adolescent mice.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha 410013, Hunan, China; College of Medicine, Yichun University, Yichun 336000, Jiangxi, China
| | - Fan Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha 410013, Hunan, China
| | - Xuning Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha 410013, Hunan, China
| | - Mingxin Bai
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha 410013, Hunan, China
| | - Hu Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha 410013, Hunan, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Zhengli Yan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha 410013, Hunan, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| | - Yongfei Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha 410013, Hunan, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
6
|
Zhao H, Chen Y, Qian L, Du L, Wu X, Tian Y, Deng C, Liu S, Yang W, Lu C, Zhang Y, Ren J, Yang Y. Lycorine protects against septic myocardial injury by activating AMPK-related pathways. Free Radic Biol Med 2023; 197:1-14. [PMID: 36669544 DOI: 10.1016/j.freeradbiomed.2023.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/19/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
Cardiac dysfunction is a common complication in patients with sepsis triggering high morbidity and mortality. Lycorine (LYC), the main effective monomer component extracted from Lycoris bulbs, possesses antiviral, anti-inflammatory, analgesic, liver protection properties. In this study, the effect of LYC pre- and post-treatment as well as the underlying mechanism were evaluated in the cecal ligation and puncture (CLP) model of Balb/c mice. The survival rate, anal temperature, sepsis score, blood biochemical/routine indicators, cardiac function, sepsis-related pathophysiological processes, and AMPK signaling in septic mice were observed by echocardiography, histological staining, western blot, qPCR, and etc. LYC pretreatment attenuated myocardial injury in septic mice by improving survival rate, sepsis score, blood biochemical/routine indicators, cardiac function and structure, inhibiting inflammation and oxidative stress, improving mitochondrial function, modulating endoplasmic reticulum stress, and activating AMPK pathway. In particular, AMPK deficiency and AMPK inhibitor (Compound C) partially reversed the protective effects of LYC in septic mice. In addition, LYC posttreatment also has slight protective phenotypes on septic myocardial injury, but the effect is not as ideal as pretreatment. Taken together, these findings suggest that LYC may be a potential drug for the treatment of sepsis.
Collapse
Affiliation(s)
- Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Military Medical University, 1 Xinsi Road, Xi'an, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, China
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Luyang Du
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Xue Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, China
| | - Shuai Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Yan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China; Department of Neurology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China.
| |
Collapse
|