1
|
Sansone C, Pistelli L, Brunet C. The marine xanthophyll diatoxanthin as ferroptosis inducer in MDAMB231 breast cancer cells. Sci Rep 2025; 15:8146. [PMID: 40059233 PMCID: PMC11891320 DOI: 10.1038/s41598-025-91519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/20/2025] [Indexed: 05/13/2025] Open
Abstract
Marine biotopes are considered as a huge reservoir of biodiversity and chemodiversity, the latter potentially providing new treats for health prevention. Among the emphasized marine biocenosis, microorganisms such as microalgae propose suitable solutions to address eco-sustainability or biorefinery topics. The health interests of the xanthophyll diatoxanthin (Dt), a photoprotective and antioxidant pigment synthetized by diatoms, have been recently documented. This study deeply explores the capacity of Dt to intercept cancer progression and addresses the Dt -induced cell death in breast cancer. It is crucial to know which signalling pathway explaining its function is induced by the molecule in the targeted cells. This study disentangled the intracellular effects of Dt in MDAMB231 breast cancer cells. The results highlighted the inhibition of glutathione synthesis through cysteine transport blockage, that in turn, induced an iron accumulation and increase in lipid peroxidation. Those features represent the principal hallmarks of intracellular ferroptosis pathway. Ferroptosis being considered as one of the cell death most promising in fighting cancer development (e.g. in breast cancer) this study reinforces the scientific/biomedical interests on Dt and the diatoms' resource and paves the way to explore its suitability in vivo.
Collapse
Affiliation(s)
- Clementina Sansone
- Stazione Zoologica Anton Dohrn, sede Molosiglio, via F. Acton, 80133, Naples, Italy.
| | - Luigi Pistelli
- Stazione Zoologica Anton Dohrn, sede Molosiglio, via F. Acton, 80133, Naples, Italy
- Clinical and Experimental Unit of Breast Cancer, National Cancer Institute, IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, sede Molosiglio, via F. Acton, 80133, Naples, Italy
| |
Collapse
|
2
|
Yan X, Niu Y, Wang Y, Wei S, Han L, Guo Z, Zhao L, Gao F. CMSP exerts anti-tumor effects on small cell lung cancer cells by inducing mitochondrial dysfunction and ferroptosis. Open Med (Wars) 2025; 20:20241100. [PMID: 39822985 PMCID: PMC11737370 DOI: 10.1515/med-2024-1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/09/2024] [Accepted: 11/07/2024] [Indexed: 01/19/2025] Open
Abstract
Purpose This study aims to investigate the role and mechanism of p-hydroxyl cinnamaldehyde (CMSP) in triggering ferroptosis of small cell lung cancer (SCLC) cells. Methods The impact of CMSP on ferroptosis in H1688 and SW1271 cells was assessed through cell experiments and biological information analysis. Moreover, the expression of heme oxygenase 1 (HMOX1) in SCLC tissue was examined. Results Following CMSP treatment, a concentration-dependent increase in cell death was observed, and differentially expressed genes were found to be associated with ferroptosis. CMSP notably facilitated ferroptosis events, such as elevated levels of reactive oxygen species (ROS), Fe2+, malondialdehyde (MDA), transferrin receptor 1 (TFR1), divalent metal transporter 1 (DMT1), and decreased levels of glutathione (GSH), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4). Furthermore, CMSP promoted mitochondrial dysfunction, manifested as reduced mitochondrial volume, increased membrane density, elevated mitochondrial ROS, and decreased mitochondrial membrane potential. Consistently, the mitochondrial-targeted antioxidant Mito-TEMPO reversed CMSP-induced ferroptosis. Expression of the HMOX1 gene was markedly increased under CMSP treatment, while lower expression was observed in cancer tissue compared to adjacent tissue. Conclusion CMSP triggers mitochondrial dysfunction via HMOX1 activation, leading to ferroptosis in SCLC cells, underscoring its potential as a therapeutic agent for SCLC.
Collapse
Affiliation(s)
- Xi Yan
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Yinghao Niu
- Department of Clinical Biobank, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China
| | - Yaojie Wang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Sisi Wei
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Lina Han
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Zhongyu Guo
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Feng Gao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| |
Collapse
|
3
|
Imam M, Ji J, Zhang Z, Yan S. Targeting the initiator to activate both ferroptosis and cuproptosis for breast cancer treatment: progress and possibility for clinical application. Front Pharmacol 2025; 15:1493188. [PMID: 39867656 PMCID: PMC11757020 DOI: 10.3389/fphar.2024.1493188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/28/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer worldwide. Metal metabolism is pivotal for regulating cell fate and drug sensitivity in breast cancer. Iron and copper are essential metal ions critical for maintaining cellular function. The accumulation of iron and copper ions triggers distinct cell death pathways, known as ferroptosis and cuproptosis, respectively. Ferroptosis is characterized by iron-dependent lipid peroxidation, while cuproptosis involves copper-induced oxidative stress. They are increasingly recognized as promising targets for the development of anticancer drugs. Recently, compelling evidence demonstrated that the interplay between ferroptosis and cuproptosis plays a crucial role in regulating breast cancer progression. This review elucidates the converging pathways of ferroptosis and cuproptosis in breast cancer. Moreover, we examined the value of genes associated with ferroptosis and cuproptosis in the clinical diagnosis and treatment of breast cancer, mainly outlining the potential for a co-targeting approach. Lastly, we delve into the current challenges and limitations of this strategy. In general, this review offers an overview of the interaction between ferroptosis and cuproptosis in breast cancer, offering valuable perspectives for further research and clinical treatment.
Collapse
Affiliation(s)
| | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Vartanian AA, Kosorukov VS. Pro-inflammatory Cytokines, Ferroptosis, and Cancer. Acta Naturae 2025; 17:4-10. [PMID: 40264585 PMCID: PMC12011187 DOI: 10.32607/actanaturae.27547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/22/2024] [Indexed: 04/24/2025] Open
Abstract
Ferroptosis, iron-dependent regulated cell death, is induced by the polyunsaturated fatty acid peroxidation of membrane phospholipids and is controlled by glutathione peroxidase 4. In recent years, convincing evidence has emerged, demonstrating a close relationship between chemo-, radio-, immuno-, and targeted therapy resistance and ferroptosis resistance. In this review, we discuss the basic principles of ferroptosis in cancer. Considerable attention is paid to the formation of an immunosuppressive tumor microenvironment. The main focus is centered on the involvement of the excessive, chronic production of pro-inflammatory cytokines in ferroptosis resistance development in tumors.
Collapse
Affiliation(s)
- A. A. Vartanian
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, Moscow, 115478 Russian Federation
| | - V. S. Kosorukov
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, Moscow, 115478 Russian Federation
| |
Collapse
|
5
|
Peng C, Chen Y, Jiang M. Targeting ferroptosis: a promising strategy to overcome drug resistance in breast cancer. Front Oncol 2024; 14:1499125. [PMID: 39759144 PMCID: PMC11695291 DOI: 10.3389/fonc.2024.1499125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Breast cancer is one of the most prevalent malignancies affecting women worldwide, with its incidence increasingly observed in younger populations. In recent years, drug resistance has emerged as a significant challenge in the treatment of breast cancer, making it a central focus of contemporary research aimed at identifying strategies to overcome this issue. Growing evidence indicates that inducing ferroptosis through various mechanisms, particularly by inhibiting System Xc-, depleting glutathione (GSH), and inactivating glutathione peroxidase 4 (GPX4), holds great potential in overcoming drug resistance in breast cancer. It is anticipated that therapies targeting ferroptosis will emerge as a promising strategy to reverse tumor resistance, offering new hope for breast cancer patients. This review will explore the latest advancements in understanding ferroptosis in the context of breast cancer drug resistance, with a particular emphasis on the roles of ferroptosis inducers and inhibitors, and the impact of ferroptotic pathways on overcoming drug resistance in breast cancer.
Collapse
|
6
|
Liu J, Tang R, Zheng J, Luo K. Targeting ferroptosis reveals a new strategy for breast cancer treatment: a bibliometric study. Discov Oncol 2024; 15:679. [PMID: 39560863 DOI: 10.1007/s12672-024-01569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Studies exploring the role of ferroptosis in the pathogenesis of breast cancer have proliferated over the past decade, especially in 2023, with a staggering 217 publications in related studies. However, there are still significant gaps in comprehensive scientometric analysis and mapping of scientific studies, especially in terms of temporal and study area tracking, principal investigators, and the emergence of new hotspots. OBJECTIVE This study aims to summarize the role of ferroptosis in the development of breast cancer and the latest research results on the ferroptosis-targeted treatment of breast cancer and to use bibliometric methods to draw a visual map to explore future research trends. METHODS On May 11, 2024, this study updated the research progress related to ferroptosis and breast cancer over the past 11 years by retrieving data from January 1, 2014, to May 1, 2024, from the Web of Science database. In this research, many scientific analysis software including VOSviewer, chorddiag R Language Pack, Scimago Graphica, Citespace 6.3.R1, Cluster Profiler, enrichplot, ggplot2 R Language Pack, Cytoscape, and STRING online platform are used to make in-depth scientific analysis and visualization of the measurement results. RESULTS Statistical analysis of these data showed that China accounted for 74.43% of the total publications, highlighting China's dominant role in research on the relationship between ferroptosis and breast cancer. Several research institutions, including Sun Yat-sen University, Zhejiang University, and Shanghai Jiao Tong University, have achieved impressive results. Efferth, Thomas is the most prominent author in this field and has the highest number of publications in the subfield of oncology. This study clearly shows that ferroptosis plays a crucial role in the development of triple-negative breast cancer, hepatocellular carcinoma, glioma, leukemia, mitochondrial disease, lymphoma, bladder tumors, lung adenocarcinoma, and esophageal tumors. CONCLUSION This study provides a comprehensive bibliometric evaluation that deepens our understanding of the role of ferroptosis in the pathogenesis of breast cancer and the current status of targeting ferroptosis for treating breast cancer. Thus, it helps researchers in related fields explore new research directions by comprehensively extracting important information and research hotspots.
Collapse
Affiliation(s)
- Junlin Liu
- Pathology Department of Jingmen Central Hospital, Jingmen, Hubei, China
- Pathology Department of Jingmen Central Hospital affiliated to Jingchu University of Technology, Jingmen, Hubei, China
| | - Rong Tang
- Pathology Department of Jingmen Central Hospital, Jingmen, Hubei, China
- Pathology Department of Jingmen Central Hospital affiliated to Jingchu University of Technology, Jingmen, Hubei, China
| | - Jie Zheng
- Pathology Department of Jingmen Central Hospital, Jingmen, Hubei, China
- Pathology Department of Jingmen Central Hospital affiliated to Jingchu University of Technology, Jingmen, Hubei, China
| | - Ke Luo
- Pathology Department of Jingmen Central Hospital, Jingmen, Hubei, China.
- Pathology Department of Jingmen Central Hospital affiliated to Jingchu University of Technology, Jingmen, Hubei, China.
| |
Collapse
|
7
|
Chen C, Xiang A, Lin X, Guo J, Liu J, Hu S, Rui T, Ye Q. Mitophagy: insights into its signaling molecules, biological functions, and therapeutic potential in breast cancer. Cell Death Discov 2024; 10:457. [PMID: 39472438 PMCID: PMC11522701 DOI: 10.1038/s41420-024-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Mitophagy, a form of selective autophagy that removes damaged or dysfunctional mitochondria, plays a crucial role in maintaining mitochondrial and cellular homeostasis. Recent findings suggest that defective mitophagy is closely associated with various diseases, including breast cancer. Moreover, a better understanding of the multifaceted roles of mitophagy in breast cancer progression is crucial for the treatment of this disease. Here, we will summarize the molecular mechanisms of mitophagy process. In addition, we highlight the expression patterns and roles of mitophagy-related signaling molecules in breast cancer progression and the potential implications of mitophagy for the development of breast cancer, aiming to provide better therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Cong Chen
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Aizhai Xiang
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xia Lin
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jian Liu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Shufang Hu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Tao Rui
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Qianwei Ye
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
8
|
Fu B, Lou Y, Wu P, Lu X, Xu C. Emerging role of necroptosis, pyroptosis, and ferroptosis in breast cancer: New dawn for overcoming therapy resistance. Neoplasia 2024; 55:101017. [PMID: 38878618 PMCID: PMC11225858 DOI: 10.1016/j.neo.2024.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
Breast cancer (BC) is one of the primary causes of death in women worldwide. The challenges associated with adverse outcomes have increased significantly, and the identification of novel therapeutic targets has become increasingly urgent. Regulated cell death (RCD) refers to a type of cell death that can be regulated by several different biomacromolecules, which is distinctive from accidental cell death (ACD). In recent years, apoptosis, a representative RCD pathway, has gained significance as a target for BC medications. However, tumor cells exhibit avoidance of apoptosis and result in treatment resistance, which emphasizes further studies devoted to alternative cell death processes, namely necroptosis, pyroptosis, and ferroptosis. Here, in this review, we focus on summarizing the crucial signaling pathways of these RCD in BC. We further discuss the molecular mechanism and potentiality in clinical application of several prospective drugs, nanoparticles, and other small compounds targeting different RCD subroutines of BC. We also discuss the benefits of modulating RCD processes on drug resistance and the advantages of combining RCD modulators with conventional treatments in BC. This review will deepen our understanding of the relationship between RCD and BC, and shed new light on future directions to attack cancer vulnerabilities with RCD modulators for therapeutic purposes.
Collapse
Affiliation(s)
- Bifei Fu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - YuMing Lou
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Pu Wu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Xiaofeng Lu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China.
| | - Chaoyang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China; Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China.
| |
Collapse
|
9
|
Alkan AH, Ensoy M, Cansaran-Duman D. A new therapeutic strategy for luminal A-breast cancer treatment: vulpinic acid as an anti-neoplastic agent induces ferroptosis and apoptosis mechanisms. Med Oncol 2024; 41:229. [PMID: 39158808 DOI: 10.1007/s12032-024-02473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Breast cancer is a common invasive tumor in women, and the most common subtype of breast cancer is luminal A. Hormonal therapies are the primary treatment for luminal A, but treatment options are limited. Vulpinic acid (VA), a lichen compound, inhibited cancer cells. Here, we aimed to reveal the functional role and mechanism of VA in luminal A breast cancer. Experiments associated with the ferroptosis mechanism were performed to reveal the role of vulpinic acid on luminal A-breast cancer and the underlying mechanisms. The results showed that VA induced the ferroptosis pathway by decreasing glutathione (GSH) levels while increasing lipid reactive oxygen species (ROS), lipid peroxidation (MDA), and intracellular Fe2+ levels in MCF-7 cells. After treatment of MCF-7 cells with VA, the ferroptosis-related gene expression profile was significantly altered. Western blot analysis showed that GPX4 protein levels were down-regulated and LPCAT3 protein levels were up-regulated after VA treatment. Our study suggests that apoptosis and ferroptosis act together in VA-mediated tumor suppression in MCF-7 breast cancer cells. These findings suggest that VA, an anti-neoplastic agent, could potentially treat luminal A targeted breast cancer via the ferroptosis pathway.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Biotechnology Institute, Ankara University, Keçiören, 06135, Ankara, Turkey
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, Keçiören, 06135, Ankara, Turkey
| | | |
Collapse
|
10
|
Tan S, Sun X, Dong H, Wang M, Yao L, Wang M, Xu L, Xu Y. ACSL3 regulates breast cancer progression via lipid metabolism reprogramming and the YES1/YAP axis. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0309. [PMID: 38953696 PMCID: PMC11271223 DOI: 10.20892/j.issn.2095-3941.2023.0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/15/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVE Mitochondrial fatty acid oxidation is a metabolic pathway whose dysregulation is recognized as a critical factor in various cancers, because it sustains cancer cell survival, proliferation, and metastasis. The acyl-CoA synthetase long-chain (ACSL) family is known to activate long-chain fatty acids, yet the specific role of ACSL3 in breast cancer has not been determined. METHODS We assessed the prognostic value of ACSL3 in breast cancer by using data from tumor samples. Gain-of-function and loss-of-function assays were also conducted to determine the roles and downstream regulatory mechanisms of ACSL3 in vitro and in vivo. RESULTS ACSL3 expression was notably downregulated in breast cancer tissues compared with normal tissues, and this phenotype correlated with improved survival outcomes. Functional experiments revealed that ACSL3 knockdown in breast cancer cells promoted cell proliferation, migration, and epithelial-mesenchymal transition. Mechanistically, ACSL3 was found to inhibit β-oxidation and the formation of associated byproducts, thereby suppressing malignant behavior in breast cancer. Importantly, ACSL3 was found to interact with YES proto-oncogene 1, a member of the Src family of tyrosine kinases, and to suppress its activation through phosphorylation at Tyr419. The decrease in activated YES1 consequently inhibited YAP1 nuclear colocalization and transcriptional complex formation, and the expression of its downstream genes in breast cancer cell nuclei. CONCLUSIONS ACSL3 suppresses breast cancer progression by impeding lipid metabolism reprogramming, and inhibiting malignant behaviors through phospho-YES1 mediated inhibition of YAP1 and its downstream pathways. These findings suggest that ACSL3 may serve as a potential biomarker and target for comprehensive therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Shirong Tan
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Xiangyu Sun
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Haoran Dong
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Mozhi Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Litong Yao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Mengshen Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Ling Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110000, China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
11
|
Mokhtarpour K, Razi S, Rezaei N. Ferroptosis as a promising targeted therapy for triple negative breast cancer. Breast Cancer Res Treat 2024:10.1007/s10549-024-07387-7. [PMID: 38874688 DOI: 10.1007/s10549-024-07387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Triple negative breast cancer (TNBC) is a challenging subtype characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Standard treatment options are limited, and approximately 45% of patients develop distant metastasis. Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation and oxidative stress, has emerged as a potential targeted therapy for TNBC. METHODS This study utilizes a multifaceted approach to investigate the induction of ferroptosis as a therapeutic strategy for TNBC. It explores metabolic alterations, redox imbalance, and oncogenic signaling pathways to understand their roles in inducing ferroptosis, characterized by lipid peroxidation, reactive oxygen species (ROS) generation, and altered cellular morphology. Critical pathways such as Xc-/GSH/GPX4, ACSL4/LPCAT3, and nuclear factor erythroid 2-related factor 2 (NRF2) are examined for their regulatory roles in ferroptosis and their potential dysregulation contributing to cancer cell survival and resistance. RESULTS Inducing ferroptosis has been shown to inhibit tumor growth, enhance the efficacy of conventional therapies, and overcome drug resistance in TNBC. Lipophilic antioxidants, GPX4 inhibitors, and inhibitors of the Xc- system have been demonstrated to be potential ferroptosis inducers. Additionally, targeting the NRF2 pathway and exploring other ferroptosis regulators, such as ferroptosis suppressor protein 1 (FSP1), and the PERK-eIF2α-ATF4-CHOP pathway, may offer novel therapeutic avenues. CONCLUSION Further research is needed to understand the mechanisms, optimize therapeutic strategies, and evaluate the safety and efficacy of ferroptosis-targeted therapies in TNBC treatment. Overall, targeting ferroptosis represents a promising approach to improving treatment outcomes and overcoming the challenges posed by TNBC.
Collapse
Affiliation(s)
- Kasra Mokhtarpour
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
12
|
Pascual G, Majem B, Benitah SA. Targeting lipid metabolism in cancer metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189051. [PMID: 38101461 DOI: 10.1016/j.bbcan.2023.189051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
This review delves into the most recent research on the metabolic adaptability of cancer cells and examines how their metabolic functions can impact their progression into metastatic forms. We emphasize the growing significance of lipid metabolism and dietary lipids within the tumor microenvironment, underscoring their influence on tumor progression. Additionally, we present an outline of the interplay between metabolic processes and the epigenome of cancer cells, underscoring the importance regarding the metastatic process. Lastly, we examine the potential of targeting metabolism as a therapeutic approach in combating cancer progression, shedding light on innovative drugs/targets currently undergoing preclinical evaluation.
Collapse
Affiliation(s)
- Gloria Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Blanca Majem
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
13
|
Ge A, He Q, Zhao D, Li Y, Chen J, Deng Y, Xiang W, Fan H, Wu S, Li Y, Liu L, Wang Y. Mechanism of ferroptosis in breast cancer and research progress of natural compounds regulating ferroptosis. J Cell Mol Med 2024; 28:e18044. [PMID: 38140764 PMCID: PMC10805512 DOI: 10.1111/jcmm.18044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer is the most prevalent cancer worldwide and its incidence increases with age, posing a significant threat to women's health globally. Due to the clinical heterogeneity of breast cancer, the majority of patients develop drug resistance and metastasis following treatment. Ferroptosis, a form of programmed cell death dependent on iron, is characterized by the accumulation of lipid peroxides, elevated levels of iron ions and lipid peroxidation. The underlying mechanisms and signalling pathways associated with ferroptosis are intricate and interconnected, involving various proteins and enzymes such as the cystine/glutamate antiporter, glutathione peroxidase 4, ferroptosis inhibitor 1 and dihydroorotate dehydrogenase. Consequently, emerging research suggests that ferroptosis may offer a novel target for breast cancer treatment; however, the mechanisms of ferroptosis in breast cancer urgently require resolution. Additionally, certain natural compounds have been reported to induce ferroptosis, thereby interfering with breast cancer. Therefore, this review not only discusses the molecular mechanisms of multiple signalling pathways that mediate ferroptosis in breast cancer (including metastasis, invasion and proliferation) but also elaborates on the mechanisms by which natural compounds induce ferroptosis in breast cancer. Furthermore, this review summarizes potential compound types that may serve as ferroptosis inducers in future tumour cells, providing lead compounds for the development of ferroptosis-inducing agents. Last, this review proposes the potential synergy of combining natural compounds with traditional breast cancer drugs in the treatment of breast cancer, thereby suggesting future directions and offering new insights.
Collapse
Affiliation(s)
- Anqi Ge
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Qi He
- People's Hospital of Ningxiang CityNingxiangChina
| | - Da Zhao
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| | - Yuwei Li
- Hunan University of Science and TechnologyXiangtanChina
| | - Junpeng Chen
- Hunan University of Science and TechnologyXiangtanChina
| | - Ying Deng
- People's Hospital of Ningxiang CityNingxiangChina
| | - Wang Xiang
- The First People's Hospital Changde CityChangdeChina
| | - Hongqiao Fan
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Shiting Wu
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Yan Li
- People's Hospital of Ningxiang CityNingxiangChina
| | - Lifang Liu
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Yue Wang
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| |
Collapse
|
14
|
Desterke C, Cosialls E, Xiang Y, Elhage R, Duruel C, Chang Y, Hamaï A. Adverse Crosstalk between Extracellular Matrix Remodeling and Ferroptosis in Basal Breast Cancer. Cells 2023; 12:2176. [PMID: 37681908 PMCID: PMC10486747 DOI: 10.3390/cells12172176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
(1) Background: Breast cancer is a frequent heterogeneous disorder diagnosed in women and causes a high number of mortality among this population due to rapid metastasis and disease recurrence. Ferroptosis can inhibit breast cancer cell growth, improve the sensitivity of chemotherapy and radiotherapy, and inhibit distant metastases, potentially impacting the tumor microenvironment. (2) Methods: Through data mining, the ferroptosis/extracellular matrix remodeling literature text-mining results were integrated into the breast cancer transcriptome cohort, taking into account patients with distant relapse-free survival (DRFS) under adjuvant therapy (anthracyclin + taxanes) with validation in an independent METABRIC cohort, along with the MDA-MB-231 and HCC338 transcriptome functional experiments with ferroptosis activations (GSE173905). (3) Results: Ferroptosis/extracellular matrix remodeling text-mining identified 910 associated genes. Univariate Cox analyses focused on breast cancer (GSE25066) selected 252 individual significant genes, of which 170 were found to have an adverse expression. Functional enrichment of these 170 adverse genes predicted basal breast cancer signatures. Through text-mining, some ferroptosis-significant adverse-selected genes shared citations in the domain of ECM remodeling, such as TNF, IL6, SET, CDKN2A, EGFR, HMGB1, KRAS, MET, LCN2, HIF1A, and TLR4. A molecular score based on the expression of the eleven genes was found predictive of the worst prognosis breast cancer at the univariate level: basal subtype, short DRFS, high-grade values 3 and 4, and estrogen and progesterone receptor negative and nodal stages 2 and 3. This eleven-gene signature was validated as regulated by ferroptosis inductors (erastin and RSL3) in the triple-negative breast cancer cellular model MDA-MB-231. (4) Conclusions: The crosstalk between ECM remodeling-ferroptosis functionalities allowed for defining a molecular score, which has been characterized as an independent adverse parameter in the prognosis of breast cancer patients. The gene signature of this molecular score has been validated to be regulated by erastin/RSL3 ferroptosis activators. This molecular score could be promising to evaluate the ECM-related impact of ferroptosis target therapies in breast cancer.
Collapse
Affiliation(s)
- Christophe Desterke
- UFR Médecine-INSERM UMRS1310, Université Paris-Saclay, F-94800 Villejuif, France
| | - Emma Cosialls
- Institut Necker Enfants Malades, INSERM UMR-S1151-CNRS UMR-S8253, Université Paris Cité, F-75015 Paris, France; (E.C.); (Y.X.); (R.E.); (C.D.); (Y.C.)
- Team 5/Ferostem Group, F-75015 Paris, France
| | - Yao Xiang
- Institut Necker Enfants Malades, INSERM UMR-S1151-CNRS UMR-S8253, Université Paris Cité, F-75015 Paris, France; (E.C.); (Y.X.); (R.E.); (C.D.); (Y.C.)
| | - Rima Elhage
- Institut Necker Enfants Malades, INSERM UMR-S1151-CNRS UMR-S8253, Université Paris Cité, F-75015 Paris, France; (E.C.); (Y.X.); (R.E.); (C.D.); (Y.C.)
- Team 5/Ferostem Group, F-75015 Paris, France
| | - Clémence Duruel
- Institut Necker Enfants Malades, INSERM UMR-S1151-CNRS UMR-S8253, Université Paris Cité, F-75015 Paris, France; (E.C.); (Y.X.); (R.E.); (C.D.); (Y.C.)
- Team 5/Ferostem Group, F-75015 Paris, France
| | - Yunhua Chang
- Institut Necker Enfants Malades, INSERM UMR-S1151-CNRS UMR-S8253, Université Paris Cité, F-75015 Paris, France; (E.C.); (Y.X.); (R.E.); (C.D.); (Y.C.)
| | - Ahmed Hamaï
- Institut Necker Enfants Malades, INSERM UMR-S1151-CNRS UMR-S8253, Université Paris Cité, F-75015 Paris, France; (E.C.); (Y.X.); (R.E.); (C.D.); (Y.C.)
- Team 5/Ferostem Group, F-75015 Paris, France
| |
Collapse
|
15
|
Chamandi G, El-Hajjar L, El Kurdi A, Le Bras M, Nasr R, Lehmann-Che J. ER Negative Breast Cancer and miRNA: There Is More to Decipher Than What the Pathologist Can See! Biomedicines 2023; 11:2300. [PMID: 37626796 PMCID: PMC10452617 DOI: 10.3390/biomedicines11082300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC), the most prevalent cancer in women, is a heterogenous disease. Despite advancements in BC diagnosis, prognosis, and therapeutics, survival rates have drastically decreased in the metastatic setting. Therefore, BC still remains a medical challenge. The evolution of high-throughput technology has highlighted gaps in the classification system of BCs. Of particular interest is the notorious triple negative BC, which was recounted as being heterogenous itself and it overlaps with distinct subtypes, namely molecular apocrine (MA) and luminal androgen (LAR) BCs. These subtypes are, even today, still misdiagnosed and poorly treated. As such, researchers and clinicians have been looking for ways through which to refine BC classification in order to properly understand the initiation, development, progression, and the responses to the treatment of BCs. One tool is biomarkers and, specifically, microRNA (miRNA), which are highly reported as associated with BC carcinogenesis. In this review, the diverse roles of miRNA in estrogen receptor negative (ER-) and androgen receptor positive (AR+) BC are depicted. While highlighting their oncogenic and tumor suppressor functions in tumor progression, we will discuss their diagnostic, prognostic, and predictive biomarker potentials, as well as their drug sensitivity/resistance activity. The association of several miRNAs in the KEGG-reported pathways that are related to ER-BC carcinogenesis is presented. The identification and verification of accurate miRNA panels is a cornerstone for tackling BC classification setbacks, as is also the deciphering of the carcinogenesis regulators of ER - AR + BC.
Collapse
Affiliation(s)
- Ghada Chamandi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon
| | - Abdallah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon;
| | - Morgane Le Bras
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
| | - Jacqueline Lehmann-Che
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| |
Collapse
|