1
|
Zheng Y, Sun R, Yang H, Gu T, Han M, Yu C, Chen P, Zhang J, Jiang T, Ding Y, Liang L, Quan R, Yao S, Zhao X. Aucubin Promotes BMSCs Proliferation and Differentiation of Postmenopausal Osteoporosis Patients by Regulating Ferroptosis and BMP2 Signalling. J Cell Mol Med 2025; 29:e70288. [PMID: 39823248 PMCID: PMC11740986 DOI: 10.1111/jcmm.70288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/02/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a chronic systemic bone metabolism disorder. Promotion in the patterns of human bone marrow mesenchymal stem cells (hBMSCs) differentiation towards osteoblasts contributes to alleviating osteoporosis. Aucubin, a natural compound isolated from the well-known herbal medicine Eucommia, was previously shown to possess various pharmacological effects. However, its effects on hBMSCs of PMOP patients are unknown. The aim of this present research was to investigate the impact and underlying process of aucubin on cell proliferation and osteogenic differentiation in hBMSCs isolated from PMOP patients. The ability of aucubin to inhibit the ferroptosis induced by erastin in hBMSCs was detected; ROS production, ferrous ion levels, SOD, MDA, and GPX activities were tested by using commercial kits. Next, ALP staining, ARS staining, RT-qPCR, RNA-sequencing, and Western blot were applied for determining the mRNA and protein expression levels associated with the osteogenesis of hBMSCs. The study also explored the involvement of BMP2/Smads signalling in aucubin promoting the osteogenesis of hBMSCs and evaluated the effects of aucubin intervention on osteoporosis using an ovariectomised rat model. The results indicated that aucubin significantly inhibited ROS generation and oxidative stress induced by erastin and protected against ferroptosis in hBMSCs. Additionally, aucubin facilitated osteogenic differentiation of hBMSCs by activating the BMP2/SMADs pathway and attenuated the progression of osteoporosis in OVX rats, suggesting a potential therapeutic benefit for postmenopausal osteoporosis (PMOP).
Collapse
Affiliation(s)
- Yang Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Research Institute of OrthopedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Rongtai Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Huan Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
| | - Tianyuan Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Meichun Han
- Third Clinical Medical SchoolZhejiang Chinese Medical UniversityHangzhouChina
| | - Congcong Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Pengyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianhua Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
| | - Ting Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
| | - Yangyang Ding
- Department of OrthopedicsThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
| | - Long Liang
- Department of OrthopedicsThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHefeiChina
| | - Renfu Quan
- Research Institute of OrthopedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
- Third Clinical Medical SchoolZhejiang Chinese Medical UniversityHangzhouChina
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xing Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
2
|
Smolobochkin A, Gazizov A, Sidlyaruk N, Akylbekov N, Zhapparbergenov R, Burilov A. Cyclic Imines and Their Salts as Universal Precursors in the Synthesis of Nitrogen-Containing Alkaloids. Int J Mol Sci 2024; 26:288. [PMID: 39796143 PMCID: PMC11719575 DOI: 10.3390/ijms26010288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Alkaloids are predominantly nitrogen-containing heterocyclic compounds that are usually isolated from plants, and sometimes from insects or animals. Alkaloids are one of the most important types of natural products due to their diverse biological activities and potential applications in modern medicine. Cyclic imines were chosen as starting compounds for the synthesis of alkaloids due to their high synthetic potential. Thus, this review summarizes the achievements in the synthesis of various alkaloids from cyclic imines, paying special attention to stereoselective methods used for their preparation. Information on the biological activity of some alkaloids, their application and occurrence in natural objects is presented. Synthesis methods are classified based on the type of alkaloid obtained.
Collapse
Affiliation(s)
- Andrey Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (N.S.); (A.B.)
| | - Almir Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (N.S.); (A.B.)
| | - Nikita Sidlyaruk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (N.S.); (A.B.)
| | - Nurgali Akylbekov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, Aiteke bi Str., 29A, Kyzylorda 120014, Kazakhstan;
| | - Rakhmetulla Zhapparbergenov
- Laboratory of Engineering Profile, Department of Engineering Technology, Korkyt Ata Kyzylorda University, Aiteke bi Str., 29A, Kyzylorda 120014, Kazakhstan;
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia; (A.G.); (N.S.); (A.B.)
| |
Collapse
|
3
|
Jiang Z, Deng L, Xiang G, Xu X, Wang Y. A Mechanistic Study of the Osteogenic Effect of Arecoline in an Osteoporosis Model: Inhibition of Iron Overload-Induced Osteogenesis by Promoting Heme Oxygenase-1 Expression. Antioxidants (Basel) 2024; 13:430. [PMID: 38671878 PMCID: PMC11047558 DOI: 10.3390/antiox13040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Iron overload-associated osteoporosis presents a significant challenge to bone health. This study examines the effects of arecoline (ACL), an alkaloid found in areca nut, on bone metabolism under iron overload conditions induced by ferric ammonium citrate (FAC) treatment. The results indicate that ACL mitigates the FAC-induced inhibition of osteogenesis in zebrafish larvae, as demonstrated by increased skeletal mineralization and upregulation of osteogenic genes. ACL attenuates FAC-mediated suppression of osteoblast differentiation and mineralization in MC3T3-E1 cells. RNA sequencing analysis suggests that the protective effects of ACL are related to the regulation of ferroptosis. We demonstrate that ACL inhibits ferroptosis, including oxidative stress, lipid peroxidation, mitochondrial damage, and cell death under FAC exposure. In this study, we have identified heme oxygenase-1 (HO-1) as a critical mediator of ACL inhibiting ferroptosis and promoting osteogenesis, which was validated by HO-1 knockdown and knockout experiments. The study links ACL to HO-1 activation and ferroptosis regulation in the context of bone metabolism. These findings provide new insights into the mechanisms underlying the modulation of osteogenesis by ACL. Targeting the HO-1/ferroptosis axis is a promising therapeutic approach for treating iron overload-induced bone diseases.
Collapse
Affiliation(s)
- Zhongjing Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Linhua Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gang Xiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xia Xu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Practice, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; (Z.J.); (L.D.); (G.X.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Rodríguez-Negrete EV, Morales-González Á, Madrigal-Santillán EO, Sánchez-Reyes K, Álvarez-González I, Madrigal-Bujaidar E, Valadez-Vega C, Chamorro-Cevallos G, Garcia-Melo LF, Morales-González JA. Phytochemicals and Their Usefulness in the Maintenance of Health. PLANTS (BASEL, SWITZERLAND) 2024; 13:523. [PMID: 38498532 PMCID: PMC10892216 DOI: 10.3390/plants13040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Inflammation is the immune system's first biological response to infection, injury, or irritation. Evidence suggests that the anti-inflammatory effect is mediated by the regulation of various inflammatory cytokines, such as nitric oxide, interleukins, tumor necrosis factor alpha-α, interferon gamma-γ, as well as the non-cytokine mediator, prostaglandin E2. Currently, the mechanism of action and clinical usefulness of phytochemicals is known; their action on the activity of cytokines, free radicals, and oxidative stress. The latter are of great relevance in the development of diseases, such that the evidence collected demonstrates the beneficial effects of phytochemicals in maintaining health. Epidemiological evidence indicates that regular consumption of fruits and vegetables is related to a low risk of developing cancer and other chronic diseases.
Collapse
Affiliation(s)
- Elda Victoria Rodríguez-Negrete
- Servicio de Gastroenterología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City 06720, Mexico;
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad Profesional ”A. López Mateos”, Ciudad de México 07738, Mexico
| | - Eduardo Osiris Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| | - Karina Sánchez-Reyes
- Servicio de Cirugía General, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City 06720, Mexico;
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Carmen Valadez-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, San Agustín Tlaxiaca 42080, Mexico;
| | - German Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 07738, Mexico;
| | - Luis Fernando Garcia-Melo
- Laboratorio de Nanotecnología e Ingeniería Molecular, Área Electroquímica, Departamento de Química, CBI, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico;
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| |
Collapse
|
5
|
Deng TT, Ding WY, Lu XX, Zhang QH, Du JX, Wang LJ, Yang MN, Yin Y, Liu FJ. Pharmacological and mechanistic aspects of quercetin in osteoporosis. Front Pharmacol 2024; 15:1338951. [PMID: 38333006 PMCID: PMC10851760 DOI: 10.3389/fphar.2024.1338951] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Osteoporosis (OP) is a bone disease associated with increasing age. Currently, the most common medications used to treat OP are anabolic agents, anti-resorptive agents, and medications with other mechanisms of action. However, many of these medications have unfavorable adverse effects or are not intended for long-term use, potentially exerting a severe negative impact on a patient's life and career and placing a heavy burden on families and society. There is an urgent need to find new drugs that can replace these and have fewer adverse effects. Quercetin (Que) is a common flavonol in nature. Numerous studies have examined the therapeutic applications of Que. However, a comprehensive review of the anti-osteoporotic effects of Que has not yet been conducted. This review aimed to describe the recent studies on the anti-osteoporotic effects of Que, including its biological, pharmacological, pharmacokinetic, and toxicological properties. The outcomes demonstrated that Que could enhance OP by increasing osteoblast differentiation and activity and reducing osteoclast differentiation and activity via the pathways of Wnt/β-catenin, BMP/SMAD/RUNX2, OPG/RANKL/RANK, ERK/JNK, oxidative stress, apoptosis, and transcription factors. Thus, Que is a promising novel drug for the treatment of OP.
Collapse
Affiliation(s)
- Ting-Ting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Yu Ding
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, China
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xi-Xue Lu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qing-Hao Zhang
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jin-Xin Du
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li-Juan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mei-Na Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Ying Yin
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fan-Jie Liu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
6
|
Saleh SR, Saleh OM, El-Bessoumy AA, Sheta E, Ghareeb DA, Eweda SM. The Therapeutic Potential of Two Egyptian Plant Extracts for Mitigating Dexamethasone-Induced Osteoporosis in Rats: Nrf2/HO-1 and RANK/RANKL/OPG Signals. Antioxidants (Basel) 2024; 13:66. [PMID: 38247490 PMCID: PMC10812806 DOI: 10.3390/antiox13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
The prolonged use of exogenous glucocorticoids, such as dexamethasone (Dex), is the most prevalent secondary cause of osteoporosis, known as glucocorticoid-induced osteoporosis (GIO). The current study examined the preventative and synergistic effect of aqueous chicory extract (ACE) and ethanolic purslane extract (EPE) on GIO compared with Alendronate (ALN). The phytochemical contents, elemental analysis, antioxidant scavenging activity, and ACE and EPE combination index were evaluated. Rats were randomly divided into control, ACE, EPE, and ACE/EPE MIX groups (100 mg/kg orally), Dex group (received 1.5 mg Dex/kg, Sc), and four treated groups received ACE, EPE, ACE/EPE MIX, and ALN with Dex. The bone mineral density and content, bone index, growth, turnover, and oxidative stress were measured. The molecular analysis of RANK/RANKL/OPG and Nrf2/HO-1 pathways were also evaluated. Dex causes osteoporosis by increasing oxidative stress, decreasing antioxidant markers, reducing bone growth markers (OPG and OCN), and increasing bone turnover and resorption markers (NFATc1, RANKL, ACP, ALP, IL-6, and TNF-α). In contrast, ACE, EPE, and ACE/EPE MIX showed a prophylactic effect against Dex-induced osteoporosis by modulating the measured parameters and the histopathological architecture. In conclusion, ACE/EPE MIX exerts a powerful synergistic effect against GIO by a mode of action different from ALN.
Collapse
Affiliation(s)
- Samar R. Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Omnia M. Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Ashraf A. El-Bessoumy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21515, Egypt;
| | - Doaa A. Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Saber M. Eweda
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (O.M.S.); (A.A.E.-B.); (D.A.G.); (S.M.E.)
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
7
|
Bharathi R, Harini G, Sankaranarayanan A, Shanmugavadivu A, Vairamani M, Selvamurugan N. Nuciferine-loaded chitosan hydrogel-integrated 3D-printed polylactic acid scaffolds for bone tissue engineering: A combinatorial approach. Int J Biol Macromol 2023; 253:127492. [PMID: 37858655 DOI: 10.1016/j.ijbiomac.2023.127492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Critical-sized bone defects resulting from severe trauma and open fractures cannot spontaneously heal and require surgical intervention. Limitations of traditional bone grafting include immune rejection and demand-over-supply issues leading to the development of novel tissue-engineered scaffolds. Nuciferine (NF), a plant-derived alkaloid, has excellent therapeutic properties, but its osteogenic potential is yet to be reported. Furthermore, the bioavailability of NF is obstructed due to its hydrophobicity, requiring an efficient drug delivery system, such as chitosan (CS) hydrogel. We designed and fabricated polylactic acid (PLA) scaffolds via 3D printing and integrated them with NF-containing CS hydrogel to obtain the porous biocomposite scaffolds (PLA/CS-NF). The fabricated scaffolds were subjected to in vitro physicochemical characterization, cytotoxicity assays, and osteogenic evaluation studies. Scanning electron microscopic studies revealed uniform pore size distribution on PLA/CS-NF scaffolds. An in vitro drug release study showed a sustained and prolonged release of NF. The cyto-friendly nature of NF in PLA/CS-NF scaffolds towards mouse mesenchymal stem cells (mMSCs) was observed. Also, cellular and molecular level studies signified the osteogenic potential of NF in PLA/CS-NF scaffolds on mMSCs. These results indicate that the PLA/CS-NF scaffolds could promote new bone formation and have potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Ramanathan Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ganesh Harini
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Aravind Sankaranarayanan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Mariappanadar Vairamani
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India..
| |
Collapse
|
8
|
Min X, Zhu T, Hu X, Hou C, He J, Liu X. Transcriptome and Metabolome Analysis of Isoquinoline Alkaloid Biosynthesis of Coptis chinensis in Different Years. Genes (Basel) 2023; 14:2232. [PMID: 38137054 PMCID: PMC10742649 DOI: 10.3390/genes14122232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Coptis chinensis is a perennial herb of the Ranunculaceae family. The isoquinoline alkaloid is the main active component of C. chinensis, mainly exists in its rhizomes and has high clinical application potential. The in vitro synthesis of isoquinoline alkaloids is difficult because their structures are complex; hence, plants are still the main source of them. In this study, two-year and four-year rhizomes of C. chinensis were selected to investigate the effect of growth years on the accumulation of isoquinoline alkaloids. Two-year and four-year C. chinensis were selected for metabolomics detection and transcriptomic analysis. A total of 413 alkaloids were detected by metabolomics analysis, of which 92 were isoquinoline alkaloids. (S)-reticuline was a significantly different accumulated metabolite of the isoquinoline alkaloids biosynthetic pathway in C. chinensis between the two groups. The results of transcriptome analysis showed that a total of 464 differential genes were identified, 36 of which were associated with the isoquinoline alkaloid biosynthesis pathway of C. chinensis. Among them, 18 genes were correlated with the content of important isoquinoline alkaloids. Overall, this study provided a comprehensive metabolomic and transcriptomic analysis of the rapid growth stage of C. chinensis rhizome from the perspective of growth years. It brought new insights into the biosynthetic pathway of isoquinoline alkaloids and provided information for utilizing biotechnology to improve their contents in C. chinensis.
Collapse
Affiliation(s)
| | | | | | | | | | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430700, China; (X.M.); (T.Z.); (X.H.); (C.H.); (J.H.)
| |
Collapse
|
9
|
Liu J, Meng T, Wang C, Cheng W, Zhang Q, Cheng G. Natural products for the treatment of depression: Insights into signal pathways influencing the hypothalamic-pituitary-adrenal axis. Medicine (Baltimore) 2023; 102:e35862. [PMID: 37932977 PMCID: PMC10627670 DOI: 10.1097/md.0000000000035862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
Depression, a prevalent psychiatric malady, afflicts a substantial global demographic, engendering considerable disease burden due to its elevated morbidity and mortality rates. Contemporary therapeutic approaches for depression encompass the administration of serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclic antidepressants, albeit these pharmaceuticals potentially induce adverse neurological and gastrointestinal effects. Traditional Chinese Medicine (TCM) natural products proffer the benefits of multi-target, multi-level, and multi-channel depression treatment modalities. In this investigation, we conducted a comprehensive literature review of the past 5 years in PubMed and other databases utilizing the search terms "Depression," "Natural medicines," "Traditional Chinese Medicine," and "hypothalamic-pituitary-adrenal axis." We delineated the 5 most recent and pertinent signaling pathways associated with depression and hypothalamic-pituitary-adrenal (HPA) axis dysregulation: nuclear factor kappa light-chain-enhancer of activated B cell, brain-derived neurotrophic factor, mitogen-activated protein kinase, cyclic AMP/protein kinase A, and phosphoinositide 3-kinase/protein kinase B. Additionally, we deliberated the antidepressant mechanisms of natural medicines comprising alkaloids, flavonoids, polyphenols, saponins, and quinones via diverse pathways. This research endeavor endeavored to encapsulate and synthesize the progression of TCMs in modulating HPA axis-associated signaling pathways to mitigate depression, thereby furnishing robust evidence for ensuing research in this domain.
Collapse
Affiliation(s)
- Jiawen Liu
- Graduate school, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Tianwei Meng
- Graduate school, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chaojie Wang
- Graduate school, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Weiping Cheng
- The Second Ward of Acupuncture and Moxibustion Department, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Zhang
- The Forth Ward of Cardiovascular Department, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guangyu Cheng
- The Sixth Ward of Acupuncture and Moxibustion Department, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
10
|
Zhang G, Liu Z, Li Z, Zhang B, Yao P, Qiao Y. Therapeutic approach of natural products that treat osteoporosis by targeting epigenetic modulation. Front Genet 2023; 14:1182363. [PMID: 37287533 PMCID: PMC10242146 DOI: 10.3389/fgene.2023.1182363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
Osteoporosis (OP) is a metabolic disease that affects bone, resulting in a progressive decrease in bone mass, quality, and micro-architectural degeneration. Natural products have become popular for managing OP in recent years due to their minimal adverse side effects and suitability for prolonged use compared to chemically synthesized products. These natural products are known to modulate multiple OP-related gene expressions, making epigenetics an important tool for optimal therapeutic development. In this study, we investigated the role of epigenetics in OP and reviewed existing research on using natural products for OP management. Our analysis identified around twenty natural products involved in epigenetics-based OP modulation, and we discussed potential mechanisms. These findings highlight the clinical significance of natural products and their potential as novel anti-OP therapeutics.
Collapse
Affiliation(s)
- Guokai Zhang
- Binzhou Hospital of Traditional Chinese Medicine, Binzhou, China
| | - Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihan Li
- The First Affiliated Hospital of Shandong First Medical University Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Bing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pengyu Yao
- Shandong Laboratory of Engineering Technology Suzhou Biomedical Engineering and Technology Chinese Academy of Sciences, Jinan, China
- Jinan Guoke Medical Engineering and Technology Development Company, Jinan, China
| | - Yun Qiao
- Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|